Nils Blanc, Zhimao Wang, Benoît Panicaud, Philippe Goudeau, Guillaume Geandier, Jean-Luc Grosseau-Poussard, Zhaojun Tao, Nathalie Boudet, Pierre-Olivier Renault, Felaniaina Rakotovao, Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée (LASMIS), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 (LaSIE), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), CRG et Grands Instruments (CRG), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Surface, Interfaces et MAtériaux sous Contrainte SIMAC (SIMAC), Département Physique et Mécanique des Matériaux (Département Physique et Mécanique des Matériaux), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), and CRG & Grands instruments (NEEL - CRG)
International audience; Chromium-based alloys have been developed to form chromia layers in oxidizing environments for high temperature applications, providing a good protection against further oxidation. The mechanical behavior and oxide layer growth of yttria-coated or zirconium-doped Ni28Cr alloy are presently studied under high temperature oxidation conditions. These kind of reactive elements can decrease oxidation kinetics and significantly increase the adhesion of chromia layer on the metallic substrate. However, during oxidation, a compressive stress generally occurs in thermally grown oxide (TGO) due to the oxide layer and its mechanical interaction with the metallic substrate. These growth stresses, combined with the thermal stresses that develop during temperature changes, may initiate and cause layer cracking or spallation, which limits the lifetime of alloys in such a challenging environment. For prediction of this lifetime, it is important to know with accuracy the thermomechanical behavior of such a system. Therefore, a thermomechanical modelling is proposed and applied to optimize numerically the unknown parameters, especially viscoplastic ones. For the raw material and modified materials by reactive elements, the creep parameter decreases with a lower temperature, which means that the viscoplastic strain decreases with a decreasing temperature. For the yttria-coated or zirconium-doped material, the main result is an increase of the activation energy of this creep parameter with the quantity of reactive element.