321 results on '"Bebawy, M"'
Search Results
2. Towards the bioequivalence of pressurised metered dose inhalers 2. Aerodynamically equivalent particles (with and without glycerol) exhibit different biopharmaceutical profiles in vitro
- Author
-
Haghi, M., Bebawy, M., Colombo, P., Forbes, B., Lewis, D.A., Salama, R., Traini, D., and Young, P.M.
- Published
- 2014
- Full Text
- View/download PDF
3. Microparticles and their emerging role in cancer multidrug resistance
- Author
-
Gong, J., Jaiswal, R., Mathys, J.-M., Combes, V., Grau, G.E.R., and Bebawy, M.
- Published
- 2012
- Full Text
- View/download PDF
4. Epigenetic Therapy as a Potential Approach for Targeting Oxidative Stress–Induced Non-small-Cell Lung Cancer
- Author
-
Wadhwa, R, Paudel, KR, Shukla, S, Shastri, M, Gupta, G, Devkota, HP, Bebawy, M, Chellappan, DK, Hansbro, PM, Dua, K, Wadhwa, R, Paudel, KR, Shukla, S, Shastri, M, Gupta, G, Devkota, HP, Bebawy, M, Chellappan, DK, Hansbro, PM, and Dua, K
- Published
- 2022
5. Implementing AcaWriter as a Novel Strategy to Support Pharmacy Students’ Reflective Practice in Scientific Research
- Author
-
Lucas, C, Shum, SB, Liu, M, and Bebawy, M
- Subjects
1115 Pharmacology and Pharmaceutical Sciences, 1302 Curriculum and Pedagogy ,Education - Published
- 2021
6. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells
- Author
-
Bebawy, M, Combes, V, Lee, E, Jaiswal, R, Gong, J, Bonhoure, A, and Grau, G E R
- Published
- 2009
- Full Text
- View/download PDF
7. Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: an in vitro study
- Author
-
Jin-Ying Wong, Yin Ng, Z, Mehta, M, Shukla, SD, Panneerselvam, J, Madheswaran, T, Gupta, G, Negi, P, Kumar, P, Pillay, V, Hsu, A, Hansbro, NG, Wark, P, Bebawy, M, Hansbro, PM, Dua, K, and Chellappan, DK
- Subjects
0306 Physical Chemistry (incl. Structural), 1004 Medical Biotechnology, 1007 Nanotechnology ,Nanoscience & Nanotechnology - Abstract
Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1β and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.
- Published
- 2020
8. Recent advances in experimental animal models of lung cancer
- Author
-
Malyla, V, Paudel, KR, Shukla, SD, Donovan, C, Wadhwa, R, Pickles, S, Chimankar, V, Sahu, P, Bielefeldt-Ohmann, H, Bebawy, M, Hansbro, PM, and Dua, K
- Subjects
Medicinal & Biomolecular Chemistry - Published
- 2020
9. Epigenetic Therapy as a Potential Approach for Targeting Oxidative Stress–Induced Non-Small-Cell Lung Cancer
- Author
-
Wadhwa, R, Paudel, KR, Shukla, S, Shastri, M, Gupta, G, Devkota, HP, Bebawy, M, Chellappan, DK, Hansbro, PM, Dua, K, Wadhwa, R, Paudel, KR, Shukla, S, Shastri, M, Gupta, G, Devkota, HP, Bebawy, M, Chellappan, DK, Hansbro, PM, and Dua, K
- Published
- 2021
10. Extracellular Vesicles in Chemoresistance.
- Author
-
De Rubis, G, Bebawy, M, De Rubis, G, and Bebawy, M
- Abstract
Chemotherapy represents the current mainstay therapeutic approach for most types of cancer. Despite the development of targeted chemotherapeutic strategies, the efficacy of anti-cancer drugs is severely limited by the development of drug resistance. Multidrug resistance (MDR) consists of the simultaneous resistance to various unrelated cytotoxic drugs and is one of the main causes of anticancer treatment failure. One of the principal mechanisms by which cancer cells become MDR involves the overexpression of ATP Binding Cassette (ABC) transporters, such as P-glycoprotein (P-gp), mediating the active efflux of cytotoxic molecules from the cytoplasm. Extracellular vesicles (EVs) are submicron lipid-enclosed vesicles that are released by all cells and which play a fundamental role in intercellular communication in physiological and pathological contexts. EVs have fundamental function at each step of cancer development and progression. They mediate the transmission of MDR through the transfer of vesicle cargo including functional ABC transporters as well as nucleic acids, proteins and lipids. Furthermore, EVs mediate MDR by sequestering anticancer drugs and stimulate cancer cell migration and invasion. EVs also mediate the communication with the tumour microenvironment and the immune system, resulting in increased angiogenesis, metastasis and immune evasion. All these actions contribute directly and indirectly to the development of chemoresistance and treatment failure. In this chapter, we describe the many roles EVs play in the acquisition and spread of chemoresistance in cancer. We also discuss possible uses of EVs as pharmacological targets to overcome EV-mediated drug resistance and the potential that the analysis of tumour-derived EVs offers as chemoresistance biomarkers.
- Published
- 2021
11. Specific reversal of multidrug resistance to colchicine in CEM/[VLB.sub.100] cells by Gynostemma pentaphyllum extract
- Author
-
Huang, T.H.-W., Bebawy, M., Tran, V.H., and Roufogalis, B.D.
- Subjects
Gastrointestinal agents -- Physiological aspects -- Research ,Drug resistance in microorganisms -- Genetic aspects -- Research -- Physiological aspects ,Drugs -- Health aspects ,Cancer -- Genetic aspects ,Biological sciences ,Health ,Science and technology - Abstract
Abstract P-glycoprotein (P-gp)-mediated multiple drug resistance (MDR) is perhaps the most thoroughly studied cellular mechanism of cytotoxic drug resistance. Its efflux function can be circumvented by a wide range of [...]
- Published
- 2007
12. Specific reversal of multidrug resistance to colchicine in CEM/VLB 100 cells by Gynostemma pentaphyllum extract
- Author
-
Huang, T.H.-W., Bebawy, M., Tran, V.H., and Roufogalis, B.D.
- Published
- 2007
- Full Text
- View/download PDF
13. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells
- Author
-
Holland, M.L., Panetta, J.A., Hoskins, J.M., Bebawy, M., Roufogalis, B.D., Allen, J.D., and Arnold, J.C.
- Published
- 2006
- Full Text
- View/download PDF
14. Role of lung microbiome in innate immune response associated with chronic lung diseases
- Author
-
Paudel, KR, Dharwal, V, Patel, V, Galvao, I, Wadhwa, R, Malyla, V, Shen, S, Budden, KF, Hansbro, N, Bebawy, M, Dua, K, and Hansbro, P
- Subjects
respiratory system ,respiratory tract diseases - Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
- Published
- 2020
15. Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems.
- Author
-
Hardwick, J, Taylor, J, Mehta, M, Satija, S, Paudel, KR, Hansbro, PM, Chellappan, DK, Bebawy, M, Dua, K, Hardwick, J, Taylor, J, Mehta, M, Satija, S, Paudel, KR, Hansbro, PM, Chellappan, DK, Bebawy, M, and Dua, K
- Abstract
Curcumin is a major curcuminoid present in turmeric. The compound is attributed with various therapeutic properties, which include, anti-oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and neuroprotection. Due to its therapeutic potential, curcumin has been employed for centuries in treating different ailments. Curcumin has been investigated lately as a novel therapeutic agent in the treatment of cancer. However, the mechanisms by which curcumin exerts its cytotoxic effects on malignant cells are still not fully understood. One of the main limiting factors in the clinical use of curcumin is its poor bioavailability and rapid elimination. Advancements in drug delivery systems such as, nanoparticle based vesicular drug delivery platforms have improved several parameters, namely, drug bioavailability, solubility, stability, and controlled release properties. The use of curcumin-encapsulated niosomes to improve the physical and pharmacokinetic properties of curcumin is one such approach. This review provides an up-to-date summary on nanoparticle based vesicular drug carriers and their therapeutic applications. Specifically, we focus on niosomes as novel drug delivery formulations and their potential in improving the delivery of challenging small molecules, including curcumin. Overall, the applications of such carriers will provide a new direction for novel pharmaceutical drug delivery, as well as, biotechnology, nutraceutical, and functional food industries.
- Published
- 2020
16. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.
- Author
-
Mehta, M, Satija, S, Paudel, KR, Malyla, V, Kannaujiya, VK, Chellappan, DK, Bebawy, M, Hansbro, PM, Wich, PR, Dua, K, Mehta, M, Satija, S, Paudel, KR, Malyla, V, Kannaujiya, VK, Chellappan, DK, Bebawy, M, Hansbro, PM, Wich, PR, and Dua, K
- Abstract
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles have shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also address the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
- Published
- 2020
17. A liquid biopsy to detect multidrug resistance and disease burden in multiple myeloma.
- Author
-
Rajeev Krishnan, S, De Rubis, G, Suen, H, Joshua, D, Lam Kwan, Y, Bebawy, M, Rajeev Krishnan, S, De Rubis, G, Suen, H, Joshua, D, Lam Kwan, Y, and Bebawy, M
- Abstract
Multiple myeloma is an incurable cancer of bone marrow plasma cells, with a 5-year survival rate of 43%. Its incidence has increased by 126% since 1990. Treatment typically involves high-dose combination chemotherapy, but therapeutic response and patient survival are unpredictable and highly variable-attributed largely to the development of multidrug resistance (MDR). MDR is the simultaneous cross-resistance to a range of unrelated chemotherapeutic agents and is associated with poor prognosis and survival. Currently, no clinical procedures allow for a direct, continuous monitoring of MDR. We identified circulating large extracellular vesicles (specifically microparticles (MPs)) that can be used to monitor disease burden, disease progression and development of MDR in myeloma. These MPs differ phenotypically in the expression of four protein biomarkers: a plasma-cell marker (CD138), the MDR protein, P-glycoprotein (P-gp), the stem-cell marker (CD34); and phosphatidylserine (PS), an MP marker and mediator of cancer spread. Elevated levels of P-gp+ and PS+ MPs correlate with disease progression and treatment unresponsiveness. Furthermore, P-gp, PS and CD34 are predominantly expressed in CD138- MPs in advanced disease. In particular, a dual-positive (CD138-P-gp+CD34+) population is elevated in aggressive/unresponsive disease. Our test provides a personalised liquid biopsy with potential to address the unmet clinical need of monitoring MDR and treatment failure in myeloma.
- Published
- 2020
18. Ca2+ mediates extracellular vesicle biogenesis through alternate pathways in malignancy.
- Author
-
Taylor, J, Azimi, I, Monteith, G, Bebawy, M, Taylor, J, Azimi, I, Monteith, G, and Bebawy, M
- Abstract
Extracellular vesicles (EVs) are small extracellular membrane vesicles that serve as important intercellular signalling intermediaries in both malignant and non-malignant cells. For EVs formed by the plasma membrane, their biogenesis is characterized by an increase in intracellular calcium followed by successive membrane and cytoskeletal changes. EV production is significantly higher in malignant cells relative to non-malignant cells and previous work suggests this is dependent on increased calcium mobilization and activity of calpain. However, differences in calcium-signalling pathways in the context of malignant and non-malignant EV biogenesis remain unexplored. Here, we demonstrate vesiculation is greater in malignant MCF-7 cells relative to non-malignant hCMEC-D3 cells, increases in free cytosolic Ca2+ via endoplasmic reticulum (ER) Ca2+ store depletion with thapsigargin increases EV biogenesis in both cell types, and vesicular induction is abolished by the intracellular Ca2+ chelator BAPTA-AM. Store-operated calcium entry (SOCE) plays an essential role in the maintenance of EV biogenesis after store depletion. These findings contribute to furthering our understanding of extracellular vesicle biogenesis. Furthermore, since EVs are key mediators in the intercellular transfer of deleterious cancer traits such as cancer multidrug resistance (MDR), understanding the molecular mechanisms governing their biogenesis in cancer is the crucial first step in finding novel therapeutic targets that circumvent EV-mediated MDR.
- Published
- 2020
19. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Théry, C, Witwer, KW, Aikawa, E, Alcaraz, MJ, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, JM, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Bedina Zavec, A, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borràs, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, M, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Górecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzás, EI, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, YT, Chaudhuri, AD, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D’Souza-Schorey, C, Das, S, de Candia, P, De Santana, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, FV, Duncan, HM, Eichenberger, RM, Ekström, K, EL Andaloussi, S, Elie-Caille, C, Erdbrügger, U, Falcón-Pérez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Försönits, A, Frelet-Barrand, A, and HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.
- Subjects
ectosomes ,microparticles ,standardization ,minimal information requirements ,exosomes ,guidelines ,Biochemistry and Cell Biology ,extracellular vesicles ,microvesicles ,reproducibility ,rigor - Abstract
© 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
- Published
- 2019
20. Advancements in nano drug delivery systems: A challenge for biofilms in respiratory diseases
- Author
-
Dua, K, De Jesus Andreoli Pinto, T, Chellappan, DK, Gupta, G, Bebawy, M, and Hansbro, PM
- Subjects
Methicillin-Resistant Staphylococcus aureus ,Staphylococcus aureus ,Cystic Fibrosis ,Ursodeoxycholic Acid ,Bacterial Adhesion ,Pulmonary Disease, Chronic Obstructive ,Drug Delivery Systems ,Nanomedicine ,Cardiovascular System & Hematology ,Anti-Infective Agents ,Biofilms ,Pseudomonas aeruginosa ,Escherichia coli ,Humans ,Deoxycholic Acid - Published
- 2018
21. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Thery, C., Witwer, K. (Kenneth), Aikawa, E. (Elena), Alcaraz, M.J. (Maria Jose), Anderson, J.D. (Johnathon D), Andriantsitohaina, R. (Ramaroson), Antoniou, A. (Anna), Arab, T. (Tanina), Archer, F. (Fabienne), Atkin-Smith, G.K. (Georgia K), Ayre, D.C. (D Craig), Bach, J.-M. (Jean-Marie), Bachurski, D. (Daniel), Baharvand, H. (Hossein), Balaj, L. (Leonora), Baldacchino, S. (Shawn), Bauer, N.N. (Natalie N), Baxter, A.A. (Amy A), Bebawy, M. (Mary), Beckham, C. (Carla), Bedina Zavec, A. (Apolonija), Benmoussa, A. (Abderrahim), Berardi, A.C. (Anna C), Bergese, P. (Paolo), Bielska, E. (Ewa), Blenkiron, C. (Cherie), Bobis-Wozowicz, S. (Sylwia), Boilard, E. (Eric), Boireau, W. (Wilfrid), Bongiovanni, A. (Antonella), Borràs, F.E. (Francesc), Bosch, S. (Steffi), Boulanger, C.M. (Chantal), Breakefield, X. (Xandra), Breglio, A.M. (Andrew M), Brennan, M.Á. (Meadhbh Á), Brigstock, D.R. (David R), Brisson, A. (Alain), Broekman, M.L.D. (Marike), Bromberg, J.F. (Jacqueline F), Bryl-Górecka, P. (Paulina), Buch, S. (Shilpa), Buck, A.H. (Amy H), Burger, D. (Dylan), Busatto, S. (Sara), Buschmann, D. (Dominik), Bussolati, B. (Benedetta), Buzas, E. (Edit), Byrd, J.B. (James Bryan), Camussi, G. (Giovanni), Carter, D.R.F. (David RF), Caruso, S. (Sarah), Chamley, L.W. (Lawrence W), Chang, Y.-T. (Yu-Ting), Chaudhuri, A.D. (Amrita Datta), Chen, C. (Chihchen), Chen, S. (Shuai), Cheng, L. (Lesley), Chin, A.R. (Andrew R), Clayton, A. (Aled), Clerici, S.P. (Stefano P), Cocks, A. (Alex), Cocucci, E. (Emanuele), Coffey, R.J. (Robert J), Cordeiro-da-Silva, A. (Anabela), Couch, Y. (Yvonne), Coumans, F.A.W. (Frank AW), Coyle, B. (Beth), Crescitelli, R. (Rossella), Criado, M.F. (Miria Ferreira), D’Souza-Schorey, C. (Crislyn), Das, S. (Saumya), de Candia, P. (Paola), De Santana, E.F. (Eliezer F), De Wever, O. (Olivier), Del Portillo, H. (Hernando), Demaret, T. (Tanguy), Deville, S. (Sarah), Devitt, A. (Andrew), Dhondt, B. (Bert), Di Vizio, D. (Dolores), Dieterich, L.C. (Lothar C), Dolo, V. (Vincenza), Dominguez Rubio, A.P. (Ana Paula), Dominici, M. (Massimo), Dourado, M.R. (Mauricio R), Driedonks, T.A.P. (Tom AP), Duarte, F.V. (Filipe V), Duncan, H.M. (Heather M), Eichenberger, R.M. (Ramon M), Ekström, K. (Karin), EL Andaloussi, S. (Samir), Elie-Caille, C. (Celine), Erdbrügger, U. (Uta), Falcon-Perez, J.M. (Juan), Fatima, F. (Farah), Fish, J.E. (Jason E), Flores-Bellver, M. (Miguel), Försönits, A. (András), Frelet-Barrand, A. (Annie), Fricke, F. (Fabia), Fuhrmann, G. (Gregor), Gabrielsson, S. (Susanne), Gámez-Valero, A. (Ana), Gardiner, C. (Chris), Gärtner, K. (Kathrin), Gaudin, R. (Raphael), Gho, Y.S. (Yong Song), Giebel, B. (B.), Gilbert, C. (Caroline), Gimona, M. (Mario), Giusti, I. (Ilaria), Goberdhan, D.C.I. (Deborah CI), Görgens, A. (André), Gorski, S.M. (Sharon M), Greening, D.W. (David W.), Gross, J.C. (Julia Christina), Gualerzi, A. (Alice), Gupta, G.N. (Gopal N), Gustafson, D. (Dakota), Handberg, A. (Aase), Haraszti, R.A. (Reka A), Harrison, P. (Paul), Hegyesi, H. (Hargita), Hendrix, A. (An), Hill, A.F. (Andrew F), Hochberg, F.H. (Fred H), Hoffmann, K.F. (Karl F), Holder, B. (Beth), Holthofer, H. (Harry), Hosseinkhani, B. (Baharak), Hu, G. (Guoku), Huang, Y. (Yiyao), Huber, V. (Veronica), Hunt, S. (Stuart), Ibrahim, A.G.-E. (Ahmed Gamal-Eldin), Ikezu, T. (Tsuneya), Inal, J.M. (Jameel), Isin, M. (Mustafa), Ivanova, A. (Alena), Jackson, H.K. (Hannah K), Jacobsen, S. (Soren), Jay, S.M. (Steven M), Jayachandran, M. (Muthuvel), Jenster, G.W. (Guido), Jiang, L. (Lanzhou), Johnson, S.M. (Suzanne M), Jones, J.C. (Jennifer C), Jong, A. (Ambrose), Jovanovic-Talisman, T. (Tijana), Jung, S. (Stephanie), Kalluri, R. (Raghu), Kano, S.-I. (Shin-ichi), Kaur, S. (Sukhbir), Kawamura, Y. (Yumi), Keller, E.T. (Evan T), Khamari, D. (Delaram), Khomyakova, E. (Elena), Khvorova, A. (Anastasia), Kierulf, P. (Peter), Kim, K.P. (Kwang Pyo), Kislinger, T. (Thomas), Klingeborn, M. (Mikael), Klinke, D.J. (David J), Kornek, M. (Miroslaw), Kosanović, M.M. (Maja M), Kovács, Á.F. (Árpád Ferenc), Krämer-Albers, E.-M. (Eva-Maria), Krasemann, S. (Susanne), Krause, M. (Mirja), Kurochkin, I.V. (Igor V), Kusuma, G.D. (Gina D), Kuypers, S. (Sören), Laitinen, S. (Saara), Langevin, S.M. (Scott M), Languino, L.R. (Lucia R), Lannigan, J. (Joanne), Lässer, C. (Cecilia), Laurent, L.C. (Louise C), Lavieu, G. (Gregory), Lázaro-Ibáñez, E. (Elisa), Le Lay, S. (Soazig), Lee, M.-S. (Myung-Shin), Lee, Y.X.F. (Yi Xin Fiona), Lemos, D.S. (Debora S), Lenassi, M. (Metka), Leszczynska, A. (Aleksandra), Li, I.T.S. (Isaac TS), Liao, K. (Ke), Libregts, S.F. (Sten), Ligeti, E. (Erzsebet), Lim, R. (Rebecca), Lim, S.K. (Sai Kiang), Linē, A. (Aija), Linnemannstöns, K. (Karen), Llorente, A. (Alicia), Lombard, C.A. (Catherine A), Lorenowicz, M.J. (Magdalena J), Lörincz, Á.M. (Ákos M), Lötvall, J. (Jan), Lovett, J. (Jason), Lowry, M.C. (Michelle C), Loyer, X. (Xavier), Lu, Q. (Quan), Lukomska, B. (Barbara), Lunavat, T.R. (Taral R), Maas, S.L.N. (Sybren), Malhi, H. (Harmeet), Marcilla, A. (Antonio), Mariani, J. (Jacopo), Mariscal, J. (Javier), Martens-Uzunova, E.S. (Elena), Martin-Jaular, L. (Lorena), Martinez, M.C. (M Carmen), Martins, V.R. (Vilma Regina), Mathieu, M. (Mathilde), Mathivanan, S. (Suresh), Maugeri, M. (Marco), McGinnis, L.K. (Lynda K), McVey, M.J. (Mark J), Meckes, D.G. (David G), Meehan, K.L. (Katie L), Mertens, I. (Inge), Minciacchi, V.R. (Valentina R), Möller, A. (Andreas), Møller Jørgensen, M. (Malene), Morales-Kastresana, A. (Aizea), Morhayim, J. (Jess), Mullier, F. (Francois), Muraca, M. (Maurizio), Musante, L. (Luca), Mussack, V. (Veronika), Muth, D.C. (Dillon C), Myburgh, K.H. (Kathryn H), Najrana, T. (Tanbir), Nawaz, M. (Muhammad), Nazarenko, I. (Irina), Nejsum, P. (Peter), Neri, C. (Christian), Neri, T. (Tommaso), Nieuwland, C.C.M. (Carolien) van, Nimrichter, L. (Leonardo), Nolan, J.P. (John P), Nolte-’t Hoen, E.N.M. (Esther NM), Hooten, N.N. (Nicole Noren), O’Driscoll, L. (Lorraine), O’Grady, T. (Tina), O’Loghlen, A. (Ana), Ochiya, T. (Takahiro), Olivier, M. (Martin), Ortiz, A. (Alberto), Ortiz, L.A. (Luis A), Osteikoetxea, X. (Xabier), Ostegaard, O. (Ole), Ostrowski, M. (Matias), Park, J. (Jaesung), Pegtel, D.M. (D. Michiel), Peinado, H. (Hector), Perut, F. (Francesca), Pfaffl, M.W. (Michael W), Phinney, D.G. (Donald G), Pieters, B.C.H. (Bartijn CH), Pink, R.C. (Ryan C), Pisetsky, D.S. (David S), Pogge von Strandmann, E. (Elke), Polakovicova, I. (Iva), Poon, I.K.H. (Ivan KH), Powell, B.H. (Bonita H), Prada, I. (Ilaria), Pulliam, L. (Lynn), Quesenberry, P. (Peter), Radeghieri, A. (Annalisa), Raffai, R.L. (Robert L), Raimondo, S. (Stefania), Rak, J. (Janusz), Ramirez, M.I. (Marcel I.), Raposo, L. (Luís), Rayyan, M.S. (Morsi S), Regev-Rudzki, N. (Neta), Ricklefs, F.L. (Franz L), Robbins, P.D. (Paul D), Roberts, D.D. (David D), Rodrigues, S.C. (Silvia C), Rohde, E. (Eva), Rome, S. (Sophie), Rouschop, K.M.A. (Kasper MA), Rughetti, A. (Aurelia), Russell, A.E. (Ashley E), Saá, P. (Paula), Sahoo, S. (Susmita), Salas-Huenuleo, E. (Edison), Sánchez, C. (Catherine), Saugstad, J.A. (Julie A), Saul, M.J. (Meike J), Schiffelers, R.M. (Raymond), Schneider, R. (Raphael), Schøyen, T.H. (Tine Hiorth), Scott, A. (Aaron), Shahaj, E. (Eriomina), Sharma, S. (Shivani), Shatnyeva, O. (Olga), Shekari, F. (Faezeh), Shelke, G.V. (Ganesh Vilas), Shetty, A.K. (Ashok K), Shiba, K. (Kiyotaka), Siljander, P. (Pia), Silva, A.M. (Andreia M), Skowronek, A. (Agata), Snyder, O.L. (Orman L), Soares, R.P. (Rodrigo Pedro), Sódar, B.W. (Barbara W), Soekmadji, C. (Carolina), Sotillo, J. (Javier), Stahl, P.D. (Philip D), Stoorvogel, W. (Willem), Stott, S.L. (Shannon L), Strasser, E.F. (Erwin F), Swift, S. (Simon), Tahara, H. (Hidetoshi), Tewari, M. (Muneesh), Timms, K. (Kate), Tiwari, S. (Swasti), Tixeira, R. (Rochelle), Tkach, M. (Mercedes), Toh, W.S. (Wei Seong), Tomasini, R. (Richard), Torrecilhas, A.C. (Ana Claudia), Tosar, J.P. (Juan Pablo), Toxavidis, V. (Vasilis), Urbanelli, L. (Lorena), Vader, P. (Pieter), Balkom, B.W.M. (Bas) van, van der Grein, S.G. (Susanne G), Van Deun, J. (Jan), van Herwijnen, M.J.C. (Martijn JC), Van Keuren-Jensen, K. (Kendall), van Niel, G. (Guillaume), Royen, M.E. (Martin), van Wijnen, A.J. (Andre J), Vasconcelos, M.H. (M Helena), Vechetti, I.J. (Ivan J), Veit, T.D. (Tiago D), Vella, L.J. (Laura J.), Velot, É. (Émilie), Verweij, F.J. (Frederik J), Vestad, B. (Beate), Viñas, J.L. (Jose L), Visnovitz, T. (Tamás), Vukman, K.V. (Krisztina V), Wahlgren, J. (Jessica), Watson, D.C. (Dionysios C), Wauben, M.H.M. (Marca), Weaver, A. (Alissa), Webber, J.P. (Jason P), Weber, V. (Viktoria), Wehman, A.M. (Ann M), Weiss, D.J. (Daniel J), Welsh, J.A. (Joshua A), Wendt, S. (Sebastian), Wheelock, A.M. (Asa M), Wiener, Z. (Zoltán), Witte, L. (Leonie), Wolfram, J. (Joy), Xagorari, A. (Angeliki), Xander, P. (Patricia), Xu, J. (Jing), Yan, X. (Xiaomei), Yáñez-Mó, M. (María), Yin, H. (Hang), Yuana, Y., Zappulli, V. (Valentina), Zarubova, J. (Jana), Žėkas, V. (Vytautas), Zhang, J.-Y. (Jian-ye), Zhao, Z. (Zezhou), Zheng, L. (Lei), Zheutlin, A.R. (Alexander R), Zickler, A.M. (Antje M), Zimmermann, P. (Pascale), Zivkovic, A.M. (Angela M), Zocco, D. (Davide), Zuba-Surma, E.K. (Ewa K), Thery, C., Witwer, K. (Kenneth), Aikawa, E. (Elena), Alcaraz, M.J. (Maria Jose), Anderson, J.D. (Johnathon D), Andriantsitohaina, R. (Ramaroson), Antoniou, A. (Anna), Arab, T. (Tanina), Archer, F. (Fabienne), Atkin-Smith, G.K. (Georgia K), Ayre, D.C. (D Craig), Bach, J.-M. (Jean-Marie), Bachurski, D. (Daniel), Baharvand, H. (Hossein), Balaj, L. (Leonora), Baldacchino, S. (Shawn), Bauer, N.N. (Natalie N), Baxter, A.A. (Amy A), Bebawy, M. (Mary), Beckham, C. (Carla), Bedina Zavec, A. (Apolonija), Benmoussa, A. (Abderrahim), Berardi, A.C. (Anna C), Bergese, P. (Paolo), Bielska, E. (Ewa), Blenkiron, C. (Cherie), Bobis-Wozowicz, S. (Sylwia), Boilard, E. (Eric), Boireau, W. (Wilfrid), Bongiovanni, A. (Antonella), Borràs, F.E. (Francesc), Bosch, S. (Steffi), Boulanger, C.M. (Chantal), Breakefield, X. (Xandra), Breglio, A.M. (Andrew M), Brennan, M.Á. (Meadhbh Á), Brigstock, D.R. (David R), Brisson, A. (Alain), Broekman, M.L.D. (Marike), Bromberg, J.F. (Jacqueline F), Bryl-Górecka, P. (Paulina), Buch, S. (Shilpa), Buck, A.H. (Amy H), Burger, D. (Dylan), Busatto, S. (Sara), Buschmann, D. (Dominik), Bussolati, B. (Benedetta), Buzas, E. (Edit), Byrd, J.B. (James Bryan), Camussi, G. (Giovanni), Carter, D.R.F. (David RF), Caruso, S. (Sarah), Chamley, L.W. (Lawrence W), Chang, Y.-T. (Yu-Ting), Chaudhuri, A.D. (Amrita Datta), Chen, C. (Chihchen), Chen, S. (Shuai), Cheng, L. (Lesley), Chin, A.R. (Andrew R), Clayton, A. (Aled), Clerici, S.P. (Stefano P), Cocks, A. (Alex), Cocucci, E. (Emanuele), Coffey, R.J. (Robert J), Cordeiro-da-Silva, A. (Anabela), Couch, Y. (Yvonne), Coumans, F.A.W. (Frank AW), Coyle, B. (Beth), Crescitelli, R. (Rossella), Criado, M.F. (Miria Ferreira), D’Souza-Schorey, C. (Crislyn), Das, S. (Saumya), de Candia, P. (Paola), De Santana, E.F. (Eliezer F), De Wever, O. (Olivier), Del Portillo, H. (Hernando), Demaret, T. (Tanguy), Deville, S. (Sarah), Devitt, A. (Andrew), Dhondt, B. (Bert), Di Vizio, D. (Dolores), Dieterich, L.C. (Lothar C), Dolo, V. (Vincenza), Dominguez Rubio, A.P. (Ana Paula), Dominici, M. (Massimo), Dourado, M.R. (Mauricio R), Driedonks, T.A.P. (Tom AP), Duarte, F.V. (Filipe V), Duncan, H.M. (Heather M), Eichenberger, R.M. (Ramon M), Ekström, K. (Karin), EL Andaloussi, S. (Samir), Elie-Caille, C. (Celine), Erdbrügger, U. (Uta), Falcon-Perez, J.M. (Juan), Fatima, F. (Farah), Fish, J.E. (Jason E), Flores-Bellver, M. (Miguel), Försönits, A. (András), Frelet-Barrand, A. (Annie), Fricke, F. (Fabia), Fuhrmann, G. (Gregor), Gabrielsson, S. (Susanne), Gámez-Valero, A. (Ana), Gardiner, C. (Chris), Gärtner, K. (Kathrin), Gaudin, R. (Raphael), Gho, Y.S. (Yong Song), Giebel, B. (B.), Gilbert, C. (Caroline), Gimona, M. (Mario), Giusti, I. (Ilaria), Goberdhan, D.C.I. (Deborah CI), Görgens, A. (André), Gorski, S.M. (Sharon M), Greening, D.W. (David W.), Gross, J.C. (Julia Christina), Gualerzi, A. (Alice), Gupta, G.N. (Gopal N), Gustafson, D. (Dakota), Handberg, A. (Aase), Haraszti, R.A. (Reka A), Harrison, P. (Paul), Hegyesi, H. (Hargita), Hendrix, A. (An), Hill, A.F. (Andrew F), Hochberg, F.H. (Fred H), Hoffmann, K.F. (Karl F), Holder, B. (Beth), Holthofer, H. (Harry), Hosseinkhani, B. (Baharak), Hu, G. (Guoku), Huang, Y. (Yiyao), Huber, V. (Veronica), Hunt, S. (Stuart), Ibrahim, A.G.-E. (Ahmed Gamal-Eldin), Ikezu, T. (Tsuneya), Inal, J.M. (Jameel), Isin, M. (Mustafa), Ivanova, A. (Alena), Jackson, H.K. (Hannah K), Jacobsen, S. (Soren), Jay, S.M. (Steven M), Jayachandran, M. (Muthuvel), Jenster, G.W. (Guido), Jiang, L. (Lanzhou), Johnson, S.M. (Suzanne M), Jones, J.C. (Jennifer C), Jong, A. (Ambrose), Jovanovic-Talisman, T. (Tijana), Jung, S. (Stephanie), Kalluri, R. (Raghu), Kano, S.-I. (Shin-ichi), Kaur, S. (Sukhbir), Kawamura, Y. (Yumi), Keller, E.T. (Evan T), Khamari, D. (Delaram), Khomyakova, E. (Elena), Khvorova, A. (Anastasia), Kierulf, P. (Peter), Kim, K.P. (Kwang Pyo), Kislinger, T. (Thomas), Klingeborn, M. (Mikael), Klinke, D.J. (David J), Kornek, M. (Miroslaw), Kosanović, M.M. (Maja M), Kovács, Á.F. (Árpád Ferenc), Krämer-Albers, E.-M. (Eva-Maria), Krasemann, S. (Susanne), Krause, M. (Mirja), Kurochkin, I.V. (Igor V), Kusuma, G.D. (Gina D), Kuypers, S. (Sören), Laitinen, S. (Saara), Langevin, S.M. (Scott M), Languino, L.R. (Lucia R), Lannigan, J. (Joanne), Lässer, C. (Cecilia), Laurent, L.C. (Louise C), Lavieu, G. (Gregory), Lázaro-Ibáñez, E. (Elisa), Le Lay, S. (Soazig), Lee, M.-S. (Myung-Shin), Lee, Y.X.F. (Yi Xin Fiona), Lemos, D.S. (Debora S), Lenassi, M. (Metka), Leszczynska, A. (Aleksandra), Li, I.T.S. (Isaac TS), Liao, K. (Ke), Libregts, S.F. (Sten), Ligeti, E. (Erzsebet), Lim, R. (Rebecca), Lim, S.K. (Sai Kiang), Linē, A. (Aija), Linnemannstöns, K. (Karen), Llorente, A. (Alicia), Lombard, C.A. (Catherine A), Lorenowicz, M.J. (Magdalena J), Lörincz, Á.M. (Ákos M), Lötvall, J. (Jan), Lovett, J. (Jason), Lowry, M.C. (Michelle C), Loyer, X. (Xavier), Lu, Q. (Quan), Lukomska, B. (Barbara), Lunavat, T.R. (Taral R), Maas, S.L.N. (Sybren), Malhi, H. (Harmeet), Marcilla, A. (Antonio), Mariani, J. (Jacopo), Mariscal, J. (Javier), Martens-Uzunova, E.S. (Elena), Martin-Jaular, L. (Lorena), Martinez, M.C. (M Carmen), Martins, V.R. (Vilma Regina), Mathieu, M. (Mathilde), Mathivanan, S. (Suresh), Maugeri, M. (Marco), McGinnis, L.K. (Lynda K), McVey, M.J. (Mark J), Meckes, D.G. (David G), Meehan, K.L. (Katie L), Mertens, I. (Inge), Minciacchi, V.R. (Valentina R), Möller, A. (Andreas), Møller Jørgensen, M. (Malene), Morales-Kastresana, A. (Aizea), Morhayim, J. (Jess), Mullier, F. (Francois), Muraca, M. (Maurizio), Musante, L. (Luca), Mussack, V. (Veronika), Muth, D.C. (Dillon C), Myburgh, K.H. (Kathryn H), Najrana, T. (Tanbir), Nawaz, M. (Muhammad), Nazarenko, I. (Irina), Nejsum, P. (Peter), Neri, C. (Christian), Neri, T. (Tommaso), Nieuwland, C.C.M. (Carolien) van, Nimrichter, L. (Leonardo), Nolan, J.P. (John P), Nolte-’t Hoen, E.N.M. (Esther NM), Hooten, N.N. (Nicole Noren), O’Driscoll, L. (Lorraine), O’Grady, T. (Tina), O’Loghlen, A. (Ana), Ochiya, T. (Takahiro), Olivier, M. (Martin), Ortiz, A. (Alberto), Ortiz, L.A. (Luis A), Osteikoetxea, X. (Xabier), Ostegaard, O. (Ole), Ostrowski, M. (Matias), Park, J. (Jaesung), Pegtel, D.M. (D. Michiel), Peinado, H. (Hector), Perut, F. (Francesca), Pfaffl, M.W. (Michael W), Phinney, D.G. (Donald G), Pieters, B.C.H. (Bartijn CH), Pink, R.C. (Ryan C), Pisetsky, D.S. (David S), Pogge von Strandmann, E. (Elke), Polakovicova, I. (Iva), Poon, I.K.H. (Ivan KH), Powell, B.H. (Bonita H), Prada, I. (Ilaria), Pulliam, L. (Lynn), Quesenberry, P. (Peter), Radeghieri, A. (Annalisa), Raffai, R.L. (Robert L), Raimondo, S. (Stefania), Rak, J. (Janusz), Ramirez, M.I. (Marcel I.), Raposo, L. (Luís), Rayyan, M.S. (Morsi S), Regev-Rudzki, N. (Neta), Ricklefs, F.L. (Franz L), Robbins, P.D. (Paul D), Roberts, D.D. (David D), Rodrigues, S.C. (Silvia C), Rohde, E. (Eva), Rome, S. (Sophie), Rouschop, K.M.A. (Kasper MA), Rughetti, A. (Aurelia), Russell, A.E. (Ashley E), Saá, P. (Paula), Sahoo, S. (Susmita), Salas-Huenuleo, E. (Edison), Sánchez, C. (Catherine), Saugstad, J.A. (Julie A), Saul, M.J. (Meike J), Schiffelers, R.M. (Raymond), Schneider, R. (Raphael), Schøyen, T.H. (Tine Hiorth), Scott, A. (Aaron), Shahaj, E. (Eriomina), Sharma, S. (Shivani), Shatnyeva, O. (Olga), Shekari, F. (Faezeh), Shelke, G.V. (Ganesh Vilas), Shetty, A.K. (Ashok K), Shiba, K. (Kiyotaka), Siljander, P. (Pia), Silva, A.M. (Andreia M), Skowronek, A. (Agata), Snyder, O.L. (Orman L), Soares, R.P. (Rodrigo Pedro), Sódar, B.W. (Barbara W), Soekmadji, C. (Carolina), Sotillo, J. (Javier), Stahl, P.D. (Philip D), Stoorvogel, W. (Willem), Stott, S.L. (Shannon L), Strasser, E.F. (Erwin F), Swift, S. (Simon), Tahara, H. (Hidetoshi), Tewari, M. (Muneesh), Timms, K. (Kate), Tiwari, S. (Swasti), Tixeira, R. (Rochelle), Tkach, M. (Mercedes), Toh, W.S. (Wei Seong), Tomasini, R. (Richard), Torrecilhas, A.C. (Ana Claudia), Tosar, J.P. (Juan Pablo), Toxavidis, V. (Vasilis), Urbanelli, L. (Lorena), Vader, P. (Pieter), Balkom, B.W.M. (Bas) van, van der Grein, S.G. (Susanne G), Van Deun, J. (Jan), van Herwijnen, M.J.C. (Martijn JC), Van Keuren-Jensen, K. (Kendall), van Niel, G. (Guillaume), Royen, M.E. (Martin), van Wijnen, A.J. (Andre J), Vasconcelos, M.H. (M Helena), Vechetti, I.J. (Ivan J), Veit, T.D. (Tiago D), Vella, L.J. (Laura J.), Velot, É. (Émilie), Verweij, F.J. (Frederik J), Vestad, B. (Beate), Viñas, J.L. (Jose L), Visnovitz, T. (Tamás), Vukman, K.V. (Krisztina V), Wahlgren, J. (Jessica), Watson, D.C. (Dionysios C), Wauben, M.H.M. (Marca), Weaver, A. (Alissa), Webber, J.P. (Jason P), Weber, V. (Viktoria), Wehman, A.M. (Ann M), Weiss, D.J. (Daniel J), Welsh, J.A. (Joshua A), Wendt, S. (Sebastian), Wheelock, A.M. (Asa M), Wiener, Z. (Zoltán), Witte, L. (Leonie), Wolfram, J. (Joy), Xagorari, A. (Angeliki), Xander, P. (Patricia), Xu, J. (Jing), Yan, X. (Xiaomei), Yáñez-Mó, M. (María), Yin, H. (Hang), Yuana, Y., Zappulli, V. (Valentina), Zarubova, J. (Jana), Žėkas, V. (Vytautas), Zhang, J.-Y. (Jian-ye), Zhao, Z. (Zezhou), Zheng, L. (Lei), Zheutlin, A.R. (Alexander R), Zickler, A.M. (Antje M), Zimmermann, P. (Pascale), Zivkovic, A.M. (Angela M), Zocco, D. (Davide), and Zuba-Surma, E.K. (Ewa K)
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make the
- Published
- 2019
- Full Text
- View/download PDF
22. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
- Author
-
Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, Zychlinsky, A, Cossarizza, A, Chang, H-D, Radbruch, A, Acs, A, Adam, D, Adam-Klages, S, Agace, WW, Aghaeepour, N, Akdis, M, Allez, M, Almeida, LN, Alvisi, G, Anderson, G, Andrae, I, Annunziato, F, Anselmo, A, Bacher, P, Baldari, CT, Bari, S, Barnaba, V, Barros-Martins, J, Battistini, L, Bauer, W, Baumgart, S, Baumgarth, N, Baumjohann, D, Baying, B, Bebawy, M, Becher, B, Beisker, W, Benes, V, Beyaert, R, Blanco, A, Boardman, DA, Bogdan, C, Borger, JG, Borsellino, G, Boulais, PE, Bradford, JA, Brenner, D, Brinkman, RR, Brooks, AES, Busch, DH, Buescher, M, Bushnell, TP, Calzetti, F, Cameron, G, Cammarata, I, Cao, X, Cardell, SL, Casola, S, Cassatella, MA, Cavani, A, Celada, A, Chatenoud, L, Chattopadhyay, PK, Chow, S, Christakou, E, Cicin-Sain, L, Clerici, M, Colombo, FS, Cook, L, Cooke, A, Cooper, AM, Corbett, AJ, Cosma, A, Cosmi, L, Coulie, PG, Cumano, A, Cvetkovic, L, Dang, VD, Dang-Heine, C, Davey, MS, Davies, D, De Biasi, S, Del Zotto, G, Dela Cruz, GV, Delacher, M, Della Bella, S, Dellabona, P, Deniz, G, Dessing, M, Di Santo, JP, Diefenbach, A, Dieli, F, Dolf, A, Doerner, T, Dress, RJ, Dudziak, D, Dustin, M, Dutertre, C-A, Ebner, F, Eckle, SBG, Edinger, M, Eede, P, Ehrhardt, GRA, Eich, M, Engel, P, Engelhardt, B, Erdei, A, Esser, C, Everts, B, Evrard, M, Falk, CS, Fehniger, TA, Felipo-Benavent, M, Ferry, H, Feuerer, M, Filby, A, Filkor, K, Fillatreau, S, Follo, M, Foerster, I, Foster, J, Foulds, GA, Frehse, B, Frenette, PS, Frischbutter, S, Fritzsche, W, Galbraith, DW, Gangaev, A, Garbi, N, Gaudilliere, B, Gazzinelli, RT, Geginat, J, Gerner, W, Gherardin, NA, Ghoreschi, K, Gibellini, L, Ginhoux, F, Goda, K, Godfrey, DI, Goettlinger, C, Gonzalez-Navajas, JM, Goodyear, CS, Gori, A, Grogan, JL, Grummitt, D, Gruetzkau, A, Haftmann, C, Hahn, J, Hammad, H, Haemmerling, G, Hansmann, L, Hansson, G, Harpur, CM, Hartmann, S, Hauser, A, Hauser, AE, Haviland, DL, Hedley, D, Hernandez, DC, Herrera, G, Herrmann, M, Hess, C, Hoefer, T, Hoffmann, P, Hogquist, K, Holland, T, Hollt, T, Holmdahl, R, Hombrink, P, Houston, JP, Hoyer, BF, Huang, B, Huang, F-P, Huber, JE, Huehn, J, Hundemer, M, Hunter, CA, Hwang, WYK, Iannone, A, Ingelfinger, F, Ivison, SM, Jaeck, H-M, Jani, PK, Javega, B, Jonjic, S, Kaiser, T, Kalina, T, Kamradt, T, Kaufmann, SHE, Keller, B, Ketelaars, SLC, Khalilnezhad, A, Khan, S, Kisielow, J, Klenerman, P, Knopf, J, Koay, H-F, Kobow, K, Kolls, JK, Kong, WT, Kopf, M, Korn, T, Kriegsmann, K, Kristyanto, H, Kroneis, T, Krueger, A, Kuehne, J, Kukat, C, Kunkel, D, Kunze-Schumacher, H, Kurosaki, T, Kurts, C, Kvistborg, P, Kwok, I, Landry, J, Lantz, O, Lanuti, P, LaRosa, F, Lehuen, A, LeibundGut-Landmann, S, Leipold, MD, Leung, LYT, Levings, MK, Lino, AC, Liotta, F, Litwin, V, Liu, Y, Ljunggren, H-G, Lohoff, M, Lombardi, G, Lopez, L, Lopez-Botet, M, Lovett-Racke, AE, Lubberts, E, Luche, H, Ludewig, B, Lugli, E, Lunemann, S, Maecker, HT, Maggi, L, Maguire, O, Mair, F, Mair, KH, Mantovani, A, Manz, RA, Marshall, AJ, Martinez-Romero, A, Martrus, G, Marventano, I, Maslinski, W, Matarese, G, Mattioli, AV, Maueroder, C, Mazzoni, A, McCluskey, J, McGrath, M, McGuire, HM, McInnes, IB, Mei, HE, Melchers, F, Melzer, S, Mielenz, D, Miller, SD, Mills, KHG, Minderman, H, Mjosberg, J, Moore, J, Moran, B, Moretta, L, Mosmann, TR, Mueller, S, Multhoff, G, Munoz, LE, Munz, C, Nakayama, T, Nasi, M, Neumann, K, Ng, LG, Niedobitek, A, Nourshargh, S, Nunez, G, O'Connor, J-E, Ochel, A, Oja, A, Ordonez, D, Orfao, A, Orlowski-Oliver, E, Ouyang, W, Oxenius, A, Palankar, R, Panse, I, Pattanapanyasat, K, Paulsen, M, Pavlinic, D, Penter, L, Peterson, P, Peth, C, Petriz, J, Piancone, F, Pickl, WF, Piconese, S, Pinti, M, Pockley, AG, Podolska, MJ, Poon, Z, Pracht, K, Prinz, I, Pucillo, CEM, Quataert, SA, Quatrini, L, Quinn, KM, Radbruch, H, Radstake, TRDJ, Rahmig, S, Rahn, H-P, Rajwa, B, Ravichandran, G, Raz, Y, Rebhahn, JA, Recktenwald, D, Reimer, D, Reis e Sousa, C, Remmerswaal, EBM, Richter, L, Rico, LG, Riddell, A, Rieger, AM, Robinson, JP, Romagnani, C, Rubartelli, A, Ruland, J, Saalmueller, A, Saeys, Y, Saito, T, Sakaguchi, S, Sala-de-Oyanguren, F, Samstag, Y, Sanderson, S, Sandrock, I, Santoni, A, Sanz, RB, Saresella, M, Sautes-Fridman, C, Sawitzki, B, Schadt, L, Scheffold, A, Scherer, HU, Schiemann, M, Schildberg, FA, Schimisky, E, Schlitzer, A, Schlosser, J, Schmid, S, Schmitt, S, Schober, K, Schraivogel, D, Schuh, W, Schueler, T, Schulte, R, Schulz, AR, Schulz, SR, Scotta, C, Scott-Algara, D, Sester, DP, Shankey, TV, Silva-Santos, B, Simon, AK, Sitnik, KM, Sozzani, S, Speiser, DE, Spidlen, J, Stahlberg, A, Stall, AM, Stanley, N, Stark, R, Stehle, C, Steinmetz, T, Stockinger, H, Takahama, Y, Takeda, K, Tan, L, Tarnok, A, Tiegs, G, Toldi, G, Tornack, J, Traggiai, E, Trebak, M, Tree, TIM, Trotter, J, Trowsdale, J, Tsoumakidou, M, Ulrich, H, Urbanczyk, S, van de Veen, W, van den Broek, M, van der Pol, E, Van Gassen, S, Van Isterdael, G, van Lier, RAW, Veldhoen, M, Vento-Asturias, S, Vieira, P, Voehringer, D, Volk, H-D, von Borstel, A, von Volkmann, K, Waisman, A, Walker, RV, Wallace, PK, Wang, SA, Wang, XM, Ward, MD, Ward-Hartstonge, KA, Warnatz, K, Warnes, G, Warth, S, Waskow, C, Watson, JV, Watzl, C, Wegener, L, Weisenburger, T, Wiedemann, A, Wienands, J, Wilharm, A, Wilkinson, RJ, Willimsky, G, Wing, JB, Winkelmann, R, Winkler, TH, Wirz, OF, Wong, A, Wurst, P, Yang, JHM, Yang, J, Yazdanbakhsh, M, Yu, L, Yue, A, Zhang, H, Zhao, Y, Ziegler, SM, Zielinski, C, Zimmermann, J, and Zychlinsky, A
- Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
- Published
- 2019
23. Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer
- Author
-
Taylor, J, Bebawy, M, Taylor, J, and Bebawy, M
- Abstract
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.
- Published
- 2019
24. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis
- Author
-
De Rubis, G, Rajeev Krishnan, S, Bebawy, M, De Rubis, G, Rajeev Krishnan, S, and Bebawy, M
- Abstract
© 2019 Elsevier Ltd Liquid biopsies, comprising the noninvasive analysis of circulating tumor-derived material (the ‘tumor circulome’), represent an innovative tool in precision oncology to overcome current limitations associated with tissue biopsies. Within the tumor circulome, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the only components the clinical application of which is approved by the US Food and Drug Administration (FDA). Extracellular vesicles (EVs), circulating tumor RNA (ctRNA), and tumor-educated platelets (TEPs) are relatively new tumor circulome constituents with promising potential at each stage of cancer management. Here, we discuss the clinical applications of each element of the tumor circulome and the prevailing factors that currently limit their implementation in clinical practice. We also detail the most recent technological developments in the field, which demonstrate potential in improving the clinical value of liquid biopsies.
- Published
- 2019
25. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, Zuba-Surma, EK, Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, and Zuba-Surma, EK
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
- Published
- 2018
26. Novel drug delivery approaches in treating pulmonary fibrosis
- Author
-
Dua, K, Awasthi, R, Madan, JR, Chellappan, DK, Nalluri, BN, Gupta, G, Bebawy, M, Hansbro, PM, Dua, K, Awasthi, R, Madan, JR, Chellappan, DK, Nalluri, BN, Gupta, G, Bebawy, M, and Hansbro, PM
- Published
- 2018
27. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology
- Author
-
Awasthi, R, Rathbone, MJ, Hansbro, PM, Bebawy, M, Dua, K, Awasthi, R, Rathbone, MJ, Hansbro, PM, Bebawy, M, and Dua, K
- Abstract
© 2017, Controlled Release Society. MicroRNAs (miRNAs) represent a new class of diagnostic and prognostic biomarker as well as new therapeutic targets in cancer therapy. miRNAs are gaining significant interest due to extensive advancements in knowledge since their discovery and, more recently, their translational application as therapeutic moieties and targets in the management of disease. miRNAs used in the treatment of cancer would position them as a new class of emerging therapeutic agents. Indeed, numerous candidate miRNAs have been identified as having therapeutic application in the treatment of cancer, but there is still much to learn about how to transform these into effective, patient-compliant, and targeted drug delivery systems. In this mini review, we discuss the utility and potential of nanotechnology in miRNA formulation and delivery with particular emphasis on cancer, including their role in conferring multidrug resistance and metastatic capacity. This review benefits both the formulation and biological scientists in understanding and exploring the new vistas of miRNA delivery using nanotechnology in the cancer clinically.
- Published
- 2018
28. Circulating tumor DNA – Current state of play and future perspectives
- Author
-
De Rubis, G, Krishnan, SR, Bebawy, M, De Rubis, G, Krishnan, SR, and Bebawy, M
- Abstract
© 2018 Elsevier Ltd Cancer management paradigms are shifting towards a personalized approach thanks to the advent of the -omics technologies. Liquid biopsies, consisting in the sampling of blood and other bodily fluids, are emerging as a valid alternative to circulating tumor biomarkers and tumor tissue biopsies for cancer diagnosis, routine monitoring and prognostication. The content of a liquid biopsy is referred to as the “tumor circulome”. Among its components, circulating tumor DNA (ctDNA), including both cell-free and exosome-associated DNA, is the most widely characterized element. ctDNA analysis has a tremendous capability in the diagnostic arena. Its potential has been demonstrated at each level of disease staging and management and supported by a recent FDA approval for companion diagnostic, and the investments being made by pharmaceutical companies in this sector are numerous. The approaches available for ctDNA analysis allow both quantitative and qualitative studies and range from PCR and dPCR-mediated single/multiple gene mutational assessment to whole genome next generation sequencing and methylation mapping. Although the principal object of a liquid biopsy is blood, other body fluids such as urine and saliva show potential as complementary DNA sources for tumor analysis. In this review we provide a synopsis on the state of play of current ctDNA application. We discuss the clinical significance of ctDNA analysis and review the state of the art of technologies being currently developed to this aim. We also discuss the current issues limiting ctDNA application and highlight the promising approaches being developed to overcome these.
- Published
- 2018
29. Nanoparticles in Cancer Treatment: Opportunities and Obstacles.
- Author
-
Awasthi, R, Roseblade, A, Hansbro, PM, Rathbone, MJ, Dua, K, Bebawy, M, Awasthi, R, Roseblade, A, Hansbro, PM, Rathbone, MJ, Dua, K, and Bebawy, M
- Abstract
In the United States, the estimated number of new cancer cases in 2018 will be approx. 1.7 million. Historically, combination chemotherapy has been the primary choice of treatment. However, chemotherapeutics have pharmaceutical limitations, among which include problems with stability and aqueous solubility. Likewise, dose limiting toxicity is significant with nonspecific toxicity to healthy cells, hair loss, loss of appetite, peripheral neuropathy and diarrhea being typical side effects. The emergence of Multidrug resistance (MDR) also presents s a significant challenge for the successful treatment of cancer whereby cancer cells become cross resistant to many of the chemotherapeutic agents used. Nanotechnology presents a new frontier for cancer treatment. It holds potential in minimizing systemic toxicity through the development of functionalized particles for targeted treatment. They also provide an alternative strategy to circumvent multidrug resistance as they have a capacity to by-pass the drug efflux mechanism associated with this phenotype. Aside from the advantages they offer in treatment, nanoparticles are also emerging to be valuable diagnostic entities. This article highlights the various ways nanotechnology is being used to improve the treatment and management of cancer. We also discuss the opportunities and obstacles in this area and provide an up to date review of progress in the treatment of cancer.
- Published
- 2018
30. Functional relevance of SATB1 in immune regulation and tumorigenesis
- Author
-
Sunkara, KP, Gupta, G, Hansbro, PM, Dua, K, Bebawy, M, Sunkara, KP, Gupta, G, Hansbro, PM, Dua, K, and Bebawy, M
- Abstract
© 2018 The Special AT-rich Sequence Binding Protein 1 (SATB1) is a chromatin organiser and transcription factor which regulates numerous cellular processes such as differentiation, proliferation and apoptosis through effects on gene expression. SATB1 undergoes various post-translational modifications, which determine its interaction with co-activators and co-repressors to induce regulation of gene transcription. SATB1 is an identified oncogene, its increased expression is associated with poor prognosis in many cancers. This paper provides a review on SATB1-mediated immune responses and on its target genes in the context of tumorigenesis and tumour progression. Specifically, we discuss the role of SATB1 in tumour immunity, Epithelial to Mesenchymal Transition (EMT), metastasis and multidrug resistance. Therapeutic targeting of aberrant SATB1 may be an important strategy in the treatment of cancer.
- Published
- 2018
31. Immunological axis of curcumin-loaded vesicular drug delivery systems
- Author
-
Chellappan, DK, Ng, ZY, Wong, JY, Hsu, A, Wark, P, Hansbro, N, Taylor, J, Panneerselvam, J, Madheswaran, T, Gupta, G, Bebawy, M, Hansbro, PM, Dua, K, Chellappan, DK, Ng, ZY, Wong, JY, Hsu, A, Wark, P, Hansbro, N, Taylor, J, Panneerselvam, J, Madheswaran, T, Gupta, G, Bebawy, M, Hansbro, PM, and Dua, K
- Abstract
© 2018 Newlands Press. Several vesicular systems loaded with curcumin have found their way in the therapeutic applications of several diseases, primarily acting through their immunological pathways. Such systems use particles at a nanoscale range, bringing about their intended use through a range of complex mechanisms. Apart from delivering drug substances into target tissues, these vesicular systems also effectively overcome problems like insolubility and unequal drug distribution. Several mechanisms are explored lately by different workers, and interest over vesicular curcumin has been renewed in the past decade. This commentary discusses several immunological targets in which curcumin is employed in a vesicular form.
- Published
- 2018
32. Tumor suppressor role of miR-503
- Author
-
Gupta, G, Chellappan, DK, De Jesus Andreoli Pinto, T, Hansbro, PM, Bebawy, M, Dua, K, Gupta, G, Chellappan, DK, De Jesus Andreoli Pinto, T, Hansbro, PM, Bebawy, M, and Dua, K
- Abstract
© 2017 EDIZIONI MINERVA MEDICA. MicroRNAs (miRNAs) are non-coding RNAs of around 20-25 nucleotides in length with highly conserved characteristics. They moderate posttranscriptional silencing by precisely combining with 3' untranslated regions (UTRs) of target mRNAs at a complementary site. miR-503, an associate of the "canonical" miRNA-16 family, is expressed in numerous types of tumors such as breast cancer, prostate cancer, lung cancer, colorectal cancer, hepatocellular carcinoma, glioblastoma and several others. There is convincing evidence to show that miR-503 functions as a tumor suppressor gene through its effects on target genes that regulate cell proliferation, migration, and invasion in tumor cells. In this current assessment, we discuss the biology and tumor suppressor role of miR-503 in different cancers and elaborate on its mechanism of action.
- Published
- 2018
33. Deciphering Cell-to-Cell Communication in Acquisition of Cancer Traits: Extracellular Membrane Vesicles Are Regulators of Tissue Biomechanics
- Author
-
Pokharel, D, Wijesinghe, P, Oenarto, V, Lu, JF, Sampson, DD, Kennedy, BF, Wallace, VP, and Bebawy, M
- Subjects
ATP Binding Cassette Transporter, Subfamily B ,Bioinformatics ,Microfilament Proteins ,Membrane Proteins ,Cell Communication ,Biomechanical Phenomena ,Cytoskeletal Proteins ,Extracellular Vesicles ,Phenotype ,Hyaluronan Receptors ,Cell Line, Tumor ,Neoplasms ,Humans ,ATP Binding Cassette Transporter, Sub-Family B ,Precision Medicine ,Signal Transduction - Abstract
© Copyright 2016, Mary Ann Liebert, Inc. 2016. Deciphering the role of cell-to-cell communication in acquisition of cancer traits such as metastasis is one of the key challenges of integrative biology and clinical oncology. In this context, extracellular vesicles (EVs) are important vectors in cell-to-cell communication and serve as conduits in the transfer of cellular constituents required for cell function and for the establishment of cellular phenotypes. In the case of malignancy, they have been shown to support the acquisition of common traits defined as constituting the hallmarks of cancer. Cellular biophysics has contributed to our understanding of some of these central traits with changes in tissue biomechanics reflective of cell state. Indeed, much is known about stiffness of the tissue scaffold in the context of cell invasion and migration. This article advances this knowledge frontier by showing for the first time that EVs are mediators of tissue biomechanical properties and, importantly, demonstrates a link between the acquisition of cancer multidrug resistance and increased tissue stiffness of the malignant mass. The methodology used in the study employed optical coherence elastography and atomic force microscopy on breast cancer cell monolayers and tumor spheroids. Specifically, we show here that the acquired changes in tissue stiffness can be attributed to the intracellular transfer of a protein complex comprising ezrin, radixin, moesin, CD44, and P-glycoprotein. This has important implications in facilitating mechano-transduced signaling cascades that regulate the acquisition of cancer traits, such as invasion and metastasis. Finally, this study also introduces novel targets and strategies for diagnostic and therapeutic innovation in oncology, with a view to prevention of metastatic spread and personalized medicine in cancer treatment.
- Published
- 2016
34. The role of microvesicles on immune function in response to cancer
- Author
-
Jaiswal, R, Pokharel, D, and Bebawy, M
- Subjects
Oncology & Carcinogenesis - Published
- 2016
35. Isolation of Human CD138+ Microparticles from the Plasma of Patients with Multiple Myeloma
- Author
-
Krishnan, SR, Luk, F, Brown, RD, Suen, H, Kwan, Y, and Bebawy, M
- Subjects
Bone Marrow ,Cell-Derived Microparticles ,Biopsy ,Humans ,Female ,Oncology & Carcinogenesis ,Syndecan-1 ,Middle Aged ,Multiple Myeloma ,Flow Cytometry - Abstract
© 2015 Institut National de la Santé Et de la Recherche Médicale. The confinement of multiple myeloma (MM) to the bone marrow microenvironment requires an invasive bone marrow biopsy to monitor the malignant compartment. The existing clinical tools used to determine treatment response and tumor relapse are limited in sensitivity mainly because they indirectly measure tumor burden inside the bone marrow and fail to capture the patchy, multisite tumor infiltrates associated with MM. Microparticles (MPs) are 0.1- to 1.0-μm membrane vesicles, which contain the cellular content of their originating cell. MPs are functional mediators and convey prothrombotic, promalignant, proresistance, and proinflammatory messages, establishing intercellular cross talk and bypassing the need for direct cell-cell contact in many pathologies. In this study, we analyzed plasma cell-derived MPs (CD138+) from deidentified MM patients (n = 64) and normal subjects (n = 18) using flow cytometry. The morphology and size of the MPs were further analyzed using scanning electron microscopy. Our study shows the proof of a systemic signature of MPs in MM patients. We observed that the levels of MPs were significantly elevated in MM corresponding to the tumor burden. We provide the first evidence for the presence of MPs in the peripheral blood of MM patients with potential applications in personalized MM clinical monitoring.
- Published
- 2015
36. Multiple myeloma: A novel tailor-made therapeutic management
- Author
-
Krishnan, SR, Bebawy, M, Luk, F, Brown, RD, and Kwan, YL
- Subjects
Oncology & Carcinogenesis - Published
- 2015
37. Microparticles as novel prognostic markers in multiple myeloma
- Author
-
Rajeev Krishnan, S, Bebawy, M, Brown, RD, Luk, F, and Kwan, Y
- Subjects
Oncology & Carcinogenesis - Abstract
Introduction: Multiple Myeloma (MM) is an incurable hematological malignancy affecting plasma cells marked by highly heterogeneous survival rates and confinement of the disease to bone marrow (BM). Relapse is a significant impediment in the clinical setting and the development of multidrug resistance (MDR) to therapy is the main cause of relapse. Currently, risk stratification to MM sub-groups and categorization of complete response to therapy are established on molecular and cytogenetic markers using bone marrow biopsies. We are exploring the clinical significance of plasma cell derived microparticles as a novel prognostic indicator in MM. Materials and Methods: We have analysed 79 de-identified MM patients and 24 normal subjects. Platelet free plasma was centrifuged and plasma cell derived MPs were identified and quantified by flow cytometry using Annexin V450, CD138 APC, anti-P-glycoprotein (P-gp)-FITC (17F9) in BD TruCount tubes. Platelet derived MPs were excluded from the analysis using CD41a-PE. All patient samples were compared to age-matched healthy volunteers. Western blot analysis was conducted on MP lysates probing for the presence of Lung-Resistance related Protein (LRP) and P-glycoprotein (P-gp). Morphology and the size of MP fraction from MM patients were investigated using scanning electron micrographs Results: The number of systemic MPs and CD138+MPs were found to be significantly higher in MM patient samples compared to the healthy volunteers. MDR markers (LRP & P-gp) were expressed on systemic MPs from relapsing MM patients. MPs from patients were spherical in shape and had smooth surface consistent with those isolated from the MM cell line OPM2.
- Published
- 2015
38. An analysis of the therapeutic benefits of genotyping in pediatric hematopoietic stem cell transplantation
- Author
-
Wright, FA, Bebawy, M, and O'Brien, TA
- Subjects
Transplantation Conditioning ,Polymorphism, Genetic ,Genotype ,Hematopoietic Stem Cell Transplantation ,Graft vs Host Disease ,Prognosis ,Lymphocyte Depletion ,Isoenzymes ,Life Support Care ,Treatment Outcome ,Pharmacogenetics ,Antineoplastic Combined Chemotherapy Protocols ,Humans ,Transplantation, Homologous ,Oncology & Carcinogenesis ,Precision Medicine ,Glutathione Transferase - Abstract
© 2015 Future Medicine Ltd. Hematopoietic stem cell transplantation is a high-risk procedure that is offered, with curative intent, to patients with malignant and nonmalignant disease. The clinical benefits of personalization of therapy by genotyping have been demonstrated by the reduction in transplant related mortality from donor-recipient HLA matching. However, defining the relationship between genotype and transplant conditioning agents is yet to be translated into clinical practice. A number of the therapeutic agents used in stem cell transplant preparative regimens have pharmacokinetic parameters that predict benefit of incorporating pharmacogenomic data into dosing strategies. Busulfan, cyclophosphamide, thio-TEPA and etoposide have well-described drug metabolism pathways, however candidate gene studies have identified there is a gap in the identification of pharmacogenomic data that can be used to improve transplant outcomes. Incorporating pharmacogenomics into pharmacokinetic modeling may demonstrate the therapeutic benefits of genotyping in transplant preparative regimen agents.
- Published
- 2015
39. A novel personalized therapeutic management in multiple myeloma
- Author
-
Krishnan, RS, Luk, F, Brown, RD, Kwan, YL, and Bebawy, M
- Subjects
Oncology & Carcinogenesis - Published
- 2015
40. Microparticles derived from drug-resistant cells regulate miR-503 and PYK2 to promote migration and invasion in breast cancer
- Author
-
Gong, J, Luk, F, Jaiswal, R, and Bebawy, M
- Subjects
Oncology & Carcinogenesis - Published
- 2015
41. Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems.
- Author
-
Dua, K, Bebawy, M, Awasthi, R, Tekade, RK, Tekade, M, Gupta, G, De Jesus Andreoli Pinto, T, Hansbro, PM, Dua, K, Bebawy, M, Awasthi, R, Tekade, RK, Tekade, M, Gupta, G, De Jesus Andreoli Pinto, T, and Hansbro, PM
- Abstract
The respiratory tract as a non-invasive route of drug administration is gaining increasing attention in the present time on achieving both local and the systemic therapeutic effects. Success in achieving pulmonary delivery, requires overcoming barriers including mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time and rate to target sites. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically.We searched and reviewed the literature focusing on chitosan and chitosan derivative based nanocarrier systems used in pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for this purpose.Chitosan, a natural linear bio-polyaminosaccharide is central in the development of novel drug delivery systems (NDDS) including nanoparticles for use in the treatment of various respiratory diseases. It achieves this through its unique properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation across membranes. It also achieves sustained and targeted effects, primary requirements for an effective pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, employed in the management of respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis.This review will be of interest to both the biological and formulation scientists as it provides a summary on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available for pulmonary drug delivery and so this area has enormous potential in the field of respiratory science.
- Published
- 2017
42. A novel mechanism governing the transcriptional regulation of ABC transporters in MDR cancer cells
- Author
-
Lu, JF, Pokharel, D, Bebawy, M, Lu, JF, Pokharel, D, and Bebawy, M
- Abstract
© 2016, Controlled Release Society. P-glycoprotein (P-gp/ABCB1) and multidrug resistance-associated protein 1 (MRP1/ABCC1) are the main drug efflux transporters associated with treatment failure in cancer. Much attention has been focused on the molecular mechanisms regulating the expression of these transporters as a viable approach for identifying novel drug targets in circumventing cancer multidrug resistance (MDR) clinically. In this paper, we examine the role of miR-326 in the context of its intercellular transfer between cancer cells by extracellular membrane vesicles called microparticles (MPs). We observe that cellular suppression of ABCC1 by miR-326 is modulated by the presence of ABCB1 transcript. Specifically, we show that siRNA silencing of MP-transferred ABCB1 transcript reverses the knockdown effects of miRNA-326 on target MRP1/ABCC1 transcripts. We also demonstrate a dominance of ABCB1 transcripts when co-localized with ABCC1 transcripts, which is consistent with the facilitation of miR-326 function by ABCB1. This study identifies a novel pathway regulating the expression of ABC transporters and positions ABCB1 mRNA as a transcriptional regulator of other members of this superfamily in multidrug resistant cells through its actions on miRNAs.
- Published
- 2017
43. Calcium-calpain dependent pathways regulate vesiculation in malignant breast cells
- Author
-
Taylor, J, Jaiswal, R, Bebawy, M, Taylor, J, Jaiswal, R, and Bebawy, M
- Abstract
© 2017 Bentham Science Publishers. Background: Multidrug resistance in cancer (MDR) occurs when tumours become crossresistant to a range of different anticancer agents. One mechanism by which MDR can be acquired is through cell to cell communication pathways. Membrane-derived microparticles (MPs) are emerging as important signaling molecules in this process. MPs are released from most eukaryotic cells and transfer functional proteins and nucleic acids to recipient cells conferring deleterious traits within the cancer cell population including MDR, metastasis, and angiogenesis. MP formation is known to be dependent on calpain, an intracellular cysteine protease which acts to cleave the cytoskeleton underlying the plasma membrane, resulting in cellular surface blebbing Objective: To establish the role of calpain in vesiculation in malignant and non-malignant cells by 1) comparing membrane vesiculation at rest and following the release of intracellular calcium, and 2) comparing vesiculation in the presence and absence of calpain inhibitor II (ALLM). Method: This study examines the differences in vesiculation between malignant and non-malignant cells using high-resolution Atomic Force Microscopy (AFM). HBEC, MBE-F, MCF-7, and MCF-7/Dx cells were analysed at rest and following treatment with calcium ionophore A23187 for 18 hours. Vesiculation of calcium activated and resting malignant and non-malignant cells was also assessed after 18 hour treatment of calpain inhibitor II (ALLM). Results: We demonstrate that malignant MCF-7 and MCF-7/Dx cells have an intrinsically higher degree of vesiculation at rest when compared to non-malignant human brain endothelial cells (HBEC) and human mammary epithelial cells (MBE-F). Cellular activation with the calcium ionophore A23187 resulted in an increase in vesiculation in all cell types. We show that calpain-mediated MP biogenesis is the dominant pathway at rest in malignant cells as vesiculation was shown to be inhibited with calpain
- Published
- 2017
44. Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer
- Author
-
Pokharel, D, Roseblade, A, Oenarto, V, Lu, J, Bebawy, M, Pokharel, D, Roseblade, A, Oenarto, V, Lu, J, and Bebawy, M
- Abstract
© the authors; Chemotherapy is an essential part of anticancer treatment. However, the overexpression of P-glycoprotein (P-gp) and the subsequent emergence of multidrug resistance (MDR) hampers successful treatment clinically. P-gp is a multidrug efflux transporter that functions to protect cells from xenobiotics by exporting them out from the plasma membrane to the extracellular space. P-gp inhibitors have been developed in an attempt to overcome P-gp-mediated MDR; however, lack of specificity and dose limiting toxicity have limited their effectiveness clinically. Recent studies report on accessory proteins that either directly or indirectly regulate P-gp expression and function and which are necessary for the establishment of the functional phenotype in cancer cells. This review discusses the role of these proteins, some of which have been recently proposed to comprise an interactive complex, and discusses their contribution towards MDR. We also discuss the role of other pathways and proteins in regulating P-gp expression in cells. The potential for these proteins as novel therapeutic targets provides new opportunities to circumvent MDR clinically.
- Published
- 2017
45. SYNTHESIS OF CURCUMIN NANOPARTICLES FOR LUNG CANCER THERAPY
- Author
-
Lee, W-H, Ong, H-X, Loo, C-Y, Traini, D, Young, PM, Luk, F, Bebawy, M, and Rohanizadeh, R
- Subjects
Respiratory System - Published
- 2014
46. Functional translation of total RNA packaged in microparticles shed from multidrug resistant cancer cells
- Author
-
Lu, JF, Pokharel, D, Luk, F, and Bebawy, M
- Subjects
Oncology & Carcinogenesis - Published
- 2014
47. Abstract 249: Breast cancer cell vesiculation is driven by calpain: implications in cancer therapy
- Author
-
Taylor, J, Jaiswal, R, Bebawy, M, Taylor, J, Jaiswal, R, and Bebawy, M
- Published
- 2016
48. Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review)
- Author
-
Krishnan, SR, Jaiswal, R, Brown, RD, Luk, F, Bebawy, M, Krishnan, SR, Jaiswal, R, Brown, RD, Luk, F, and Bebawy, M
- Abstract
Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure. The introduction of the immunomodulatory agents and proteasome inhibitors has seen an increase in overall patient survival, however, for the majority of patients, relapse remains inevitable with evidence that these agents, like the conventional chemotherapeutics are also subject to the development of MDR. Clinical management of patients with MM is currently compromised by lack of a suitable procedure to monitor the development of clinical drug resistance in individual patients. The current MM prognostic measures fail to pick the clonotypic tumor cells overexpressing drug efflux pumps, and invasive biopsy is insufficient in detecting sporadic tumors in the skeletal system. This review summarizes the challenges associated with treating the complex disease spectrum of myeloma, with an emphasis on the role of deleterious multidrug resistant clones orchestrating relapse.
- Published
- 2016
49. The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells
- Author
-
Pokharel, D, Padula, MP, Lu, JF, Jaiswal, R, Djordjevic, SP, Bebawy, M, Pokharel, D, Padula, MP, Lu, JF, Jaiswal, R, Djordjevic, SP, and Bebawy, M
- Abstract
© 2016 by the authors. Multidrug resistance (MDR) is often attributed to the over-expression of P-glycoprotein (P-gp), which prevents the accumulation of anticancer drugs within cells by virtue of its active drug efflux capacity. We have previously described the intercellular transfer of P-gp via extracellular vesicles (EVs) and proposed the involvement of a unique protein complex in regulating this process. In this paper, we investigate the role of these mediators in the regulation of P-gp functionality and hence the acquisition of MDR following cell to cell transfer. By sequentially silencing the FERM domain-binding proteins, Ezrin, Radixin and Moesin (ERM), as well as CD44, which we also report a selective packaging in breast cancer derived EVs, we have established a role for these proteins, in particular Radixin and CD44, in influencing the P-gp-mediated MDR in whole cells. We also report for the first time the role of ERM proteins in the vesicular transfer of functional P-gp. Specifically, we demonstrate that intercellular membrane insertion is dependent on Ezrin and Moesin, whilst P-gp functionality is governed by the integrity of all ERM proteins in the recipient cell. This study identifies these candidate proteins as potential new therapeutic targets in circumventing MDR clinically.
- Published
- 2016
50. A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids
- Author
-
Lu, JF, Pokharel, D, Padula, MP, Bebawy, M, Lu, JF, Pokharel, D, Padula, MP, and Bebawy, M
- Abstract
© 2016 The Authors. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved. Microvesicles (MVs) serve as vectors of nucleic-acid dissemination and are important mediators of intercellular communication. However, the functionality of packaged nucleic acids on recipient cells following transfer of MV cargo has not been clearly elucidated. This limitation is attributed to a lack of methodology available in assessing protein translation following homotypic intercellular transfer of nucleic acids. Using surface peptide shaving we have demonstrated that MVs derived from human leukaemic cells transfer functional P-glycoprotein transcripts, conferring drug-efflux capacity to recipient cells. We demonstrate expression of newly synthesized protein using Western blot. Furthermore, we show functionality of translated P-gp protein in recipient cells using Calcein-AM dye exclusion assays on flow cytometry. Newly synthesized 170 kDa P-gp was detected in recipient cells after coculture with shaven MVs and these proteins were functional, conferring drug efflux. This is the first demonstration of functionality of transferred nucleic acids between human homotypic cells as well as the translation of the cancer multidrug-resistance protein in recipient cells following intercellular transfer of its transcript. This study supports the significant role of MV's in the transfer of deleterious traits in cancer populations and describes a new paradigm in mechanisms governing the acquisition of traits in cancer cell populations.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.