69 results on '"Beemster GTS"'
Search Results
2. ERFVII-controlled hypoxia responses are in part facilitated by MEDIATOR SUBUNIT 25 in Arabidopsis thaliana.
- Author
-
Schippers JHM, von Bongartz K, Laritzki L, Frohn S, Frings S, Renziehausen T, Augstein F, Winkels K, Sprangers K, Sasidharan R, Vertommen D, Van Breusegem F, Hartman S, Beemster GTS, Mhamdi A, van Dongen JT, and Schmidt-Schippers RR
- Subjects
- Mediator Complex metabolism, Mediator Complex genetics, Oxygen metabolism, Ethylenes metabolism, DNA-Binding Proteins, Arabidopsis genetics, Arabidopsis physiology, Arabidopsis metabolism, Arabidopsis Proteins metabolism, Arabidopsis Proteins genetics, Gene Expression Regulation, Plant, Transcription Factors metabolism, Transcription Factors genetics
- Abstract
Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants., (© 2024 The Author(s). The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
3. Malate production, sugar metabolism, and redox homeostasis in the leaf growth zone of Rye (Secale cereale) increase stress tolerance to aluminum stress: A biochemical and genome-wide transcriptional study.
- Author
-
Donnelly CP, De Sousa A, Cuypers B, Laukens K, Al-Huqail AA, Asard H, Beemster GTS, and AbdElgawad H
- Subjects
- Malates metabolism, Malates pharmacology, Hydrogen Peroxide metabolism, Oxidation-Reduction, Plant Leaves metabolism, Sugars, Secale genetics, Secale metabolism, Aluminum toxicity
- Abstract
Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H
2 O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Synergistic effect of nitrate exposure and heatwaves on the growth, and metabolic activity of microalgae, Chlamydomonas reinhardtii, and Pseudokirchneriella subcapitata.
- Author
-
Akter S, AbdElgawad H, Beemster GTS, De Boeck G, and Schoelynck J
- Subjects
- Antioxidants metabolism, Nitrates pharmacology, Proline pharmacology, Microalgae metabolism, Chlamydomonas reinhardtii metabolism
- Abstract
Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L
-1 NO3 -l ) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1 ) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage.
- Author
-
Lainé CMS, AbdElgawad H, and Beemster GTS
- Subjects
- Cell Division, Cell Proliferation, Cell Cycle, Zea mays, Plant Leaves
- Abstract
Key Message: A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
6. More persistent weather causes a pronounced soil microbial legacy but does not impact subsequent plant communities.
- Author
-
Li L, Lin Q, Nijs I, De Boeck H, Beemster GTS, Asard H, and Verbruggen E
- Abstract
A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized "native" soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective.
- Author
-
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, and Cuypers A
- Subjects
- Gamma Rays, Seedlings radiation effects, Plants, Arabidopsis, Radiation Monitoring
- Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. Biochemical composition changes can be linked to the tolerance of four grassland species under more persistent precipitation regimes.
- Author
-
Zi L, Reynaert S, Nijs I, De Boeck H, Verbruggen E, Beemster GTS, Asard H, and AbdElgawad H
- Subjects
- Biomass, Seasons, Climate Change, Grassland, Plants
- Abstract
Climate models suggest that the persistence of summer precipitation regimes (PRs) is on the rise, characterized by both longer dry and longer wet durations. These PR changes may alter plant biochemical composition and thereby their economic and ecological characteristics. However, impacts of PR persistence have primarily been studied at the community level, largely ignoring the biochemistry of individual species. Here, we analyzed biochemical components of four grassland species with varying sensitivity to PR persistence (Holcus lanatus, Phleum pratense, Lychnis flos-cuculi, Plantago lanceolata) along a range of increasingly persistent PRs (longer consecutive dry and wet periods) in a mesocosm experiment. The more persistent PRs decreased nonstructural sugars, whereas they increased lignin in all species, possibly reducing plant quality. The most sensitive species Lychnis seemed less capable of altering its biochemical composition in response to altered PRs, which may partly explain its higher sensitivity. The more tolerant species may have a more robust and dynamic biochemical network, which buffers the effects of changes in individual biochemical components on biomass. We conclude that the biochemical composition changes are important determinants for plant performance under increasingly persistent precipitation regimes., (© 2023 Scandinavian Plant Physiology Society.)
- Published
- 2023
- Full Text
- View/download PDF
9. B 2 O 3 nanoparticles alleviate salt stress in maize leaf growth zones by enhancing photosynthesis and maintaining mineral and redox status.
- Author
-
El-Shafey NM, Avramova V, Beemster GTS, Korany SM, and AbdElgawad H
- Subjects
- Plant Leaves metabolism, Oxidation-Reduction, Salt Stress, Minerals metabolism, Salinity, Zea mays genetics, Photosynthesis
- Abstract
Salt stress induces significant loss in crop yield worldwide. Although the growth-stimulating effects of micronutrient nanoparticles (NPs) application under salinity have been studied, the molecular and biochemical mechanisms underlying these effects are poorly understood. The large size of maize leaf growth zones provides an ideal model system to sample and investigate the molecular and physiological bases of growth at subzonal resolution. Using kinematic analysis, our study indicated that salinity at 150 mM inhibited maize leaf growth by decreasing cell division and expansion in the meristem and elongation zones. Consistently, salinity downregulated cell cycle gene expression (wee1, mcm4, and cyclin-B2-4). B
2 O3 NP (BNP) mitigated the stress-induced growth inhibition by reducing the decrease in cell division and expansion. BNP also enhanced the photosynthesis-related parameters. Simultaneously, chlorophyll, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase were stimulated in the mature zone. Concomitant with growth stimulation by BNP, mineral homeostasis, particularly for B and Ca, was monitored. BNP reduced oxidative stress (e.g., lessened H2 O2 generation along the leaf zones and reduced lipid peroxidation in the mature zone) induced by salinity. This resulted from better maintenance of the redox status, that is, increased the glutathione-ascorbate cycle in the meristem and elongation zones, and flavonoids and tocopherol levels in the mature zone. Our study has important implications for assessing the salinity stress impact mitigated by BNP on maize growth, providing a basis to improve the resilience of crop species under salinity stress conditions., (© 2023 Scandinavian Plant Physiology Society.)- Published
- 2023
- Full Text
- View/download PDF
10. A meta-analysis reveals differential sensitivity of cold stress responses in the maize leaf.
- Author
-
Lainé CMS, AbdElgawad H, and Beemster GTS
- Subjects
- Cold Temperature, Temperature, Plant Leaves physiology, Zea mays physiology, Cold-Shock Response
- Abstract
Maize (Zea mays), a cold-sensitive crop, requires cold tolerance for extending the length of the growing season in temperate climates. However, response curves to different cold temperatures and exposure durations are lacking. We used a meta-analysis approach using data from literature to investigate the effect of cold stress in the maize leaf. We constructed response curves to temperature and exposure durations for 18 key parameters related to leaf growth, photosynthesis, oxidative stress, antioxidants, and the phytohormone ABA. To determine their relevance for cold tolerance, we compared cold tolerant Flint and cold sensitive Dent lines. Treatment temperatures ranged from -20°C to 20°C for cold and from 12°C to 30°C for control and exposure duration from 3 min to 60 days. We found interacting effects of temperature and exposure durations on different response parameters. The strongest difference between Flint and Dent was observed for electrolyte leakage (EL). Our results show that the commonly used 4°C for cold and 25°C for control with medium cold exposure (1-7 days) induces a 50% decrease in shoot dry weight and leaf area and that EL is an easy and reliable indicator for cold tolerance studies., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
11. Abscisic Acid Regulates Carbohydrate Metabolism, Redox Homeostasis and Hormonal Regulation to Enhance Cold Tolerance in Spring Barley.
- Author
-
Guo J, Beemster GTS, Liu F, Wang Z, and Li X
- Subjects
- Proteomics, Hydrogen Peroxide metabolism, Photosynthesis, Starch metabolism, Sucrose metabolism, Oxidation-Reduction, Homeostasis, Gene Expression Regulation, Plant, Abscisic Acid metabolism, Hordeum metabolism
- Abstract
Abscisic acid (ABA) plays a vital role in the induction of low temperature tolerance in plants. To understand the molecular basis of this phenomenon, we performed a proteomic analysis on an ABA-deficit mutant barley ( Az34 ) and its wild type (cv Steptoe) under control conditions (25/18 °C) and after exposure to 0 °C for 24 h. Most of the differentially abundant proteins were involved in the processes of photosynthesis and metabolisms of starch, sucrose, carbon, and glutathione. The chloroplasts in Az34 leaves were more severely damaged, and the decrease in Fv/Fm was larger in Az34 plants compared with WT under low temperature. Under low temperature, Az34 plants possessed significantly higher activities of ADP-glucose pyrophosphorylase, fructokinase, monodehydroascorbate reductase, and three invertases, but lower UDP-glucose pyrophosphorylase activity than WT. In addition, concentrations of proline and soluble protein were lower, while concentration of H
2 O2 was higher in Az34 plants compared to WT under low temperature. Collectively, the results indicated that ABA deficiency induced modifications in starch and sucrose biosynthesis and sucrolytic pathway and overaccumulation of reactive oxygen species were the main reason for depressed low temperature tolerance in barley, which provide novel insights to the response of barley to low temperature under future climate change.- Published
- 2023
- Full Text
- View/download PDF
12. Synergistic Impacts of Plant-Growth-Promoting Bacteria and Selenium Nanoparticles on Improving the Nutritional Value and Biological Activities of Three Cultivars of Brassica Sprouts.
- Author
-
AbdElgawad H, Magdy Korany S, Reyad AM, Zahid I, Akhter N, Alsherif E, Sheteiwy MS, Shah AA, Selim S, Hassan AHA, Yaghoubi Khanghahi M, Beemster GTS, and Crecchio C
- Abstract
Due to the growing world population and increasing environmental stress, improving the production, nutritional quality, and pharmaceutical applications of plants have become an urgent need. Therefore, current research was designed to investigate the impact of seed priming using plant-growth-promoting bacteria (PGPB) along with selenium nanoparticles (SeNPs) treatment on chemical and biological properties of three Brassica oleracea cultivars [Southern star (VA1), Prominence (VA2), Monotop (VA3)]. With this aim, one out of five morphologically different strains of bacteria, namely, JM18, which was further identified via 16S rRNA gene sequencing as a Nocardiopsis species with strong plant-growth-promoting traits, isolated from soil, was used. To explore the growth-promoting potential of Nocardiopsis species, seeds of three varieties of B. oleracea were primed with JM18 individually or in combination with SeNP treatment. Seed treatments increased sprout growth (fresh and dry weights) and glucosinolate accumulation. The activity of myrosinase was significantly increased through brassica sprouts and consequently enhanced the amino-acid-derived glucosinolate induction. Notably, a reduction in effective sulforaphane nitrile was detected, being positively correlated with a decrease in epithiospecifier protein (EP). Consequently, the antioxidant activities of VA2 and VA3, determined by the ferric reducing antioxidant power (FRAP) assay, were increased by 74 and 79%, respectively. Additionally, the antibacterial activities of JM18-treated cultivars were improved. However, a decrease was observed in SeNP- and JM18 + SeNP-treated VA2 and VA3 against Serratia marcescens and Candida glabrata and VA1 against S. marcescens . In conclusion, seed priming with the JM18 extract is a promising method to enhance the health-promoting activities of B. oleracea sprouts., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
13. Chitosan nanoparticles support the impact of arbuscular mycorrhizae fungi on growth and sugar metabolism of wheat crop.
- Author
-
Saleh AM, Abu El-Soud WM, Alotaibi MO, Beemster GTS, Mohammed AE, and AbdElgawad H
- Subjects
- Triticum physiology, Fungi, Plant Roots, Sucrose metabolism, Sugars metabolism, Mycorrhizae metabolism, Chitosan pharmacology, Chitosan metabolism
- Abstract
Arbuscular mycorrhizae fungi (AMF) symbiosis is an indispensable approach in sustainable agriculture. AMF-plant association is likely to be enhanced by the nanoparticle's application. Herein, the impact of chitosan nanoparticles (CSNPs) on the mycorrhizal colonization in wheat has been investigated. The provoked changes in wheat growth, physiology and metabolism were assessed. CSNPs treatment improved AMF colonization (52 %) by inducing the levels of auxins and strigolactones in roots by 32 and 21 %, respectively besides flavonoids exudation into the rhizosphere (9 %). Such supporting action of CSNPs was associated with improved plant biomass production (21 %) compared to AMF treatment. Both treatments synergistically enhanced the photochemical efficiency of photosystem II and stomatal conductance, therefore the photosynthetic rate was increased. The combined application of CSNPs and AMF enhanced accumulation of glucose, fructose, sucrose, and starch (12, 22, 31 and 13 %, respectively), as well as the activities of sucrose-p-synthase, invertases and starch synthase compared to AMF treatment. The synchronous application of CSNPs and AMF promoted the levels of polyphenols, carotenoids, and tocopherols therefore, improved antioxidant capacity (33 %), in the roots. CSNPs can be applied as an efficient biofertilization strategies to enhance plant growth and fitness, beside improvement of health promoting compounds in wheat., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
14. The impact of chromium toxicity on the yield and quality of rice grains produced under ambient and elevated levels of CO 2 .
- Author
-
AbdElgawad H, Mohammed AE, van Dijk JR, Beemster GTS, Alotaibi MO, and Saleh AM
- Abstract
Rice is a highly valuable crop consumed all over the world. Soil pollution, more specifically chromium (Cr), decreases rice yield and quality. Future climate CO
2 (eCO2 ) is known to affect the growth and yield of crops as well as the quality parameters associated with human health. However, the detailed physiological and biochemical responses induced by Cr in rice grains produced under eCO2 have not been deeply studied. Cr (200 and 400 mg Cr6+ /Kg soil) inhibited rice yield and photosynthesis in Sakha 106, but to less extend in Giza 181 rice cultivar. Elevated CO2 reduced Cr accumulation and, consequently, recovered the negative impact of the higher Cr dose, mainly in Sakha 106. This could be explained by improved photosynthesis which was consistent with increased carbohydrate level and metabolism (starch synthases and amylase). Moreover, these increases provided a route for the biosynthesis of organic, amino and fatty acids. At grain quality level, eCO2 differentially mitigated Cr stress-induced reductions in minerals (e.g., P, Mg and Ca), proteins (prolamin, globulin, albumin, glutelin), unsaturated fatty acids (e.g., C20:2 and C24:1) and antioxidants (phenolics and total antioxidant capacity) in both cultivars. This study provided insights into the physiological and biochemical bases of eCO2 -induced grain yield and quality of Cr-stressed rice., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 AbdElgawad, Mohammed, van Dijk, Beemster, Alotaibi and Saleh.)- Published
- 2023
- Full Text
- View/download PDF
15. Elevated CO 2 mitigates the impact of drought stress by upregulating glucosinolate metabolism in Arabidopsis thaliana.
- Author
-
AbdElgawad H, Zinta G, Hornbacher J, Papenbrock J, Markakis MN, Asard H, and Beemster GTS
- Subjects
- Glucosinolates metabolism, Carbon Dioxide metabolism, Droughts, Gene Expression Regulation, Plant, Arabidopsis metabolism, Arabidopsis Proteins metabolism
- Abstract
Elevated CO
2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges., (© 2023 John Wiley & Sons Ltd.)- Published
- 2023
- Full Text
- View/download PDF
16. Carbon nanoparticles improve the effect of compost and arbuscular mycorrhizal fungi in drought-stressed corn cultivation.
- Author
-
Alsherif EA, Almaghrabi O, Elazzazy AM, Abdel-Mawgoud M, Beemster GTS, and AbdElgawad H
- Subjects
- Zea mays metabolism, Droughts, Hydrogen Peroxide metabolism, Anthocyanins metabolism, Oxidoreductases metabolism, Carbon metabolism, Mycorrhizae physiology, Composting, Nanoparticles
- Abstract
Drought is an important threat worldwide, therefore, it is vital to create workable solutions to mitigate the negative effects of drought stress. To this end, we investigated the interactive effect of compost (Comp), arbuscular mycorrhizal fungi (AMF) and carbon nanoparticles (CNPs) on maize plant crops under drought stress. The combined treatments were more effective at increasing soil fertility and promoting the growth of maize plants under both control and drought stress conditions by 20.1% and 39.4%, respectively. The interactions between treatments, especially the effects of Comp-AMF-CNPs mixture, reduce the activity of photorespiration induced H
2 O2 production that consequently reduces drought-related oxidative damages (lipid peroxidation and protein oxidation). Plants treated with Comp-AMF or Comp-AMF-CNPs showed an increase in their antioxidant defense system. Comp-AMF-CNPs increased enzyme activities by 50.3%, 30.1%, and 71% for ascorbate peroxidase (APX), dehydro-ASC reductase (DHAR), and monodehydro-ASC reductase (MDHAR), respectively. Comp-AMF-CNPs also induced the highest increase in anthocyanins (69.5%) compared to the control treatment. This increase was explained by increased anthocyanin percussor, by 37% and 13% under control and drought, respectively. While the increases in biosynthetic key enzymes, phenylalanine aminolayse (PAL) and chalcone synthase (CHS) were 77% and 5% under control and 69% and 89% under drought, respectively. This work advanced our understanding on how Comp-AMF-CNPs improve growth, physiology, and biochemistry of maize plants under drought stress conditions. Overall, this study suggests the effectiveness of Comp-AMF-CNPs as a promising approach to enhance the growth of maize plants in dry areas., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Masson SAS. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
17. Subcellular compartmentalization of aluminum reduced its hazardous impact on rye photosynthesis.
- Author
-
de Sousa A, AbdElgawad H, Fidalgo F, Teixeira J, Matos M, Tamagnini P, Fernandes R, Figueiredo F, Azenha M, Teles LO, Korany SM, Alsherif EA, Selim S, Beemster GTS, and Asard H
- Subjects
- Photosynthesis, Plant Leaves, Plant Roots metabolism, Secale genetics, Secale metabolism, Aluminum toxicity, Aluminum metabolism
- Abstract
Aluminum (Al) toxicity limits crops growth and production in acidic soils. Compared to roots, less is known about the toxic effects of Al in leaves. Al subcellular compartmentalization is also largely unknown. Using rye (Secale cereale L.) Beira (more tolerant) and RioDeva (more sensitive to Al) genotypes, we evaluated the patterns of Al accumulation in leaf cell organelles and the photosynthetic and metabolic changes to cope with Al toxicity. The tolerant genotype accumulated less Al in all organelles, except the vacuoles. This suggests that Al compartmentalization plays a role in Al tolerance of Beira genotype. PSII efficiency, stomatal conductance, pigment biosynthesis, and photosynthesis metabolism were less affected in the tolerant genotype. In the Calvin cycle, carboxylation was compromised by Al exposure in the tolerant genotype. Other Calvin cycle-related enzymes, phoshoglycerate kinase (PGK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), triose-phosphate isomerase (TPI), and fructose 1,6-bisphosphatase (FBPase) activities decreased in the sensitive line after 48 h of Al exposure. Consequentially, carbohydrate and organic acid metabolism were affected in a genotype-specific manner, where sugar levels increased only in the tolerant genotype. In conclusion, Al transport to the leaf and compartmentalization in the vacuoles tolerant genotype's leaf cells provide complementary mechanisms of Al tolerance, protecting the photosynthetic apparatus and thereby sustaining growth., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Alexandra de Sousa reports financial support was provided by Fundação para a Ciência eTecnologia, Shereen M. Korny., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
18. How Carbon Nanoparticles, Arbuscular Mycorrhiza, and Compost Mitigate Drought Stress in Maize Plant: A Growth and Biochemical Study.
- Author
-
Alsherif EA, Almaghrabi O, Elazzazy AM, Abdel-Mawgoud M, Beemster GTS, Sobrinho RL, and AbdElgawad H
- Abstract
Drought negatively affects crop growth and development, so it is crucial to develop practical ways to reduce these consequences of water scarcity. The effect of the interactive potential of compost (Comp), mycorrhizal fungi (AMF), and carbon nanoparticles (CNPS) on plant growth, photosynthesis rate, primary metabolism, and secondary metabolism was studied as a novel approach to mitigating drought stress in maize plants. Drought stress significantly reduced maize growth and photosynthesis and altered metabolism. Here, the combined treatments Com-AMF or Com-AMF-CNPs mitigated drought-induced reductions in fresh and dry weights. The treatments with AMF or CNPS significantly increased photosynthesis (by 10%) in comparison to the control plants. Results show that soluble sugars were accumulated to maintain the osmotic status of the maize plant under drought stress. The level and metabolism of sucrose, an osmo-protectant, were increased in plants treated with Com (by 30%), which was further increased under the triple effect of Com-AMF-CNPs (40%), compared to untreated plants. This was inconsistent with increased sucrose-phosphate synthase and sucrose-P-synthase activity. The combined treatment Com-AMF-CNPs increased the levels of oxalic and succinic acids (by 100%) and has been reflected in the enhanced levels of amino acids such as the antioxidant and omso-protectant proline. Higher increases in fatty acids by treatment with CNPS were also recorded. Com-AMF-CNPs enhanced many of the detected fatty acids such as myristic, palmitic, arachidic, docosanoic, and pentacosanoic (110%, 30%, 100%, and 130%, respectively), compared to untreated plants. At the secondary metabolism level, sugar and amino acids provide a route for polyamine biosynthesis, where Com-AMF-CNPs increased spermine and spermidine synthases, ornithine decarboxylase, and adenosyl methionine decarboxylase in treated maize. Overall, our research revealed for the first time how Cmo, AMF, and/or CNPS alleviated drought stress in maize plants.
- Published
- 2022
- Full Text
- View/download PDF
19. Elevated CO 2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status.
- Author
-
AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, and van Dijk JR
- Subjects
- Antioxidants metabolism, Carbon Dioxide pharmacology, Chromium metabolism, Glutathione metabolism, Homeostasis, Hydrogen Peroxide pharmacology, Iron Chelating Agents pharmacology, Minerals pharmacology, Oxidation-Reduction, Phytochelatins metabolism, Soil, Oryza metabolism
- Abstract
Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO
2 levels (eCO2 ) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2 ) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2 . Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
20. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions.
- Author
-
Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, Korany SM, Alsherif EA, Beemster GTS, and Crecchio C
- Subjects
- Fertilizers analysis, Droughts, Salinity, Edible Grain metabolism, Salt Stress, Triticum metabolism, Nutritional Status
- Abstract
We investigated the effect of plant growth-promoting bacterial strains (PGPB) as biofertilisers on the grain metabolic composition of durum wheat (Triticum durum Desf.). To this aim, we conducted a greenhouse experiment where we grew durum wheat plants supplied with a biofertiliser consortium of four PGPB and/or chemical fertiliser (containing nitrogen, phosphorus, potassium, and zinc), under non-stress, drought (at 40% field capacity), or salinity (150 mM NaCl) conditions. Nutrient accumulations in the grain were increased in plants treated with the biofertiliser consortium, alone or with a half dose of chemical fertilisers, compared to those in no fertilisation treatment. A clear benefit of biofertiliser application in the improvement of protein, soluble sugar, starch, and lipid contents in the grains was observed in comparison with untreated controls, especially under stress conditions. The most striking observation was the absence of significant differences between biofertiliser and chemical fertiliser treatments for most parameters. Moreover, the overall response to the biofertiliser consortium was accompanied by greater changes in amino acids, organic acids, and fatty acid profiles. In conclusion, PGPB improved the metabolic and nutrient status of durum wheat grains to a similar extent as chemical fertilisers, particularly under stress conditions, demonstrating the value of PGPB as a sustainable fertilisation treatment., (© 2022 Scandinavian Plant Physiology Society.)
- Published
- 2022
- Full Text
- View/download PDF
21. Seasonal Changes in the Biochemical Constituents of Green Seaweed Chaetomorpha antennina from Covelong, India.
- Author
-
Vinuganesh A, Kumar A, Korany SM, Alsherif EA, Selim S, Prakash S, Beemster GTS, and AbdElgawad H
- Subjects
- Antioxidants metabolism, Seasons, Minerals metabolism, Fatty Acids metabolism, Amino Acids metabolism, Seaweed chemistry, Chlorophyta chemistry
- Abstract
Seaweeds are well known for having a wealth of nutritional benefits and providing ecological support to associated fauna. Seasonality influences the biochemical characteristics, affecting their ecological and economic values. In the present study, we evaluated pigments, primary and secondary metabolites, minerals, and antioxidant properties of green seaweed Chaetomorpha antennina growing on the intertidal rocks along the Covelong coast, India, in different seasons (from June 2019 to March 2020). Significant variations were found in the levels of antioxidants, minerals, and metabolites in different seasons, e.g., amino acid levels were the highest in post-monsoon and the lowest in summer. In monsoon, we found the highest concentration of fatty acids in the thalli. Lipid peroxidation and total antioxidant activity were at their maximum levels during post-monsoon, which indicated oxidative damage responses. No significant variations were found in the levels of photosynthetic pigments. The outcomes indeed suggested seasonal variations in the biochemical and nutrient profile of C. antennina . We suggest that the harvesting/collection of C. antennina for different nutrients and metabolites should be performed in the respective seasons.
- Published
- 2022
- Full Text
- View/download PDF
22. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold.
- Author
-
Band LR, Nelissen H, Preston SP, Rymen B, Prinsen E, AbdElgawad H, and Beemster GTS
- Subjects
- Gene Expression Regulation, Enzymologic, Mixed Function Oxygenases metabolism, Zea mays enzymology, Zea mays growth & development, Cold Temperature, Droughts, Gene Expression Regulation, Plant, Gibberellins metabolism, Models, Biological, Plant Leaves enzymology, Plant Leaves growth & development
- Abstract
The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing and parameterizing a multiscale computational model that includes cell movement, growth-induced dilution, and metabolic activities, we revealed that the GA distribution is predominantly determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted the peak in GA concentration, which has been shown to determine division-zone size. Drought and cold modified enzyme transcript levels, although the model revealed that this did not explain the observed GA distributions. Instead, the model predicted that GA distributions are also mediated by posttranscriptional modifications increasing the activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed by enzyme activity measurements. This work provides a mechanistic understanding of the role of GA metabolism in plant growth regulation.
- Published
- 2022
- Full Text
- View/download PDF
23. Molecular response of Sargassum vulgare to acidification at volcanic CO 2 vents: Insights from proteomic and metabolite analyses.
- Author
-
Kumar A, Nonnis S, Castellano I, AbdElgawad H, Beemster GTS, Buia MC, Maffioli E, Tedeschi G, and Palumbo A
- Subjects
- Carbon Dioxide chemistry, Hydrogen-Ion Concentration, Proteomics, Seawater chemistry, Sargassum
- Abstract
Ocean acidification is impacting marine life all over the world. Understanding how species can cope with the changes in seawater carbonate chemistry represents a challenging issue. We addressed this topic using underwater CO
2 vents that naturally acidify some marine areas off the island of Ischia. In the most acidified area of the vents, having a mean pH value of 6.7, comparable to far-future predicted acidification scenarios (by 2300), the biomass is dominated by the brown alga Sargassum vulgare. The novelty of the present study is the characterization of the S. vulgare proteome together with metabolite analyses to identify the key proteins, metabolites, and pathways affected by ocean acidification. A total of 367 and 387 proteins were identified in populations grown at pH that approximates the current global average (8.1) and acidified sites, respectively. Analysis of their relative abundance revealed that 304 proteins are present in samples from both sites: 111 proteins are either higher or exclusively present under acidified conditions, whereas 120 proteins are either lower or present only under control conditions. Functionally, under acidification, a decrease in proteins related to translation and post-translational processes and an increase of proteins involved in photosynthesis, glycolysis, oxidation-reduction processes, and protein folding were observed. In addition, small-molecule metabolism was affected, leading to a decrease of some fatty acids and antioxidant compounds under acidification. Overall, the results obtained by proteins and metabolites analyses, integrated with previous transcriptomic, physiological, and biochemical studies, allowed us to delineate the molecular strategies adopted by S. vulgare to grow in future acidified environments, including an increase of proteins involved in energetic metabolism, oxidation-reduction processes, and protein folding at the expense of proteins involved in translation and post-translational processes., (© 2022 John Wiley & Sons Ltd.)- Published
- 2022
- Full Text
- View/download PDF
24. Increasing atmospheric CO 2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants.
- Author
-
AbdElgawad H, El-Sawah AM, Mohammed AE, Alotaibi MO, Yehia RS, Selim S, Saleh AM, Beemster GTS, and Sheteiwy MS
- Subjects
- Arsenites, Carbon Dioxide pharmacology, Hydrogen Peroxide pharmacology, Plant Roots, Plants, Poaceae, Glycine max, Sugars, Triticum, Mycorrhizae
- Abstract
Arbuscular mycorrhizal fungi (AMF) are beneficial for the plant growth under heavy metal stress. Such beneficial effect is improved by elevated CO
2 (eCO2 ). However, the mechanisms by which eCO2 improves AMF symbiotic associations under arsenite (AsIII ) toxicity are hardly studied. Herein, we compared these regulatory mechanisms in species from two agronomical important plant families - grasses (wheat) and legumes (soybean). AsIII decreased plant growth (i.e., 53.75 and 60.29% of wheat and soybean, respectively) and photosynthesis. It also increased photorespiration and oxidative injury in both species, but soybean was more sensitive to oxidative stress as indicated by higher H2 O2 accumulation and oxidation of protein and lipid. eCO2 significantly improved AMF colonization by increasing auxin levels, which induced high carotenoid cleavage dioxygenase (CCDs) activity, particularly in soybean roots. The improved sugar metabolism in plant shoots by co-application of eCO2 and AsIII allocated more sugars to roots sequentially. Sugar accumulation in plant roots is further induced by AMF, resulting in more C skeletons to produce organic acids, which are effectively exudated into the soil to reduce AsIII uptake. Exposure to eCO2 reduced oxidative damage and this mitigation was stronger in soybean. This could be attributed to a greater reduction in photorespiration as well as a stronger antioxidant and detoxification defence systems. The grass/legume-specificity was supported by principal component analysis, which revealed that soybean was more affected by AsIII stress and more responsive to AMF and eCO2 . This study provided a mechanistic understanding of the impact of AMF, eCO2 and their interaction on As-stressed grass and legume plants, allowing better practical strategies to mitigate AsIII phytotoxicity., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
25. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection.
- Author
-
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, and Schmülling T
- Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana . Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Cortleven, Roeber, Frank, Bertels, Lortzing, Beemster and Schmülling.)
- Published
- 2022
- Full Text
- View/download PDF
26. Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L.
- Author
-
Guedri Mkaddem M, Zrig A, Ben Abdallah M, Romdhane M, Okla MK, Al-Hashimi A, Alwase YA, Hegab MY, Madany MMY, Hassan AHA, Beemster GTS, and AbdElgawad H
- Abstract
Marrubium vulgare is a valuable source of natural bioactive molecules with high preventive and therapeutic effectiveness. Therefore, this study aimed to study the chemical polymorphism of natural populations of M. vulgare in Tunisia by quantitative chemical markers and the estimation of divergence between populations. Phytochemical analyses of the eight natural populations of Tunisian Marrubium vulgare prospected in different bioclimatic stages, revealed 42 compounds of essential oils representing 96.08% to 100% of the total oil. Hydrocarbon sesquiterpenes were the main fraction of all the populations studied and β-bisabolene was the major compound (from 30.11% to 71.35% of the total oil). The phytochemical investigation of the M. vulgare plant indicated the presence of essential oil with significant percentages of phenolic compounds. A significant quantitative and qualitative variation in the essential oils is detected for both major and minor compounds. The principal components analysis (PCA) performed in the single and combined traits provides a good distinction among populations, not according to their geographical and/or bioclimatic origins. Moreover, the phytochemical analysis of the leaves showed that the Tunisian populations, i.e., the populations of Kasserine, Kef, and Beja, were very rich in phenolic compounds (from 20.8 to 44.65 mg GAE/g DW). Flavonoids compounds were also the main class of total polyphenols present in all the tested populations (from 8.91 to 37.48 mg RE/g DW). The quantitative genetic diversity estimated by the population's structure, based on PCA analysis, was an adaptation to the changes in the environmental conditions. Overall, our study indicated that natural populations of M. vulgare had different chemotypes of essential oils and they were rich in phenolic compounds, particularly flavonoids, which opens a new prospect for industrial use and differential exploitation of this species.
- Published
- 2022
- Full Text
- View/download PDF
27. Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa.
- Author
-
Vinuganesh A, Kumar A, Prakash S, Alotaibi MO, Saleh AM, Mohammed AE, Beemster GTS, and AbdElgawad H
- Subjects
- Carbon Dioxide, Ecosystem, Hydrogen-Ion Concentration, Oxidative Stress, Seawater, Ulva
- Abstract
The sequestration of elevated atmospheric CO
2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiological and biochemical response of intertidal green seaweed Ulva compressa to elevated pCO2 induced acidification. The green seaweed was exposed to control (pH 8.1) and acidified (pH 7.7) conditions for 2 weeks following which net primary productivity, pigment content, oxidative status and antioxidant enzymes, primary and secondary metabolites, and mineral content were assessed. We observed an increase in primary productivity of the acidified samples, which was associated with increased levels of photosynthetic pigments. Consequently, primary metabolites levels were increased in the thalli grown under lowered pH conditions. There was also richness in various minerals and polyunsaturated fatty acids, indicating that the low pH elevated the nutritional quality of U. compressa. We found that low pH reduced malondialdehyde (MDA) content, suggesting reduced oxidative stress. Consistently we found reduced total antioxidant capacity and a general reduction in the majority of enzymatic and non-enzymatic antioxidants in the thalli grown under acidified conditions. Our results indicate that U. compressa will benefit from seawater acidification by improving productivity. Biochemical changes will affect its nutritional qualities, which may impact the food chain/food web under future acidified ocean conditions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
28. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium ( Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study.
- Author
-
El-Shafey NM, Marzouk MA, Yasser MM, Shaban SA, Beemster GTS, and AbdElgawad H
- Abstract
Heavy metal contamination in soil is increasing rapidly due to increasing anthropogenic activities. Despite the importance of rose-scented geranium as a medicinal plant, little attention was paid to enhancing its productivity in heavy metal-polluted soil. In this regard, endophytes improve plant resistance to heavy metal toxicity and enhance its tissue quality. Here, the impact of the three endophytic fungi Talaromyces versatilis (E6651), Emericella nidulan s (E6658), and Aspergillus niger (E6657) on geranium growth, tolerance, and tissue quality under cadmium (Cd) stress was investigated. In contrast to E . nidulans , T . versatilis and A . niger enhanced geranium growth and the stimulatory effect was more pronounced under Cd-stress. The three endophytes significantly alleviated Cd accumulation and increased mineral content in geranium leaves. In addition, endophytic fungi successfully alleviated Cd-induced membrane damage and reinforced the antioxidant defenses in geranium leaves. Inoculation with endophytes stimulated all the antioxidant enzymes under Cd-stress, and the response was more obvious in the case of T . versatilis and A . niger . To reduce the toxicity of tissue-Cd levels, T . versatilis and A . niger upregulated the detoxification mechanisms; glutathione-S-transferase, phytochelatin, and metallothionein levels. Moreover, endophytic fungi improved the medicinal value and quality of geranium by increasing total antioxidant capacity (TAC), phenolic compound biosynthesis (phenylalanine ammonia-lyase), and vitamin content as well as the quantity and quality of essential oil, particularly under Cd-stress conditions. The variation in the mechanisms modulated by the different endophytic fungi was supported by Principal Component Analysis (PCA). Overall, this study provided fundamental insights into endophytes' impact as a feasible strategy to mitigate the phytotoxicity hazards of Cd-stress in geranium and enhance its quality, based on the growth and biochemical investigations.
- Published
- 2021
- Full Text
- View/download PDF
29. Differences in Cadmium Accumulation, Detoxification and Antioxidant Defenses between Contrasting Maize Cultivars Implicate a Role of Superoxide Dismutase in Cd Tolerance.
- Author
-
Mahmoud A, AbdElgawad H, Hamed BA, Beemster GTS, and El-Shafey NM
- Abstract
Cadmium (Cd), a readily absorbed and translocated toxic heavy metal, inhibits plant growth, interrupts metabolic homeostasis and induces oxidative damage. Responses towards Cd-stress differ among plant cultivars, and the complex integrated relationships between Cd accumulation, detoxification mechanisms and antioxidant defenses still need to be unraveled. To this end, 12 Egyptian maize cultivars were grown under Cd-stress to test their Cd-stress tolerance. Out of these cultivars, tolerant (TWC360 and TWC321), moderately sensitive (TWC324) and sensitive (SC128) cultivars were selected, and we determined their response to Cd in terms of biomass, Cd accumulation and antioxidant defense system. The reduction in biomass was highly obvious in sensitive cultivars, while TWC360 and TWC321 showed high Cd-tolerance. The cultivar TWC321 showed lower Cd uptake concurrently with an enhanced antioxidant defense system. Interestingly, TWC360 accumulated more Cd in the shoot, accompanied with increased Cd detoxification and sequestration. A principal component analysis revealed a clear separation between the sensitive and tolerant cultivars with significance of the antioxidant defenses, including superoxide dismutase (SOD). To confirm the involvement of SOD in Cd-tolerance, we studied the effect of Cd-stress on a transgenic maize line (TG) constitutively overexpressing AtFeSOD gene in comparison to its wild type (WT). Compared to their WT, the TG plants showed less Cd accumulation and improved growth, physiology, antioxidant and detoxification systems. These results demonstrate the role of SOD in determining Cd-tolerance.
- Published
- 2021
- Full Text
- View/download PDF
30. Perfluoroalkylated acids (PFAAs) accumulate in field-exposed snails (Cepaea sp.) and affect their oxidative status.
- Author
-
Rijnders J, Bervoets L, Prinsen E, Eens M, Beemster GTS, AbdElgawad H, and Groffen T
- Subjects
- Animals, Oxidative Stress, Snails, Soil, Alkanesulfonic Acids, Fluorocarbons analysis, Fluorocarbons toxicity, Soil Pollutants analysis
- Abstract
Perfluoroalkyl acids (PFAAs) are a group of synthetic persistent chemicals with distinctive properties, such as a high thermal and chemical stability, that make them suitable for a wide range of applications. They have been produced since the 1950s, resulting in a global contamination of the environment and wildlife. They are resistant to biodegradation and have the tendency to bio-accumulate in organisms and bio-magnify in the food chain. However, little is known about the bioaccumulation of PFAAs in terrestrial invertebrates, including how they affect the physiology and particularly oxidative status. Therefore, we studied the bioaccumulation of PFAAs in snails that were exposed for 3 and 6 weeks along a distance gradient radiating from a well-known fluorochemical hotspot (3M). In addition, we examined the potential effects of PFAAs on the oxidative status of these snails. Finally, we tested for relationships between the concentrations of PFAAs in snails with those in soil and nettles they were feeding on and the influence of soil physicochemical properties on these relationships. Our results showed higher concentrations of PFOA and/or PFOS in almost every matrix at the 3M site, but no concentration gradient along the distance gradient. The PFOS concentrations in snails were related to those in the nettles and soil, and were affected by multiple soil properties. For PFOA, we observed no relationships between soil and biota concentrations. Short-chained PFAAs were dominant in nettles, whereas in soil and snails long-chained PFAAs were dominant. We found a significant positive correlation between peroxidase, catalase and peroxiredoxins and PFAA concentrations, suggesting that snails, in terms of oxidative stress (OS) response, are possibly susceptible to PFAAs pollution. CAPSULE: We observed a positive correlation between the levels of PFAAs and the antioxidants peroxidase, catalase and peroxiredoxins in snails, exposed on nettles grown at contaminated sites., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
31. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses.
- Author
-
Melandri G, AbdElgawad H, Floková K, Jamar DC, Asard H, Beemster GTS, Ruyter-Spira C, and Bouwmeester HJ
- Subjects
- Adaptation, Physiological, Antioxidants, Droughts, Plant Breeding, Oryza
- Abstract
Main Conclusions: Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.
- Published
- 2021
- Full Text
- View/download PDF
32. Phloem exudate metabolic content reflects the response to water-deficit stress in pea plants (Pisum sativum L.).
- Author
-
Blicharz S, Beemster GTS, Ragni L, De Diego N, Spíchal L, Hernándiz AE, Marczak Ł, Olszak M, Perlikowski D, Kosmala A, and Malinowski R
- Subjects
- Adaptation, Physiological, Biological Transport, Droughts, Genotype, Oleic Acid metabolism, Pisum sativum anatomy & histology, Pisum sativum genetics, Phloem anatomy & histology, Phloem genetics, Phloem physiology, Plant Exudates, Plant Leaves anatomy & histology, Plant Leaves genetics, Plant Leaves physiology, Stress, Physiological, Water physiology, Carbon metabolism, Nitrogen metabolism, Pisum sativum physiology
- Abstract
Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response., (© 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
33. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress.
- Author
-
Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, and Beemster GTS
- Subjects
- Acrolein pharmacology, Acrolein therapeutic use, Animals, Blood Glucose drug effects, Blood Glucose metabolism, Diabetes, Gestational metabolism, Energy Metabolism drug effects, Energy Metabolism physiology, Female, Fetal Hypoxia metabolism, Neovascularization, Pathologic metabolism, Oxidative Stress physiology, Placenta blood supply, Placenta metabolism, Pregnancy, Rats, Rats, Wistar, Acrolein analogs & derivatives, Diabetes, Gestational drug therapy, Fetal Hypoxia prevention & control, Neovascularization, Pathologic drug therapy, Oxidative Stress drug effects, Placenta drug effects
- Abstract
Gestational diabetes mellitus (GDM) is a major pregnancy-related disorder with an increasing prevalence worldwide. GDM is associated with altered placental vascular functions and has severe consequences for fetal growth. There is no commonly accepted medication for GDM due to safety considerations. Actions of the currently limited therapeutic options focus exclusively on lowering the blood glucose level without paying attention to the altered placental vascular reactivity and remodelling. We used the fat-sucrose diet/streptozotocin (FSD/STZ) rat model of GDM to explore the efficacy of cinnamaldehyde (Ci; 20 mg/kg/day), a promising antidiabetic agent for GDM, and glyburide/metformin-HCl (Gly/Met; 0.6 + 100 mg/kg/day), as a reference drug for treatment of GDM, on the placenta structure and function at term pregnancy after their oral intake one week before mating onward. Through genome-wide transcriptome, biochemical, metabolome, metal analysis and histopathology we obtained an integrated understanding of their effects. GDM resulted in maternal and fetal hyperglycemia, fetal hyperinsulinemia and placental dysfunction with subsequent fetal anemia, hepatic iron deficiency and high serum erythropoietin level, reflecting fetal hypoxia. Differentially-regulated genes were overrepresented for pathways of angiogenesis, metabolic transporters and oxidative stress. Despite Ci and Gly/Met effectively alleviated the maternal and fetal glycemia, only Ci offered substantial protection from GDM-associated placental vasculopathy and prevented the fetal hypoxia. This was explained by Ci's impact on the molecular regulation of placental angiogenesis, metabolic activity and redox signaling. In conclusion, Ci provides a dual impact for the treatment of GDM at both maternal and fetal levels through its antidiabetic effect and the direct placental vasoprotective action. Lack of Gly/Met effectiveness to restore it's impaired functionality demonstrates the vital role of the placenta in developing efficient medications for GDM., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
34. Molecular interactions at the bovine embryo-endometrial epithelium interface.
- Author
-
Sponchiado M, Marei WFA, Beemster GTS, Bols PEJ, Binelli M, and Leroy JLMR
- Subjects
- Animals, Cattle, Coculture Techniques, Embryo, Mammalian cytology, Endometrium cytology, Epithelial Cells cytology, Female, Pregnancy, Embryo Culture Techniques veterinary, Embryo, Mammalian metabolism, Endometrium metabolism, Epithelial Cells metabolism, Gene Expression Regulation, Developmental, Transcriptome
- Abstract
In cattle, pre-implantation embryo development occurs within the confinement of the uterine lumen. Current understanding of the bi-lateral molecular interactions between embryo and endometrium that are required for a successful pregnancy is limited. We hypothesized that the nature and intensity of reciprocal embryo-endometrium interactions depend on the extent of their physical proximity. Bovine endometrial epithelial cells (bEECs) and morulae were co-cultured in juxtacrine (Contact+) or non-juxtacrine (Contact-) apposition. Co-culture with bEECs improved blastocyst rates on day 7.5, regardless of juxtaposition. Contact+ regulated transcription of 1797 endometrial genes vs only 230 in the Contact- group compared to their control (no embryos) counterparts. A subset of 50 overlapping differentially expressed genes (DEGs) defined embryo-induced effects on bEEC transcriptome irrespective of juxtaposition. Functional analysis revealed pathways associated with interferon signaling and prostanoid biosynthesis. A total of 175 genes displayed a graded expression level depending on Contact+ or Contact-. These genes were involved in interferon-related and antigen presentation pathways. Biological processes enriched exclusively in Contact+ included regulation of cell cycle and sex-steroid biosynthesis. We speculate that, in vivo, embryonic signals fine-tune the function of surrounding cells to ultimately maximize pregnancy success.
- Published
- 2020
- Full Text
- View/download PDF
35. leafkin -An R package for automated kinematic data analysis of monocot leaves.
- Author
-
Bertels J and Beemster GTS
- Abstract
Growth is one of the most studied plant responses. At the cellular level, plant growth is driven by cell division and cell expansion. A means to quantify these two cellular processes is through kinematic analysis, a methodology that has been developed and perfected over the past decades, with in-depth descriptions of the methodology available. Unfortunately, after performing the lab work, researchers are required to perform time-consuming, repetitive and error-prone calculations. To lower the barrier towards this final step in the analysis and to aid researchers currently applying this technique, we have created leafkin , an R-package to perform all the calculations involved in the kinematic analysis of monocot leaves using only four functions. These functions support leaf elongation rate calculations, fitting of cell length profiles, extraction of fitted cell lengths and execution of kinematic equations. With the leafkin package, kinematic analysis of monocot leaves becomes more accessible than before., Competing Interests: The authors declare no conflicts of interest., (© The Author(s) 2020.)
- Published
- 2020
- Full Text
- View/download PDF
36. Cadmium inhibits cell cycle progression and specifically accumulates in the maize leaf meristem.
- Author
-
Bertels J, Huybrechts M, Hendrix S, Bervoets L, Cuypers A, and Beemster GTS
- Subjects
- Cell Cycle, Gene Expression Regulation, Plant, Plant Leaves, Zea mays genetics, Cadmium toxicity, Meristem genetics
- Abstract
It is well known that cadmium (Cd) pollution inhibits plant growth, but how this metal impacts leaf growth processes at the cellular and molecular level is still largely unknown. In the current study, we show that Cd specifically accumulates in the meristematic tissue of the growing maize leaf, while Cd concentration in the elongation zone rapidly declines as the deposition rates diminish and cell volumes increase due to cell expansion. A kinematic analysis shows that, at the cellular level, a lower number of meristematic cells together with a significantly longer cell cycle duration explain the inhibition of leaf growth by Cd. Flow cytometry analysis suggests an inhibition of the G1/S transition, resulting in a lower proportion of cells in the S phase and reduced endoreduplication in expanding cells under Cd stress. Lower cell cycle activity is also reflected by lower expression levels of key cell cycle genes (putative wee1, cyclin-B2-4, and minichromosome maintenance4). Cell elongation rates are also inhibited by Cd, which is possibly linked to the inhibited endoreduplication. Taken together, our results complement studies on Cd-induced growth inhibition in roots and link inhibited cell cycle progression to Cd deposition in the leaf meristem., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
37. Al exposure increases proline levels by different pathways in an Al-sensitive and an Al-tolerant rye genotype.
- Author
-
de Sousa A, AbdElgawad H, Fidalgo F, Teixeira J, Matos M, Hamed BA, Selim S, Hozzein WN, Beemster GTS, and Asard H
- Subjects
- Adaptation, Physiological drug effects, Breeding methods, Genotype, Plant Leaves drug effects, Plant Leaves genetics, Plant Leaves metabolism, Plant Roots drug effects, Plant Roots genetics, Plant Roots metabolism, Secale genetics, Stress, Physiological drug effects, Aluminum toxicity, Proline metabolism, Secale drug effects, Secale metabolism, Signal Transduction drug effects
- Abstract
Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a role in protecting plants against various abiotic stresses. Using the relatively Al-tolerant cereal rye (Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes differing in Al tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the mechanisms were different and were also different between roots and shoots. The Al-tolerant genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous activation of the ornithine (Orn)-biosynthetic pathway and decrease in Pro oxidation. The Orn pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios demonstrate that N-metabolism is less inhibited in the Al-tolerant line. The correlation between Pro changes and differences in Al-sensitivity between these two genotypes, supports a role for Pro in Al tolerance. Our results suggest that differential responses in Pro biosynthesis may be linked to N-availability. Understanding the role of Pro in differences between genotypes in stress responses, could be valuable in plant selection and breeding for Al resistance.
- Published
- 2020
- Full Text
- View/download PDF
38. Impacts of selective logging on the oxidative status of tropical understorey birds.
- Author
-
Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, Eens M, and Costantini D
- Subjects
- Animals, Birds, Borneo, Cross-Sectional Studies, Forests, Oxidative Stress, Trees, Tropical Climate, Biodiversity, Forestry
- Abstract
Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type., (© 2020 British Ecological Society.)
- Published
- 2020
- Full Text
- View/download PDF
39. Salinity Stress Enhances the Antioxidant Capacity of Bacillus and Planococcus Species Isolated From Saline Lake Environment.
- Author
-
Hassan AHA, Alkhalifah DHM, Al Yousef SA, Beemster GTS, Mousa ASM, Hozzein WN, and AbdElgawad H
- Abstract
This study aims at exploiting salinity stress as an innovative, simple, and cheap method to enhance the production of antioxidant metabolites and enzymes from bacteria for potential application as functional additives to foods and pharmaceuticals. We investigated the physiological and biochemical responses of four bacterial isolates, which exhibited high tolerance to 20% NaCl (wt/vol), out of 27 bacterial strains isolated from Aushazia Lake, Qassim region, Saudi Arabia. The phylogenetic analysis of the 16S rRNA genes of these four isolates indicated that strains ST1 and ST2 belong to genus Bacillus , whereas strains ST3 and ST4 belong to genus Planococcus . Salinity stress differentially induced oxidative damage, where strains ST3 and ST4 showed increased lipid peroxidation, lipoxygenase, and xanthine oxidase levels. Consequently, high antioxidant contents were produced to control oxidative stress, particularly in ST3 and ST4. These two Planococcus strains showed increased glutathione cycle, phenols, flavonoids, antioxidant capacity, catalase, and/or superoxide dismutase (SOD). Interestingly, the production of glutathione by Planococcus strains was some thousand folds greater than by higher plants. On the other hand, the induction of antioxidants in ST1 and ST2 was restricted to phenols, flavonoids, peroxidase, glutaredoxin, and/or SOD. The hierarchical analysis also supported strain-specific responses. This is the first report that exploited salinity stress for promoting the production of antioxidants from bacterial isolates, which can be utilized as postbiotics for promising applications in foods and pharmaceuticals., (Copyright © 2020 Hassan, Alkhalifah, Al Yousef, Beemster, Mousa, Hozzein and AbdElgawad.)
- Published
- 2020
- Full Text
- View/download PDF
40. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize.
- Author
-
AbdElgawad H, Avramova V, Baggerman G, Van Raemdonck G, Valkenborg D, Van Ostade X, Guisez Y, Prinsen E, Asard H, Van den Ende W, and Beemster GTS
- Subjects
- Amino Acids metabolism, Antioxidants metabolism, Cell Division, Dehydration, Gene Expression Regulation, Plant, Mutation, Photosynthesis physiology, Plant Leaves physiology, Plant Proteins genetics, Plant Stomata physiology, Starch biosynthesis, Zea mays cytology, Droughts, Plant Leaves growth & development, Plant Proteins metabolism, Starch metabolism, Zea mays physiology
- Abstract
To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery., (© 2020 John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
41. Gibberellin Enhances the Anisotropy of Cell Expansion in the Growth Zone of the Maize Leaf.
- Author
-
Sprangers K, Thys S, van Dusschoten D, and Beemster GTS
- Abstract
Although plant organ shapes are defined by spatio-temporal variations of directional tissue expansion, this is a little characterized aspect of organ growth regulation. Although it is well known that the plant hormone gibberellin increases the leaf length/with ratio, its effects on cell expansion in the growing leaf are largely unknown. To understand how variations in rate and anisotropy of growth establish the typical monocotelydonous leaf shape, we studied the leaf growth zone of maize ( Zea mays ) with a kinematic analysis of cell expansion in the three directions of growth: proximo-distal, medio-lateral, and dorso-ventral. To determine the effect of gibberellin, we compared a gibberellin-deficient dwarf3 mutant and the overproducing UBI::GA20OX-1 line with their wild types. We found that, as expected, longitudinal growth was dominant throughout the growth zone. The highest degree of anisotropy occurred in the division zone, where relative growth rates in width and thickness were almost zero. Growth anisotropy was smaller in the elongation zone, due to higher lateral and dorso-ventral growth rates. Growth in all directions stopped at the same position. Gibberellin increased the size of the growth zone and the degree of growth anisotropy by stimulating longitudinal growth rates. Inversely, the duration of expansion was negatively affected, so that mature cell length was unaffected, while width and height of cells were reduced. Our study provides a detailed insight in the dynamics of growth anisotropy in the maize leaf and demonstrates that gibberellin specifically stimulates longitudinal growth rates throughout the growth zone., (Copyright © 2020 Sprangers, Thys, van Dusschoten and Beemster.)
- Published
- 2020
- Full Text
- View/download PDF
42. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses.
- Author
-
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, and Beemster GTS
- Subjects
- Gene Expression Regulation, Plant, Indoleacetic Acids, Osmotic Pressure, Plant Growth Regulators, Plant Leaves metabolism, Arabidopsis genetics, Arabidopsis metabolism, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism
- Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response., (© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.)
- Published
- 2020
- Full Text
- View/download PDF
43. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO 2 vents.
- Author
-
Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, and AbdElgawad H
- Subjects
- Animals, Carbon Dioxide pharmacology, Hydrogen-Ion Concentration, Invertebrates physiology, Islands, Seaweed, Volcanic Eruptions, Acids analysis, Calcium Carbonate analysis, Oceans and Seas, Sargassum physiology, Seawater chemistry
- Abstract
We utilized volcanic CO
2 vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO2 on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery., (Copyright © 2019 Elsevier Ltd. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
44. How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone.
- Author
-
De Vos D, Nelissen H, AbdElgawad H, Prinsen E, Broeckhove J, Inzé D, and Beemster GTS
- Subjects
- Cytokinins, Gene Expression Regulation, Plant, Indoleacetic Acids, Plant Leaves, Poaceae, Plant Growth Regulators, Zea mays
- Abstract
We studied the maize leaf to understand how long-distance signals, auxin and cytokinin, control leaf growth dynamics. We constructed a mathematical model describing the transport of these hormones along the leaf growth zone and their interaction with the local gibberellin (GA) metabolism in the control of cell division. Assuming gradually declining auxin and cytokinin supply at the leaf base, the model generated spatiotemporal hormone distribution and growth patterns that matched experimental data. At the cellular level, the model predicted a basal leaf growth as a result of cell division driven by auxin and cytokinin. Superimposed on this, GA synthesis regulated growth through the control of the size of the region of active cell division. The predicted hormone and cell length distributions closely matched experimental data. To correctly predict the leaf growth profiles and final organ size of lines with reduced or elevated GA production, the model required a signal proportional to the size of the emerged part of the leaf that inhibited the basal leaf growth driven by auxin and cytokinin. Excision and shading of the emerged part of the growing leaf allowed us to demonstrate that this signal exists and depends on the perception of light intensity., (© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.)
- Published
- 2020
- Full Text
- View/download PDF
45. Ribosome assembly factor Adenylate Kinase 6 maintains cell proliferation and cell size homeostasis during root growth.
- Author
-
Slovak R, Setzer C, Roiuk M, Bertels J, Göschl C, Jandrasits K, Beemster GTS, and Busch W
- Subjects
- Cell Proliferation, Cell Size, Gene Expression Regulation, Plant, Genome-Wide Association Study, Homeostasis, Ribosomes metabolism, Adenylate Kinase, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, Plant Roots growth & development
- Abstract
From the cellular perspective, organ growth is determined by production and growth of cells. Uncovering how these two processes are coordinated is essential for understanding organogenesis and regulation of organ growth. We utilized phenotypic and genetic variation of 252 natural accessions of Arabidopsis thaliana to conduct genome-wide association studies (GWAS) for identifying genes underlying root growth variation; using a T-DNA line candidate approach, we identified one gene involved in root growth control and characterized its function using microscopy, root growth kinematics, G2/M phase cell count, ploidy levels and ribosome polysome profiles. We identified a factor contributing to root growth control: Arabidopsis Adenylate Kinase 6 (AAK6). AAK6 is required for normal cell production and normal cell elongation, and its natural genetic variation is involved in determining root growth differences between Arabidopsis accessions. A lack of AAK6 reduces cell production in the aak6 root apex, but this is partially compensated for by longer mature root cells. Thereby, aak6 mutants exhibit compensatory cell enlargement, a phenomenon unexpected in roots. Moreover, aak6 plants accumulate 80S ribosomes while the polysome profile remains unchanged, consistent with a phenotype of perturbed ribosome biogenesis. In conclusion, AAK6 impacts ribosome abundance, cell production and thereby root growth., (© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.)
- Published
- 2020
- Full Text
- View/download PDF
46. Oocyte maturation under lipotoxic conditions induces carryover transcriptomic and functional alterations during post-hatching development of good-quality blastocysts: novel insights from a bovine embryo-transfer model.
- Author
-
Desmet KLJ, Marei WFA, Richard C, Sprangers K, Beemster GTS, Meysman P, Laukens K, Declerck K, Vanden Berghe W, Bols PEJ, Hue I, and Leroy JLMR
- Subjects
- Animals, Blastocyst, Cattle, Embryo Transfer, Female, Humans, Oocytes, Pregnancy, In Vitro Oocyte Maturation Techniques, Transcriptome
- Abstract
Study Question: Does oocyte maturation under lipolytic conditions have detrimental carry-over effects on post-hatching embryo development of good-quality blastocysts after transfer?, Summary Answer: Surviving, morphologically normal blastocysts derived from bovine oocytes that matured under lipotoxic conditions exhibit long-lasting cellular dysfunction at the transcriptomic and metabolic levels, which coincides with retarded post-hatching embryo development., What Is Known Already: There is increasing evidence showing that following maturation in pathophysiologically relevant lipotoxic conditions (as in obesity or metabolic syndrome), surviving blastocysts of good (transferable) morphological quality have persistent transcriptomic and epigenetic alteration even when in vitro embryo culture takes place under standard conditions. However, very little is known about subsequent development in the uterus after transfer., Study Design, Size, Duration: Bovine oocytes were matured in vitro in the presence of pathophysiologically relevant, high non-esterified fatty acid (NEFA) concentrations (HIGH PA), or in basal NEFA concentrations (BASAL) as a physiological control. Eight healthy multiparous non-lactating Holstein cows were used for embryo transfers. Good-quality blastocysts (pools of eight) were transferred per cow, and cows were crossed over for treatments in the next replicate. Embryos were recovered 7 days later and assessed for post-hatching development, phenotypic features and gene expression profile. Blastocysts from solvent-free and NEFA-free maturation (CONTROL) were also tested for comparison., Participants/materials, Setting, Methods: Recovered Day 14 embryos were morphologically assessed and dissected into embryonic disk (ED) and extraembryonic tissue (EXT). Samples of EXT were cultured for 24 h to assess cellular metabolic activity (glucose and pyruvate consumption and lactate production) and embryos' ability to signal for maternal recognition of pregnancy (interferon-τ secretion; IFN-τ). ED and EXT samples were subjected to RNA sequencing to evaluate the genome-wide transcriptome patterns., Main Results and the Role of Chance: The embryo recovery rate at Day 14 p.i. was not significantly different among treatment groups (P > 0.1). However, higher proportions of HIGH PA embryos were retarded in growth (in spherical stage) compared to the more elongated tubular stage embryos in the BASAL group (P < 0.05). Focusing on the normally developed tubular embryos in both groups, HIGH PA exposure resulted in altered cellular metabolism and altered transcriptome profile particularly in pathways related to redox-regulating mechanisms, apoptosis, cellular growth, interaction and differentiation, energy metabolism and epigenetic mechanisms, compared to BASAL embryos. Maturation under BASAL conditions did not have any significant effects on post-hatching development and cellular functions compared to CONTROL., Large-Scale Data: The datasets of RNA sequencing analysis are available in the NCBI's Gene Expression Omnibus (GEO) repository, series accession number GSE127889 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127889). Datasets of differentially expressed genes and their gene ontology functions are available in the Mendeley datasets at http://dx.doi.org/10.17632/my2z7dvk9j.2., Limitations, Reasons for Caution: The bovine model was used here to allow non-invasive embryo transfer and post-hatching recovery on Day 14. There are physiological differences in some characteristics of post-hatching embryo development between human and cows, such as embryo elongation and trophoblastic invasion. However, the main carry-over effects of oocyte maturation under lipolytic conditions described here are evident at the cellular level and therefore may also occur during post-hatching development in other species including humans. In addition, post-hatching development was studied here under a healthy uterine environment to focus on carry-over effects originating from the oocyte, whereas additional detrimental effects may be induced by maternal metabolic disorders due to adverse changes in the uterine microenvironment. RNA sequencing results were not verified by qPCR, and no solvent control was included., Wider Implications of the Findings: Our observations may increase the awareness of the importance of maternal metabolic stress at the level of the preovulatory oocyte in relation to carry-over effects that may persist in the transferrable embryos. It should further stimulate new research about preventive and protective strategies to optimize maternal metabolic health around conception to maximize embryo viability and thus fertility outcome., Study Funding/competing Interest(s): This study was supported by the Flemish Research Fund (FWO grant 11L8716N and FWO project 42/FAO10300/6541). The authors declare there are no conflicts of interest., (© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
47. Redox homeostasis in the growth zone of the rice leaf plays a key role in cold tolerance.
- Author
-
Gázquez A, Abdelgawad H, Baggerman G, Van Raemdonck G, Asard H, Maiale SJ, Rodríguez AA, and Beemster GTS
- Subjects
- Cold Temperature, Homeostasis, Oxidation-Reduction, Plant Leaves growth & development, Proteome, Acclimatization, Antioxidants metabolism, Oryza physiology, Plant Leaves metabolism
- Abstract
We analysed the cellular and molecular changes in the leaf growth zone of tolerant and sensitive rice varieties in response to suboptimal temperatures. Cold reduced the final leaf length by 35% and 51% in tolerant and sensitive varieties, respectively. Tolerant lines exhibited a smaller reduction of the leaf elongation rate and greater compensation by an increased duration of leaf growth. Kinematic analysis showed that cold reduced cell production in the meristem and the expansion rate in the elongation zone, but the latter was compensated for by a doubling of the duration of cell expansion. We performed iTRAQ proteome analysis on proliferating and expanding parts of the leaf growth zone. We identified 559 and 542 proteins, of which 163 and 210 were differentially expressed between zones, and 96 and 68 between treatments, in the tolerant and sensitive lines, respectively. The categories protein biosynthesis and redox homeostasis were significantly overrepresented in the up-regulated proteins. We therefore measured redox metabolites and enzyme activities in the leaf growth zone, demonstrating that tolerance of rice lines to suboptimal temperatures correlates with the ability to up-regulate enzymatic antioxidants in the meristem and non-enzymatic antioxidants in the elongation zone., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
48. Biomarkers for grain yield stability in rice under drought stress.
- Author
-
Melandri G, AbdElgawad H, Riewe D, Hageman JA, Asard H, Beemster GTS, Kadam N, Jagadish K, Altmann T, Ruyter-Spira C, and Bouwmeester H
- Subjects
- Edible Grain growth & development, Oryza genetics, Oryza growth & development, Stress, Physiological, Biomarkers metabolism, Droughts, Oryza physiology
- Abstract
Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2020
- Full Text
- View/download PDF
49. Cellular Dynamics, a Systems Biology Bottleneck.
- Author
-
Beemster GTS
- Subjects
- Cell Division, Morphogenesis, Plants, Plant Development, Systems Biology
- Abstract
Developing a mechanistic understanding of plant growth regulation requires studying cell division and cell expansion in addition to molecular studies. A recent time-lapse confocal microscopy study (Fox, S. et al. PLoS Biol. 2018:16;e2005952) quantifying these processes in individual cells in growing organs in combination with multiscale modeling provides profound new insights into the regulatory mechanisms involved., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
50. Multiple mechanisms explain how reduced KRP expression increases leaf size of Arabidopsis thaliana.
- Author
-
Sizani BL, Kalve S, Markakis MN, Domagalska MA, Stelmaszewska J, AbdElgawad H, Zhao X, De Veylder L, De Vos D, Broeckhove J, Schnittger A, and Beemster GTS
- Subjects
- Arabidopsis cytology, Arabidopsis embryology, Arabidopsis Proteins metabolism, Biomechanical Phenomena, Cell Count, Cell Cycle genetics, Cell Division, DNA, Plant biosynthesis, Down-Regulation genetics, Endoreduplication, Gene Expression Profiling, Kinetics, Mutation genetics, Organ Size, Phenotype, Plant Leaves cytology, Plant Leaves growth & development, Plants, Genetically Modified, Ploidies, Seeds anatomy & histology, Seeds physiology, Up-Regulation genetics, Arabidopsis anatomy & histology, Arabidopsis genetics, Arabidopsis Proteins genetics, Gene Expression Regulation, Plant, Plant Leaves anatomy & histology
- Abstract
Although cell number generally correlates with organ size, the role of cell cycle control in growth regulation is still largely unsolved. We studied kip related protein (krp) 4, 6 and 7 single, double and triple mutants of Arabidopsis thaliana to understand the role of cell cycle inhibitory proteins in leaf development. We performed leaf growth and seed size analysis, kinematic analysis, flow cytometery, transcriptome analysis and mathematical modeling of G1/S and G2/M checkpoint progression of the mitotic and endoreplication cycle. Double and triple mutants progressively increased mature leaf size, because of elevated expression of cell cycle and DNA replication genes stimulating progression through the division and endoreplication cycle. However, cell number was also already increased before leaf emergence, as a result of an increased cell number in the embryo. We show that increased embryo and seed size in krp4/6/7 results from seed abortion, presumably reducing resource competition, and that seed size differences contribute to the phenotype of several large-leaf mutants. Our results provide a new mechanistic understanding of the role of cell cycle regulation in leaf development and highlight the contribution of the embryo to the development of leaves after germination in general., (© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.