2,077 results on '"Berg, Christian"'
Search Results
2. A complete Bernstein function related to the fractal dimension of Pascal's pyramid modulo a prime
- Author
-
Berg, Christian
- Subjects
Mathematics - Classical Analysis and ODEs ,Mathematics - Number Theory ,30E20, 26A48 - Abstract
Let $f_r(x)=\log(1+rx)/\log(1+x)$ for $x>0$. We prove that $f_r$ is a complete Bernstein function for $0\le r\le 1$ and a Stieltjes function for $1\le r$. This answers a conjecture of David Bradley that $f_r$ is a Bernstein function when $0\le r\le 1$., Comment: 12 pages, 2 figures. To appear in Expositiones Mathematicae
- Published
- 2024
3. Sofortbelastung nach vorangegangenem Hart- und Weichgewebsaufbau
- Author
-
Egger, Sven and Berg, Christian
- Published
- 2024
- Full Text
- View/download PDF
4. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems
- Author
-
Ramakrishnan, Dinesh Kumar, Jauernegger, Franziska, Hoefle, Daniel, Berg, Christian, Berg, Gabriele, and Abdelfattah, Ahmed
- Published
- 2024
- Full Text
- View/download PDF
5. Indeterminate Jacobi operators
- Author
-
Berg, Christian and Szwarc, Ryszard
- Subjects
Mathematics - Functional Analysis ,Mathematics - Complex Variables ,47B25, 47B36, 44A60 - Abstract
We consider the Jacobi operator (T,D(T)) associated with an indeterminate Hamburger moment problem, i.e., the operator in $\ell^2$ defined as the closure of the Jacobi matrix acting on the subspace of complex sequences with only finitely many non-zero terms. It is well-known that it is symmetric with deficiency indices (1,1). For a complex number z let $\mathfrak{p}_z, \mathfrak{q}_z$ denote the square summable sequences (p_n(z)) and (q_n(z)) corresponding to the orthonormal polynomials p_n and polynomials q_n of the second kind. We determine whether linear combinations of $\mathfrak{p}_u,\mathfrak{p}_v,\mathfrak{q}_u,\mathfrak{q}_v$ for complex u,v belong to D(T) or to the domain of the self-adjoint extensions of T in $\ell^2$. The results depend on the four Nevanlinna functions of two variables associated with the moment problem. We also show that D(T) is the common range of an explicitly constructed family of bounded operators on $\ell^2$., Comment: 29 pages
- Published
- 2023
6. Flagship HUNTING BOWS: This Year's Crop of New Hunting Rigs Truly Offers Something for Everyone
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Bow and arrow ,Sports and fitness ,Travel, recreation and leisure ,Mazda RX-8 (Automobile) - Abstract
I DON'T KNOW exactly where the bowhunter featured in this photo is, but I do know it was taken during a DIY moose float somewhere in the Canadian bush. Regardless [...]
- Published
- 2024
7. Leaving The World Behind
- Author
-
Berg, Christian
- Subjects
Fishes ,Bears ,Sports and fitness ,Travel, recreation and leisure - Abstract
Bowhunting isn't about the kill. It's about the experience. That was especially true during the June 2023 black bear hunt Associate Editor Mark Demko and I enjoyed at All Terrain [...]
- Published
- 2024
8. Vier-Quadranten-Rehabilitation nach parodontal-funktioneller und kariöser Schädigung
- Author
-
Egger, Sven, Greven, Markus, and Berg, Christian
- Published
- 2024
- Full Text
- View/download PDF
9. Nixdorf – pioneer of decentralized data processing
- Author
-
Berg, Christian, primary
- Published
- 2024
- Full Text
- View/download PDF
10. Self-adjoint operators associated with Hankel moment matrices
- Author
-
Berg, Christian and Szwarc, Ryszard
- Subjects
Mathematics - Functional Analysis ,47A05 (Primary) 47B25, 47B35 (Secondary) - Abstract
In a paper from 2016 D. R. Yafaev initiated a study of closable Hankel forms associated with the moments $(m_n)$ of a positive measure with infinite support on the real line. If $m_n=o(1)$ Yafaev characterized the closure of the form based on earlier work on quasi-Carleman operators. We give a new proof of the description of the closure based entirely on moment considerations. The main purpose of the present paper is a description of the self-adjoint Hankel operators associated with closed Hankel forms in the Hilbert space of square summable sequences. We do this not only in the case $m_n=o(1)$ studied by Yafaev but also in two other cases, where the Hankel form is closable, namely if the moment sequence is indeterminate or if the moment sequence is determinate with finite index of determinacy., Comment: 32 pages. Theorem 3.2 and Remark 3.4 are slightly reformulated to make the result and the proof more transparent
- Published
- 2021
- Full Text
- View/download PDF
11. Is Sustainability Utopian? Complex Challenges and Concrete Action Principles
- Author
-
Berg, Christian, Fuller, Michael, Series Editor, Knutsson Brakenhielm, Lotta, Editorial Board Member, Bugajak, Grzegorz, Editorial Board Member, Evers, Dirk, Editorial Board Member, Harris, Mark, Editorial Board Member, Jackelén, Antje, Editorial Board Member, Karo, Roland, Editorial Board Member, Leach, Javier, Editorial Board Member, Meisinger, Hubert, Editorial Board Member, Oviedo, Lluis, Editorial Board Member, Revol, Fabien, Editorial Board Member, Sæther, Knut-Willy, Editorial Board Member, Uytterhoeven, Tom, Editorial Board Member, Leidenhag, Joanna, editor, and Runehov, Anne, editor
- Published
- 2023
- Full Text
- View/download PDF
12. Pronounced turnover of vascular plant species in Central European arable fields over 90 years
- Author
-
Glaser, Michael, Dullinger, Stefan, Moser, Dietmar, Wessely, Johannes, Chytrý, Milan, Lososová, Zdeňka, Axmanová, Irena, Berg, Christian, Bürger, Jana, Buholzer, Serge, Buldrini, Fabrizio, Chiarucci, Alessandro, Follak, Swen, Küzmič, Filip, Meyer, Stefan, Pyšek, Petr, Richner, Nina, Šilc, Urban, Steinkellner, Siegrid, Wietzke, Alexander, and Essl, Franz
- Published
- 2024
- Full Text
- View/download PDF
13. A family of Horn-Bernstein functions
- Author
-
Berg, Christian and Pedersen, Henrik L.
- Subjects
Mathematics - Classical Analysis and ODEs ,44A10 - Abstract
A family of recently investigated Bernstein functions is revisited and those functions for which the derivatives are logarithmically completely monotonic are identified. This leads to the definition of a class of Bernstein functions, which we propose to call Horn-Bernstein functions because of the results of Roger A. Horn., Comment: 14 pages references updated
- Published
- 2020
14. Completely monotonic ratios of basic and ordinary gamma functions
- Author
-
Berg, Christian, Cetinkaya, Asena, and Karp, Dmitrii
- Subjects
Mathematics - Classical Analysis and ODEs ,33B15, 33D05, 26A48 - Abstract
We investigate conditions for logarithmic complete monotonicity of product ratios of gamma and q-gamma functions whose arguments are linear functions of the variable. We give necessary and sufficient conditions in terms of nonnegativity of a certain explicitly written measure in the q case and of a certain elementary function in the classical q=1 case. In the latter case we further provide simple new sufficient conditions leading to many new examples of logarithmically completely monotonic gamma ratios. Finally, we apply some of our results to study monotonicity of some gamma ratios and rational functions., Comment: 23 pages; no figures
- Published
- 2020
15. A unified view of space-time covariance functions through Gelfand pairs
- Author
-
Berg, Christian
- Subjects
Mathematics - Classical Analysis and ODEs ,Mathematics - Statistics Theory ,43A25, 43A35, 43A75 - Abstract
We give a characterization of positive definite integrable functions on a product of two Gelfand pairs as an integral of positive definite functions on one of the Gelfand pairs with respect to the Plancherel measure on the dual of the other Gelfand pair. In the very special case where the Gelfand pairs are Euclidean groups and the compact subgroups are reduced to the identity, the characterization is a much cited result in spatio-temporal statistics due to Cressie, Huang and Gneiting. When one of the Gelfand pairs is compact the characterization leads to results about expansions in spherical functions with positive definite expansion functions, thereby recovering recent results of the author in collaboration with Peron and Porcu. In the special case when the compact Gelfand pair consists of orthogonal groups, the characterization is important in geostatistics and covers a recent result of Porcu and White., Comment: 26 pages. New references. To appear in J. Fourier Anal. Appl
- Published
- 2020
- Full Text
- View/download PDF
16. @ichbinsophiescholl: Darstellung und Diskussion von Geschichte in Social Media
- Author
-
Mia Berg, Christian Kuchler, Mia Berg, Christian Kuchler
- Published
- 2023
17. Cognitive-driven ADL Impairment as a Predictor for PDD
- Author
-
Sub-Investigator, Dr. Kathrin Brockmann, University Hospital of Tuebingen, Tuebingen, Germany, Advisory board, Prof. Dr. Thomas Gasser, University Hospital of Tuebingen, Tuebingen, Germany, Advisory board, Prof. Dr. Berg, Christian-Albrechts-University, Kiel, Germany, and PD Dr. Inga Liepelt-Scarfone, PhD
- Published
- 2022
18. HIGH-TECH SUPER 7: These Revolutionary Innovations Have Changed the Bowhunting Game
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Batteries -- Innovations ,Sports and fitness ,Sports, sporting goods and toys industry - Abstract
Modern technology has revolutionized every area of society, and bowhunting is certainly no exception. A primitive pursuit that began some 1D.DDD years ago with sharpened sticks propelled by bent tree [...]
- Published
- 2023
19. HOPE FOR A HISTORIC SEASON
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Sports and fitness ,Travel, recreation and leisure - Abstract
DEPENDING ON where you live, archery deer season is either already here or so close you are counting down to opening day. Although I enjoy all kinds of bowhunting, chasing [...]
- Published
- 2024
20. Nielsen's beta function and some infinitely divisible distributions
- Author
-
Berg, Christian, Koumandos, Stamatis, and Pedersen, Henrik L.
- Subjects
Mathematics - Classical Analysis and ODEs - Abstract
We show that a large collection of special functions, in particular Nielsen's beta function, are generalized Stieltjes functions of order 2, and therefore logarithmically completely monotonic. This includes the Laplace transform of functions of the form $xf(x)$, where $f$ is itself the Laplace transform of a sum of dilations and translations of periodic functions. Our methods are also applied to ratios of Gamma functions, and to the remainders in asymptotic expansions of the double Gamma function of Barnes., Comment: 32 pages
- Published
- 2019
21. Closable Hankel operators and moment problems
- Author
-
Berg, Christian and Szwarc, Ryszard
- Subjects
Mathematics - Functional Analysis ,47A05, 47B25, 47B35 - Abstract
In a paper from 2016 D. R. Yafaev considers Hankel operators associated with Hamburger moment sequences q_n and claims that the corresponding Hankel form is closable if and only if the moment sequence tends to 0. The claim is not correct, since we prove closability for any indeterminate moment sequence but also for certain determinate moment sequences corresponding to measures with finite index of determinacy. It is also established that Yafaev's result holds if the moments satisfy \root{2n}\of{q_{2n}}=o(n)., Comment: 10 pages. The notation for the closure of an operator A is changed to \overline{A} from \o A on pages 7,8
- Published
- 2019
22. A family of entire functions connecting the Bessel function $J_1$ and the Lambert $W$ function
- Author
-
Berg, Christian, Massa, Eugenio, and Peron, Ana P.
- Subjects
Mathematics - Classical Analysis and ODEs ,Mathematics - Complex Variables ,26A48, 30E20, 42A38, 33F05 - Abstract
Motivated by the problem of determining the values of $\alpha>0$ for which $f_\alpha(x)=e^\alpha - (1+1/x)^{\alpha x},\ x>0$ is a completely monotonic function, we combine Fourier analysis with complex analysis to find a family $\varphi_\alpha$, $\alpha>0$, of entire functions such that $f_\alpha(x) =\int_0^\infty e^{-sx}\varphi_\alpha(s)\,ds, \ x>0.$ We show that each function $\varphi_\alpha$ has an expansion in power series, whose coefficients are determined in terms of Bell polynomials. This expansion leads to several properties of the functions $\varphi_\alpha$, which turn out to be related to the well known Bessel function $J_1$ and the Lambert $W$ function. On the other hand, by numerically evaluating the series expansion, we are able to show the behavior of $\varphi_\alpha$ as $\alpha$ increases from $0$ to $\infty$ and to obtain a very precise approximation of the largest $\alpha>0$ such that $\varphi_\alpha(s)\geq0,\, s>0$, or equivalently, such that $f_\alpha$ is completely monotonic., Comment: accepted for publication in Constructive Approximation
- Published
- 2019
- Full Text
- View/download PDF
23. Phyllosphere-associated microbiota in built environment: Do they have the potential to antagonize human pathogens?
- Author
-
Adi Wicaksono, Wisnu, Reisenhofer-Graber, Tamara, Erschen, Sabine, Kusstatscher, Peter, Berg, Christian, Krause, Robert, Cernava, Tomislav, and Berg, Gabriele
- Published
- 2023
- Full Text
- View/download PDF
24. A two-parameter extension of the Urbanik semigroup
- Author
-
Berg, Christian
- Subjects
Mathematics - Complex Variables ,60E07, 60B15, 44A60 - Abstract
We prove that s_n(a,b)=\Gamma(an+b)/\Gamma(b), n=0,1,\ldots is an infinitely divisible Stieltjes moment sequence for arbitrary a,b>0. Its powers s_n(a,b)^c, c>0 are Stieltjes determinate if and only if ac\le 2. The latter was conjectured in a paper by Lin (ArXiv: 1711.01536) in the case b=1. We describe a product convolution semigroup \tau_c(a,b), c>0 of probability measures on the positive half-line with densities e_c(a,b) and having the moments s_n(a,b)^c. We determine the asymptotic behaviour of e_c(a,b)(t) for t\to 0 and for t\to\infty, and the latter implies the Stieltjes indeterminacy when ac>2. The results extend previous work of the author and J. L. L\'opez and lead to a convolution semigroup of probability densities (g_c(a,b)(x))_{c>0} on the real line. The special case (g_c(a,1)(x))_{c>0} are the convolution roots of the Gumbel distribution with scale parameter a>0. All the densities g_c(a,b)(x) lead to determinate Hamburger moment problems., Comment: 16 pages
- Published
- 2018
- Full Text
- View/download PDF
25. Inverse of Infinite Hankel Moment Matrices
- Author
-
Berg, Christian and Szwarc, Ryszard
- Subjects
Mathematics - Classical Analysis and ODEs ,42C05, 44A60, 47B36, 33D45, 60J80 - Abstract
Let $(s_n)_{n\ge 0}$ denote an indeterminate Hamburger moment sequence and let $\mathcal H=\{s_{m+n}\}$ be the corresponding positive definite Hankel matrix. We consider the question if there exists an infinite symmetric matrix $\mathcal A=\{a_{j,k}\}$, which is an inverse of $\mathcal H$ in the sense that the matrix product $\mathcal A\mathcal H$ is defined by absolutely convergent series and $\mathcal A\mathcal H$ equals the identity matrix $\mathcal I$, a property called (aci). A candidate for $\mathcal A$ is the coefficient matrix of the reproducing kernel of the moment problem, considered as an entire function of two complex variables. We say that the moment problem has property (aci), if (aci) holds for this matrix $\mathcal A$. We show that this is true for many classical indeterminate moment problems but not for the symmetrized version of a cubic birth-and-death process studied by Valent and co-authors. We consider mainly symmetric indeterminate moment problems and give a number of sufficient conditions for (aci) to hold in terms of the recurrence coefficients for the orthonormal polynomials. A sufficient condition is a rapid increase of the recurrence coefficients in the sense that the quotient between consecutive terms is uniformly bounded by a constant strictly smaller than one. We also give a simple example, where (aci) holds, but an inverse matrix of $\mathcal H$ is highly non-unique.
- Published
- 2018
- Full Text
- View/download PDF
26. Self-adjoint operators associated with Hankel moment matrices
- Author
-
Berg, Christian and Szwarc, Ryszard
- Published
- 2022
- Full Text
- View/download PDF
27. THE FINAL COUNTDOWN
- Author
-
Berg, Christian
- Subjects
Sports and fitness ,Travel, recreation and leisure - Abstract
My youngest son graduated high school this spring, and by the time you read this, my wife and I will have dropped him off at college to begin his studies [...]
- Published
- 2024
28. SPYPOINT FORCE-PRO-S 2.0: THE TRAIL CAM THAT JUST WON'T QUIT!
- Author
-
Berg, Christian
- Subjects
Solar energy ,Sports and fitness ,Travel, recreation and leisure - Abstract
THE ENERGIZER BUNNY is one of the most successful and recognizable mascots in the history of corporate marketing. Since making its debut way back in 1988, this relentless rabbit hasn't [...]
- Published
- 2024
29. EXPECT THE BEST, BUT PREPARE FOR THE WORST
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Sports and fitness ,Travel, recreation and leisure - Abstract
EACH AUGUST, the BOWHUNTER Big Game Special features incredible archery adventures, and this month's issue is certainly no exception, I am confident you'll be entertained and inspired as you read [...]
- Published
- 2024
30. UNFORGETTABLE ADVENTURE
- Author
-
Berg, Christian
- Subjects
Sheep ,Sports and fitness ,Travel, recreation and leisure - Abstract
I WAS 9.000 MILES from home standing atop a ridge somewhere on New Zealand's South Island--glassing a herd of Pitt Island sheep feeding along a creek in the valley below. [...]
- Published
- 2024
31. Schoenberg's theorem for real and complex Hilbert spheres revisited
- Author
-
Berg, Christian, Peron, Ana P., and Porcu, Emilio
- Subjects
Mathematics - Classical Analysis and ODEs ,43A35, 33C45, 33C55 - Abstract
Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u^{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}^\infty \varphi_{m,n}(u)z^m\overline{z}^n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere., Comment: 22 pages
- Published
- 2017
- Full Text
- View/download PDF
32. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany
- Author
-
Jandt, Ute, Bruelheide, Helge, Berg, Christian, Bernhardt-Römermann, Markus, Blüml, Volker, Bode, Frank, Dengler, Jürgen, Diekmann, Martin, Dierschke, Hartmut, Doerfler, Inken, Döring, Ute, Dullinger, Stefan, Härdtle, Werner, Haider, Sylvia, Heinken, Thilo, Horchler, Peter, Jansen, Florian, Kudernatsch, Thomas, Kuhn, Gisbert, Lindner, Martin, Matesanz, Silvia, Metze, Katrin, Meyer, Stefan, Müller, Frank, Müller, Norbert, Naaf, Tobias, Peppler-Lisbach, Cord, Poschlod, Peter, Roscher, Christiane, Rosenthal, Gert, Rumpf, Sabine B., Schmidt, Wolfgang, Schrautzer, Joachim, Schwabe, Angelika, Schwartze, Peter, Sperle, Thomas, Stanik, Nils, Stroh, Hans-Georg, Storm, Christian, Voigt, Winfried, von Heßberg, Andreas, von Oheimb, Goddert, Wagner, Eva-Rosa, Wegener, Uwe, Wesche, Karsten, Wittig, Burghard, and Wulf, Monika
- Published
- 2022
- Full Text
- View/download PDF
33. Spore variability in Hepaticae: a case study on four short-lived Riccia L. species
- Author
-
Pöltl, Martina, primary, Clark, Adam Thomas, additional, Stadlober, Thomas, additional, and Berg, Christian, additional
- Published
- 2024
- Full Text
- View/download PDF
34. 4 SIMPLE BOW-TUNING TRICKS: BOOST YOUR ACCURACY WITH THESE FAST FIXES
- Author
-
Berg, Christian
- Subjects
Bow and arrow -- Evaluation ,Sports and fitness ,Sports, sporting goods and toys industry - Abstract
There's no deeper rabbit hold in archery than bow tuning. If you don't believe me, visit a dozen pro shops and ask for their best bow-tuning advice. You'll likely get [...]
- Published
- 2022
35. FOOD PLOTS FOR IDIOTS: Improving Hunting Habitat Isn't Rocket Science!
- Author
-
Berg, Christian
- Subjects
Hunting ,Sports and fitness ,Sports, sporting goods and toys industry - Abstract
YOU'VE PROBABLY SEEN the long-running 'Idiot's Guides' series of reference books. Their purpose is to take complex topics and explain them so clearly even those of marginal intelligence can understand. [...]
- Published
- 2022
36. Orthogonal expansions related to compact Gelfand pairs
- Author
-
Berg, Christian, Peron, Ana P., and Porcu, Emilio
- Subjects
Mathematics - Classical Analysis and ODEs ,Primary 43A35, 43A85, 43A90, secondary 33C45, 33C55 - Abstract
Given a compact Gelfand pair (G,K) and a locally compact group L, we characterize the class P_K^\sharp(G,L) of continuous positive definite functions f:G\times L\to \C which are bi-invariant in the G-variable with respect to K. The functions of this class are the functions having a uniformly convergent expansion \sum_{\varphi\in Z} B(\varphi)(u)\varphi(x) for x\in G,u\in L, where the sum is over the space Z of positive definite spherical functions \varphi:G\to\C for the Gelfand pair, and (B(\varphi))_{\varphi\in Z} is a family of continuous positive definite functions on L such that \sum_{\varphi\in Z}B(\varphi)(e_L)<\infty. Here e_L is the neutral element of the group L. For a compact abelian group G considered as a Gelfand pair (G,K) with trivial K=\{e_G\}, we obtain a characterization of P(G\times L) in terms of Fourier expansions on the dual group \widehat{G}. The result is described in detail for the case of the Gelfand pairs (O(d+1),O(d)) and (U(q),U(q-1)) as well as for the product of these Gelfand pairs. The result generalizes recent theorems of Berg-Porcu (2016) and Guella-Menegatto (2016), Comment: 21 pages
- Published
- 2016
- Full Text
- View/download PDF
37. Solvability of the Hankel determinant problem for real sequences
- Author
-
Bakan, Andrew and Berg, Christian
- Subjects
Mathematics - Classical Analysis and ODEs ,44A60, 47B36, 15A15, 15A63 - Abstract
To each nonzero sequence $s:= \{s_{n}\}_{n \geq 0}$ of real numbers we associate the Hankel determinants $D_{n} = \det \mathcal{H}_{n}$ of the Hankel matrices $\mathcal{H}_{n}:= (s_{i + j})_{i, j = 0}^{n}$, $n \geq 0$, and the nonempty set $N_{s}:= \{n \geq 1 \, | \, D_{n-1} \neq 0 \}$. We also define the Hankel determinant polynomials $P_0:=1$, and $P_n$, $n\geq 1$ as the determinant of the Hankel matrix $\mathcal H_n$ modified by replacing the last row by the monomials $1, x, \ldots, x^n$. Clearly $P_n$ is a polynomial of degree at most $n$ and of degree $n$ if and only if $n\in N_s $. Kronecker established in 1881 that if $N_s $ is finite then rank $\mathcal{H}_{n} = r$ for each $n \geq r-1$, where $r := \max N_s $. By using an approach suggested by I.S.Iohvidov in 1969 we give a short proof of this result and a transparent proof of the conditions on a real sequence $\{t_n\}_{n\geq 0}$ to be of the form $t_n=D_n$, $n\geq 0$ for a real sequence $\{s_n\}_{n\geq 0}$. This is the Hankel determinant problem. We derive from the Kronecker identities that each Hankel determinant polynomial $ P_n $ satisfying deg$P_n = n\geq 1$ is preceded by a nonzero polynomial $P_{n-1}$ whose degree can be strictly less than $n-1$ and which has no common zeros with $ P_n $. As an application of our results we obtain a new proof of a recent theorem by Berg and Szwarc about positive semidefiniteness of all Hankel matrices provided that $D_0 > 0, \ldots, D_{r-1} > 0 $ and $D_n=0$ for all $n\geq r$., Comment: 19 pages
- Published
- 2016
38. BOWS
- Author
-
Berg, Christian
- Subjects
Bow and arrow ,Sports and fitness ,Sports, sporting goods and toys industry ,Mazda RX-7 (Automobile) - Abstract
A FINE LINE [PRIME INLINE SERIES] The new Inline bow series from Prime Archery aims to take accuracy and feel to a whole new level, The Inline 1, Inline 3 [...]
- Published
- 2022
39. ReSurveyEurope : A database of resurveyed vegetation plots in Europe
- Author
-
Knollová, Ilona, Chytrý, Milan, Bruelheide, Helge, Dullinger, Stefan, Jandt, Ute, Bernhardt-Römermann, Markus, Biurrun, Idoia, de Bello, Francesco, Glaser, Michael, Hennekens, Stephan, Jansen, Florian, Jiménez-Alfaro, Borja, Kadaš, Daniel, Kaplan, Ekin, Klinkovská, Klára, Lenzner, Bernd, Pauli, Harald, Sperandii, Marta Gaia, Verheyen, Kris, Winkler, Manuela, Abdaladze, Otar, Aćić, Svetlana, Acosta, Alicia T.R., Alignier, Audrey, Andrews, Christopher, Arlettaz, Raphaël, Attorre, Fabio, Axmanová, Irena, Babbi, Manuel, Baeten, Lander, Baran, Jakub, Barni, Elena, Benito-Alonso, José Luis, Berg, Christian, Bergamini, Ariel, Berki, Imre, Boch, Steffen, Bock, Barbara, Bode, Frank, Bonari, Gianmaria, Boublík, Karel, Britton, Andrea J., Brunet, Jörg, Bruzzaniti, Vanessa, Buholzer, Serge, Burrascano, Sabina, Campos, Juan A., Carlsson, Bengt Göran, Carranza, Maria Laura, Černý, Tomáš, Charmillot, Kévin, Chiarucci, Alessandro, Choler, Philippe, Chytrý, Kryštof, Corcket, Emmanuel, Csecserits, Anikó, Cutini, Maurizio, Czarniecka-Wiera, Marta, Danihelka, Jiří, de Francesco, Maria Carla, De Frenne, Pieter, Di Musciano, Michele, De Sanctis, Michele, Deák, Balázs, Decocq, Guillaume, Dembicz, Iwona, Dengler, Jürgen, Di Cecco, Valter, Dick, Jan, Diekmann, Martin, Dierschke, Hartmut, Dirnböck, Thomas, Doerfler, Inken, Doležal, Jiří, Döring, Ute, Durak, Tomasz, Dwyer, Ciara, Ejrnæs, Rasmus, Ermakova, Inna, Erschbamer, Brigitta, Fanelli, Giuliano, Fernández-Calzado, María Rosa, Fickert, Thomas, Fischer, Andrea, Fischer, Markus, Foremnik, Kacper, Frouz, Jan, García-González, Ricardo, García-Magro, Daniel, García-Mijangos, Itziar, Gavilán, Rosario G., Germ, Mateja, Ghosn, Dany, Gigauri, Khatuna, Gizela, Jaroslav, Golob, Aleksandra, Golub, Valentin, Gómez-García, Daniel, Gowing, David, Grytnes, John Arvid, Güler, Behlül, Gutiérrez-Girón, Alba, Haase, Peter, Haider, Sylvia, Hájek, Michal, Halassy, Melinda, Harásek, Martin, Härdtle, Werner, Heinken, Thilo, Hester, Alison, Humbert, Jean Yves, Ibáñez, Ricardo, Illa, Estela, Jaroszewicz, Bogdan, Jensen, Kai, Jentsch, Anke, Jiroušek, Martin, Kalníková, Veronika, Kanka, Róbert, Kapfer, Jutta, Kazakis, George, Kermavnar, Janez, Kesting, Stefan, Khanina, Larisa, Kindermann, Elisabeth, Kotrík, Marek, Koutecký, Tomáš, Kozub, Łukasz, Kuhn, Gisbert, Kutnar, Lado, La Montagna, Dario, Lamprecht, Andrea, Lenoir, Jonathan, Lepš, Jan, Leuschner, Christoph, Lorite, Juan, Madsen, Bjarke, Ugarte, Rosina Magaña, Malicki, Marek, Maliniemi, Tuija, Máliš, František, Maringer, Alexander, Marrs, Robert, Matesanz, Silvia, Metze, Katrin, Meyer, Stefan, Millett, Jonathan, Mitchell, Ruth J., Moeslund, Jesper Erenskjold, Moiseev, Pavel, di Cella, Umberto Morra, Mudrák, Ondřej, Müller, Frank, Müller, Norbert, Naaf, Tobias, Nagy, Laszlo, Napoleone, Francesca, Nascimbene, Juri, Navrátilová, Jana, Ninot, Josep M., Niu, Yujie, Normand, Signe, Ogaya, Romá, Onipchenko, Vladimir, Orczewska, Anna, Ortmann-Ajkai, Adrienne, Pakeman, Robin J., Pardo, Iker, Pätsch, Ricarda, Peet, Robert K., Penuelas, Josep, Peppler-Lisbach, Cord, Pérez-Hernández, Javier, Pérez-Haase, Aaron, Petraglia, Alessandro, Petřík, Petr, Pielech, Remigiusz, Piórkowski, Hubert, Pladevall-Izard, Eulàlia, Poschlod, Peter, Prach, Karel, Praleskouskaya, Safiya, Prokhorov, Vadim, Provoost, Sam, Pușcaș, Mihai, Pustková, Štěpánka, Randin, Christophe François, Rašomavičius, Valerijus, Reczyńska, Kamila, Rédei, Tamás, Řehounková, Klára, Richner, Nina, Risch, Anita C., Rixen, Christian, Rosbakh, Sergey, Roscher, Christiane, Rosenthal, Gert, Rossi, Graziano, Rötzer, Harald, Roux, Camille, Rumpf, Sabine B., Ruprecht, Eszter, Rūsiņa, Solvita, Sanz-Zubizarreta, Irati, Schindler, Meret, Schmidt, Wolfgang, Schories, Dirk, Schrautzer, Joachim, Schubert, Hendrik, Schuetz, Martin, Schwabe, Angelika, Schwaiger, Helena, Schwartze, Peter, Šebesta, Jan, Seiler, Hallie, Šilc, Urban, Silva, Vasco, Šmilauer, Petr, Šmilauerová, Marie, Sperle, Thomas, Stachurska-Swakoń, Alina, Stanik, Nils, Stanisci, Angela, Steffen, Kristina, Storm, Christian, Stroh, Hans Georg, Sugorkina, Nadezhda, Świerkosz, Krzysztof, Świerszcz, Sebastian, Szymura, Magdalena, Teleki, Balázs, Thébaud, Gilles, Theurillat, Jean Paul, Tichý, Lubomír, Treier, Urs A., Turtureanu, Pavel Dan, Ujházy, Karol, Ujházyová, Mariana, Ursu, Tudor Mihai, Uziębło, Aldona K., Valkó, Orsolya, Van Calster, Hans, Van Meerbeek, Koenraad, Vandevoorde, Bart, Vandvik, Vigdis, Varricchione, Marco, Vassilev, Kiril, Villar, Luis, Virtanen, Risto, Vittoz, Pascal, Voigt, Winfried, von Hessberg, Andreas, von Oheimb, Goddert, Wagner, Eva, Walther, Gian Reto, Wellstein, Camilla, Wesche, Karsten, Wilhelm, Markus, Willner, Wolfgang, Wipf, Sonja, Wittig, Burghard, Wohlgemuth, Thomas, Woodcock, Ben A., Wulf, Monika, Essl, Franz, Knollová, Ilona, Chytrý, Milan, Bruelheide, Helge, Dullinger, Stefan, Jandt, Ute, Bernhardt-Römermann, Markus, Biurrun, Idoia, de Bello, Francesco, Glaser, Michael, Hennekens, Stephan, Jansen, Florian, Jiménez-Alfaro, Borja, Kadaš, Daniel, Kaplan, Ekin, Klinkovská, Klára, Lenzner, Bernd, Pauli, Harald, Sperandii, Marta Gaia, Verheyen, Kris, Winkler, Manuela, Abdaladze, Otar, Aćić, Svetlana, Acosta, Alicia T.R., Alignier, Audrey, Andrews, Christopher, Arlettaz, Raphaël, Attorre, Fabio, Axmanová, Irena, Babbi, Manuel, Baeten, Lander, Baran, Jakub, Barni, Elena, Benito-Alonso, José Luis, Berg, Christian, Bergamini, Ariel, Berki, Imre, Boch, Steffen, Bock, Barbara, Bode, Frank, Bonari, Gianmaria, Boublík, Karel, Britton, Andrea J., Brunet, Jörg, Bruzzaniti, Vanessa, Buholzer, Serge, Burrascano, Sabina, Campos, Juan A., Carlsson, Bengt Göran, Carranza, Maria Laura, Černý, Tomáš, Charmillot, Kévin, Chiarucci, Alessandro, Choler, Philippe, Chytrý, Kryštof, Corcket, Emmanuel, Csecserits, Anikó, Cutini, Maurizio, Czarniecka-Wiera, Marta, Danihelka, Jiří, de Francesco, Maria Carla, De Frenne, Pieter, Di Musciano, Michele, De Sanctis, Michele, Deák, Balázs, Decocq, Guillaume, Dembicz, Iwona, Dengler, Jürgen, Di Cecco, Valter, Dick, Jan, Diekmann, Martin, Dierschke, Hartmut, Dirnböck, Thomas, Doerfler, Inken, Doležal, Jiří, Döring, Ute, Durak, Tomasz, Dwyer, Ciara, Ejrnæs, Rasmus, Ermakova, Inna, Erschbamer, Brigitta, Fanelli, Giuliano, Fernández-Calzado, María Rosa, Fickert, Thomas, Fischer, Andrea, Fischer, Markus, Foremnik, Kacper, Frouz, Jan, García-González, Ricardo, García-Magro, Daniel, García-Mijangos, Itziar, Gavilán, Rosario G., Germ, Mateja, Ghosn, Dany, Gigauri, Khatuna, Gizela, Jaroslav, Golob, Aleksandra, Golub, Valentin, Gómez-García, Daniel, Gowing, David, Grytnes, John Arvid, Güler, Behlül, Gutiérrez-Girón, Alba, Haase, Peter, Haider, Sylvia, Hájek, Michal, Halassy, Melinda, Harásek, Martin, Härdtle, Werner, Heinken, Thilo, Hester, Alison, Humbert, Jean Yves, Ibáñez, Ricardo, Illa, Estela, Jaroszewicz, Bogdan, Jensen, Kai, Jentsch, Anke, Jiroušek, Martin, Kalníková, Veronika, Kanka, Róbert, Kapfer, Jutta, Kazakis, George, Kermavnar, Janez, Kesting, Stefan, Khanina, Larisa, Kindermann, Elisabeth, Kotrík, Marek, Koutecký, Tomáš, Kozub, Łukasz, Kuhn, Gisbert, Kutnar, Lado, La Montagna, Dario, Lamprecht, Andrea, Lenoir, Jonathan, Lepš, Jan, Leuschner, Christoph, Lorite, Juan, Madsen, Bjarke, Ugarte, Rosina Magaña, Malicki, Marek, Maliniemi, Tuija, Máliš, František, Maringer, Alexander, Marrs, Robert, Matesanz, Silvia, Metze, Katrin, Meyer, Stefan, Millett, Jonathan, Mitchell, Ruth J., Moeslund, Jesper Erenskjold, Moiseev, Pavel, di Cella, Umberto Morra, Mudrák, Ondřej, Müller, Frank, Müller, Norbert, Naaf, Tobias, Nagy, Laszlo, Napoleone, Francesca, Nascimbene, Juri, Navrátilová, Jana, Ninot, Josep M., Niu, Yujie, Normand, Signe, Ogaya, Romá, Onipchenko, Vladimir, Orczewska, Anna, Ortmann-Ajkai, Adrienne, Pakeman, Robin J., Pardo, Iker, Pätsch, Ricarda, Peet, Robert K., Penuelas, Josep, Peppler-Lisbach, Cord, Pérez-Hernández, Javier, Pérez-Haase, Aaron, Petraglia, Alessandro, Petřík, Petr, Pielech, Remigiusz, Piórkowski, Hubert, Pladevall-Izard, Eulàlia, Poschlod, Peter, Prach, Karel, Praleskouskaya, Safiya, Prokhorov, Vadim, Provoost, Sam, Pușcaș, Mihai, Pustková, Štěpánka, Randin, Christophe François, Rašomavičius, Valerijus, Reczyńska, Kamila, Rédei, Tamás, Řehounková, Klára, Richner, Nina, Risch, Anita C., Rixen, Christian, Rosbakh, Sergey, Roscher, Christiane, Rosenthal, Gert, Rossi, Graziano, Rötzer, Harald, Roux, Camille, Rumpf, Sabine B., Ruprecht, Eszter, Rūsiņa, Solvita, Sanz-Zubizarreta, Irati, Schindler, Meret, Schmidt, Wolfgang, Schories, Dirk, Schrautzer, Joachim, Schubert, Hendrik, Schuetz, Martin, Schwabe, Angelika, Schwaiger, Helena, Schwartze, Peter, Šebesta, Jan, Seiler, Hallie, Šilc, Urban, Silva, Vasco, Šmilauer, Petr, Šmilauerová, Marie, Sperle, Thomas, Stachurska-Swakoń, Alina, Stanik, Nils, Stanisci, Angela, Steffen, Kristina, Storm, Christian, Stroh, Hans Georg, Sugorkina, Nadezhda, Świerkosz, Krzysztof, Świerszcz, Sebastian, Szymura, Magdalena, Teleki, Balázs, Thébaud, Gilles, Theurillat, Jean Paul, Tichý, Lubomír, Treier, Urs A., Turtureanu, Pavel Dan, Ujházy, Karol, Ujházyová, Mariana, Ursu, Tudor Mihai, Uziębło, Aldona K., Valkó, Orsolya, Van Calster, Hans, Van Meerbeek, Koenraad, Vandevoorde, Bart, Vandvik, Vigdis, Varricchione, Marco, Vassilev, Kiril, Villar, Luis, Virtanen, Risto, Vittoz, Pascal, Voigt, Winfried, von Hessberg, Andreas, von Oheimb, Goddert, Wagner, Eva, Walther, Gian Reto, Wellstein, Camilla, Wesche, Karsten, Wilhelm, Markus, Willner, Wolfgang, Wipf, Sonja, Wittig, Burghard, Wohlgemuth, Thomas, Woodcock, Ben A., Wulf, Monika, and Essl, Franz
- Abstract
Aims: We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions: ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.
- Published
- 2024
40. ReSurveyEurope:A database of resurveyed vegetation plots in Europe
- Author
-
Knollová, Ilona, Chytrý, Milan, Bruelheide, Helge, Dullinger, Stefan, Jandt, Ute, Bernhardt-Römermann, Markus, Biurrun, Idoia, de Bello, Francesco, Glaser, Michael, Hennekens, Stephan, Jansen, Florian, Jiménez-Alfaro, Borja, Kadaš, Daniel, Kaplan, Ekin, Klinkovská, Klára, Lenzner, Bernd, Pauli, Harald, Sperandii, Marta Gaia, Verheyen, Kris, Winkler, Manuela, Abdaladze, Otar, Aćić, Svetlana, Acosta, Alicia T.R., Alignier, Audrey, Andrews, Christopher, Arlettaz, Raphaël, Attorre, Fabio, Axmanová, Irena, Babbi, Manuel, Baeten, Lander, Baran, Jakub, Barni, Elena, Benito-Alonso, José Luis, Berg, Christian, Bergamini, Ariel, Berki, Imre, Boch, Steffen, Bock, Barbara, Bode, Frank, Bonari, Gianmaria, Boublík, Karel, Britton, Andrea J., Brunet, Jörg, Bruzzaniti, Vanessa, Buholzer, Serge, Burrascano, Sabina, Campos, Juan A., Carlsson, Bengt Göran, Carranza, Maria Laura, Černý, Tomáš, Charmillot, Kévin, Chiarucci, Alessandro, Choler, Philippe, Chytrý, Kryštof, Corcket, Emmanuel, Csecserits, Anikó, Cutini, Maurizio, Czarniecka-Wiera, Marta, Danihelka, Jiří, de Francesco, Maria Carla, De Frenne, Pieter, Di Musciano, Michele, De Sanctis, Michele, Deák, Balázs, Decocq, Guillaume, Dembicz, Iwona, Dengler, Jürgen, Di Cecco, Valter, Dick, Jan, Diekmann, Martin, Dierschke, Hartmut, Dirnböck, Thomas, Doerfler, Inken, Doležal, Jiří, Döring, Ute, Durak, Tomasz, Dwyer, Ciara, Ejrnæs, Rasmus, Ermakova, Inna, Erschbamer, Brigitta, Fanelli, Giuliano, Fernández-Calzado, María Rosa, Fickert, Thomas, Fischer, Andrea, Fischer, Markus, Foremnik, Kacper, Frouz, Jan, García-González, Ricardo, García-Magro, Daniel, García-Mijangos, Itziar, Gavilán, Rosario G., Germ, Mateja, Ghosn, Dany, Gigauri, Khatuna, Gizela, Jaroslav, Golob, Aleksandra, Golub, Valentin, Gómez-García, Daniel, Gowing, David, Grytnes, John Arvid, Güler, Behlül, Gutiérrez-Girón, Alba, Haase, Peter, Haider, Sylvia, Hájek, Michal, Halassy, Melinda, Harásek, Martin, Härdtle, Werner, Heinken, Thilo, Hester, Alison, Humbert, Jean Yves, Ibáñez, Ricardo, Illa, Estela, Jaroszewicz, Bogdan, Jensen, Kai, Jentsch, Anke, Jiroušek, Martin, Kalníková, Veronika, Kanka, Róbert, Kapfer, Jutta, Kazakis, George, Kermavnar, Janez, Kesting, Stefan, Khanina, Larisa, Kindermann, Elisabeth, Kotrík, Marek, Koutecký, Tomáš, Kozub, Łukasz, Kuhn, Gisbert, Kutnar, Lado, La Montagna, Dario, Lamprecht, Andrea, Lenoir, Jonathan, Lepš, Jan, Leuschner, Christoph, Lorite, Juan, Madsen, Bjarke, Ugarte, Rosina Magaña, Malicki, Marek, Maliniemi, Tuija, Máliš, František, Maringer, Alexander, Marrs, Robert, Matesanz, Silvia, Metze, Katrin, Meyer, Stefan, Millett, Jonathan, Mitchell, Ruth J., Moeslund, Jesper Erenskjold, Moiseev, Pavel, di Cella, Umberto Morra, Mudrák, Ondřej, Müller, Frank, Müller, Norbert, Naaf, Tobias, Nagy, Laszlo, Napoleone, Francesca, Nascimbene, Juri, Navrátilová, Jana, Ninot, Josep M., Niu, Yujie, Normand, Signe, Ogaya, Romá, Onipchenko, Vladimir, Orczewska, Anna, Ortmann-Ajkai, Adrienne, Pakeman, Robin J., Pardo, Iker, Pätsch, Ricarda, Peet, Robert K., Penuelas, Josep, Peppler-Lisbach, Cord, Pérez-Hernández, Javier, Pérez-Haase, Aaron, Petraglia, Alessandro, Petřík, Petr, Pielech, Remigiusz, Piórkowski, Hubert, Pladevall-Izard, Eulàlia, Poschlod, Peter, Prach, Karel, Praleskouskaya, Safiya, Prokhorov, Vadim, Provoost, Sam, Pușcaș, Mihai, Pustková, Štěpánka, Randin, Christophe François, Rašomavičius, Valerijus, Reczyńska, Kamila, Rédei, Tamás, Řehounková, Klára, Richner, Nina, Risch, Anita C., Rixen, Christian, Rosbakh, Sergey, Roscher, Christiane, Rosenthal, Gert, Rossi, Graziano, Rötzer, Harald, Roux, Camille, Rumpf, Sabine B., Ruprecht, Eszter, Rūsiņa, Solvita, Sanz-Zubizarreta, Irati, Schindler, Meret, Schmidt, Wolfgang, Schories, Dirk, Schrautzer, Joachim, Schubert, Hendrik, Schuetz, Martin, Schwabe, Angelika, Schwaiger, Helena, Schwartze, Peter, Šebesta, Jan, Seiler, Hallie, Šilc, Urban, Silva, Vasco, Šmilauer, Petr, Šmilauerová, Marie, Sperle, Thomas, Stachurska-Swakoń, Alina, Stanik, Nils, Stanisci, Angela, Steffen, Kristina, Storm, Christian, Stroh, Hans Georg, Sugorkina, Nadezhda, Świerkosz, Krzysztof, Świerszcz, Sebastian, Szymura, Magdalena, Teleki, Balázs, Thébaud, Gilles, Theurillat, Jean Paul, Tichý, Lubomír, Treier, Urs A., Turtureanu, Pavel Dan, Ujházy, Karol, Ujházyová, Mariana, Ursu, Tudor Mihai, Uziębło, Aldona K., Valkó, Orsolya, Van Calster, Hans, Van Meerbeek, Koenraad, Vandevoorde, Bart, Vandvik, Vigdis, Varricchione, Marco, Vassilev, Kiril, Villar, Luis, Virtanen, Risto, Vittoz, Pascal, Voigt, Winfried, von Hessberg, Andreas, von Oheimb, Goddert, Wagner, Eva, Walther, Gian Reto, Wellstein, Camilla, Wesche, Karsten, Wilhelm, Markus, Willner, Wolfgang, Wipf, Sonja, Wittig, Burghard, Wohlgemuth, Thomas, Woodcock, Ben A., Wulf, Monika, Essl, Franz, Knollová, Ilona, Chytrý, Milan, Bruelheide, Helge, Dullinger, Stefan, Jandt, Ute, Bernhardt-Römermann, Markus, Biurrun, Idoia, de Bello, Francesco, Glaser, Michael, Hennekens, Stephan, Jansen, Florian, Jiménez-Alfaro, Borja, Kadaš, Daniel, Kaplan, Ekin, Klinkovská, Klára, Lenzner, Bernd, Pauli, Harald, Sperandii, Marta Gaia, Verheyen, Kris, Winkler, Manuela, Abdaladze, Otar, Aćić, Svetlana, Acosta, Alicia T.R., Alignier, Audrey, Andrews, Christopher, Arlettaz, Raphaël, Attorre, Fabio, Axmanová, Irena, Babbi, Manuel, Baeten, Lander, Baran, Jakub, Barni, Elena, Benito-Alonso, José Luis, Berg, Christian, Bergamini, Ariel, Berki, Imre, Boch, Steffen, Bock, Barbara, Bode, Frank, Bonari, Gianmaria, Boublík, Karel, Britton, Andrea J., Brunet, Jörg, Bruzzaniti, Vanessa, Buholzer, Serge, Burrascano, Sabina, Campos, Juan A., Carlsson, Bengt Göran, Carranza, Maria Laura, Černý, Tomáš, Charmillot, Kévin, Chiarucci, Alessandro, Choler, Philippe, Chytrý, Kryštof, Corcket, Emmanuel, Csecserits, Anikó, Cutini, Maurizio, Czarniecka-Wiera, Marta, Danihelka, Jiří, de Francesco, Maria Carla, De Frenne, Pieter, Di Musciano, Michele, De Sanctis, Michele, Deák, Balázs, Decocq, Guillaume, Dembicz, Iwona, Dengler, Jürgen, Di Cecco, Valter, Dick, Jan, Diekmann, Martin, Dierschke, Hartmut, Dirnböck, Thomas, Doerfler, Inken, Doležal, Jiří, Döring, Ute, Durak, Tomasz, Dwyer, Ciara, Ejrnæs, Rasmus, Ermakova, Inna, Erschbamer, Brigitta, Fanelli, Giuliano, Fernández-Calzado, María Rosa, Fickert, Thomas, Fischer, Andrea, Fischer, Markus, Foremnik, Kacper, Frouz, Jan, García-González, Ricardo, García-Magro, Daniel, García-Mijangos, Itziar, Gavilán, Rosario G., Germ, Mateja, Ghosn, Dany, Gigauri, Khatuna, Gizela, Jaroslav, Golob, Aleksandra, Golub, Valentin, Gómez-García, Daniel, Gowing, David, Grytnes, John Arvid, Güler, Behlül, Gutiérrez-Girón, Alba, Haase, Peter, Haider, Sylvia, Hájek, Michal, Halassy, Melinda, Harásek, Martin, Härdtle, Werner, Heinken, Thilo, Hester, Alison, Humbert, Jean Yves, Ibáñez, Ricardo, Illa, Estela, Jaroszewicz, Bogdan, Jensen, Kai, Jentsch, Anke, Jiroušek, Martin, Kalníková, Veronika, Kanka, Róbert, Kapfer, Jutta, Kazakis, George, Kermavnar, Janez, Kesting, Stefan, Khanina, Larisa, Kindermann, Elisabeth, Kotrík, Marek, Koutecký, Tomáš, Kozub, Łukasz, Kuhn, Gisbert, Kutnar, Lado, La Montagna, Dario, Lamprecht, Andrea, Lenoir, Jonathan, Lepš, Jan, Leuschner, Christoph, Lorite, Juan, Madsen, Bjarke, Ugarte, Rosina Magaña, Malicki, Marek, Maliniemi, Tuija, Máliš, František, Maringer, Alexander, Marrs, Robert, Matesanz, Silvia, Metze, Katrin, Meyer, Stefan, Millett, Jonathan, Mitchell, Ruth J., Moeslund, Jesper Erenskjold, Moiseev, Pavel, di Cella, Umberto Morra, Mudrák, Ondřej, Müller, Frank, Müller, Norbert, Naaf, Tobias, Nagy, Laszlo, Napoleone, Francesca, Nascimbene, Juri, Navrátilová, Jana, Ninot, Josep M., Niu, Yujie, Normand, Signe, Ogaya, Romá, Onipchenko, Vladimir, Orczewska, Anna, Ortmann-Ajkai, Adrienne, Pakeman, Robin J., Pardo, Iker, Pätsch, Ricarda, Peet, Robert K., Penuelas, Josep, Peppler-Lisbach, Cord, Pérez-Hernández, Javier, Pérez-Haase, Aaron, Petraglia, Alessandro, Petřík, Petr, Pielech, Remigiusz, Piórkowski, Hubert, Pladevall-Izard, Eulàlia, Poschlod, Peter, Prach, Karel, Praleskouskaya, Safiya, Prokhorov, Vadim, Provoost, Sam, Pușcaș, Mihai, Pustková, Štěpánka, Randin, Christophe François, Rašomavičius, Valerijus, Reczyńska, Kamila, Rédei, Tamás, Řehounková, Klára, Richner, Nina, Risch, Anita C., Rixen, Christian, Rosbakh, Sergey, Roscher, Christiane, Rosenthal, Gert, Rossi, Graziano, Rötzer, Harald, Roux, Camille, Rumpf, Sabine B., Ruprecht, Eszter, Rūsiņa, Solvita, Sanz-Zubizarreta, Irati, Schindler, Meret, Schmidt, Wolfgang, Schories, Dirk, Schrautzer, Joachim, Schubert, Hendrik, Schuetz, Martin, Schwabe, Angelika, Schwaiger, Helena, Schwartze, Peter, Šebesta, Jan, Seiler, Hallie, Šilc, Urban, Silva, Vasco, Šmilauer, Petr, Šmilauerová, Marie, Sperle, Thomas, Stachurska-Swakoń, Alina, Stanik, Nils, Stanisci, Angela, Steffen, Kristina, Storm, Christian, Stroh, Hans Georg, Sugorkina, Nadezhda, Świerkosz, Krzysztof, Świerszcz, Sebastian, Szymura, Magdalena, Teleki, Balázs, Thébaud, Gilles, Theurillat, Jean Paul, Tichý, Lubomír, Treier, Urs A., Turtureanu, Pavel Dan, Ujházy, Karol, Ujházyová, Mariana, Ursu, Tudor Mihai, Uziębło, Aldona K., Valkó, Orsolya, Van Calster, Hans, Van Meerbeek, Koenraad, Vandevoorde, Bart, Vandvik, Vigdis, Varricchione, Marco, Vassilev, Kiril, Villar, Luis, Virtanen, Risto, Vittoz, Pascal, Voigt, Winfried, von Hessberg, Andreas, von Oheimb, Goddert, Wagner, Eva, Walther, Gian Reto, Wellstein, Camilla, Wesche, Karsten, Wilhelm, Markus, Willner, Wolfgang, Wipf, Sonja, Wittig, Burghard, Wohlgemuth, Thomas, Woodcock, Ben A., Wulf, Monika, and Essl, Franz
- Abstract
Aims: We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions: ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.
- Published
- 2024
41. CHANGES WORTH MAKING
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Bow and arrow ,Sports and fitness ,Travel, recreation and leisure - Abstract
MOST LONGTIME bowhunters have owned their fair share of bows, and just about everyone has a few all-time favorites. Thinking back over my nearly three decades in archery, a handful [...]
- Published
- 2024
42. WHAT IS THE BEST style of release aid for bowhunting?
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Sports and fitness ,Travel, recreation and leisure ,Instagram (Online service) - Abstract
To help bowhunters gain a better understanding of the various release-aid options, we posed the following question on our Facebook and Instagram pages. Here, we share one of the best [...]
- Published
- 2024
43. KENETREK HARDSCRABBLE HIKER: THESE BOOTS WERE MADE FOR HUNTING
- Author
-
Berg, Christian
- Subjects
Hiking ,Footwear ,Hunting ,Sports and fitness ,Travel, recreation and leisure - Abstract
IT'S OFTEN SAID that the two most important pieces of backcountry bowhunting equipment are good glass and good boots. Without quality optics, your odds of locating game are greatly diminished. [...]
- Published
- 2024
44. Symmetric moment problems and a conjecture of Valent
- Author
-
Berg, Christian and Szwarc, Ryszard
- Subjects
Mathematics - Classical Analysis and ODEs ,44A60, 11M32, 30D15, 60J80 - Abstract
In 1998 G. Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes having polynomial birth and death rates of degree p\ge 3. Romanov recently proved that the order is 1/p as conjectured, see \cite{Ro}. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval [\pi/(p\sin(\pi/p)),\pi/(p\sin(\pi/p)\cos(\pi/p))], which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as p\to\infty. The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal polynomials P_n and those of the second kind Q_n satisfy P_{2n}^2(0)\sim c_1n^{-1/\b} and Q_{2n-1}^2(0)\sim c_2 n^{-1/\a}, where 0<\a,\b<1 can be different, and c_1,c_2 are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of \a,\b. Here \alpha_n\sim \beta_n means that \alpha_n/\beta_n\to 1. This also leads to a new proof of Romanov's Theorem that the order is 1/p., Comment: 27 pages. Revised version after referee report. The material is now rearranged in 6 sections. New references added
- Published
- 2015
45. From Schoenberg coefficients to Schoenberg functions
- Author
-
Berg, Christian and Porcu, Emilio
- Subjects
Mathematics - Classical Analysis and ODEs ,Primary 43A35, secondary 33C55 - Abstract
In his seminal paper, Schoenberg (1942) characterized the class P(S^d) of continuous functions f:[-1,1] \to \R such that f(\cos \theta) is positive definite over the product space S^d \times S^d, with S^d being the unit sphere of \R^{d+1} and \theta being the great circle distance. In this paper, we consider the product space S^d \times G, for G a locally compact group, and define the class P(S^d, G) of continuous functions f:[-1,1]\times G \to \C such that f(\cos \theta, u^{-1}\cdot v) is positive definite on S^d \times S^d \times G \times G. This offers a natural extension of Schoenberg's Theorem. Schoenberg's second theorem corresponding to the Hilbert sphere S^\infty is also extended to this context. The case G=\R is of special importance for probability theory and stochastic processes, because it characterizes completely the class of space-time covariance functions where the space is the sphere, being an approximation of Planet Earth., Comment: 26 pages
- Published
- 2015
46. Completely monotonic ratios of basic and ordinary gamma functions
- Author
-
Berg, Christian, Çetinkaya, Asena, and Karp, Dmitrii
- Published
- 2021
- Full Text
- View/download PDF
47. Stable Word-Clouds for Visualising Text-Changes Over Time
- Author
-
Herold, Elisa, Pöckelmann, Marcus, Berg, Christian, Ritter, Jörg, Hall, Mark M., Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Doucet, Antoine, editor, Isaac, Antoine, editor, Golub, Koraljka, editor, Aalberg, Trond, editor, and Jatowt, Adam, editor
- Published
- 2019
- Full Text
- View/download PDF
48. WORLD-CLASS WHITETAILS: OUTFITTE SPOTLIGHT T&C HUNT CLUB: A FIVE-STAR BOWHUNTING EXPERIENCE IN SOUTHEAST KANSAS
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Sports and fitness ,Sports, sporting goods and toys industry - Abstract
FOR WHITETAIL FANATICS, discovering prime habitat where mature buck numbers are high and hunting pressure is low is akin to finding the holy grail. After all, few such places exist, [...]
- Published
- 2021
49. ONLY IN IOWA: In the Land of GIANTS, Sometimes You Have to 'Settle' for a 170
- Author
-
Berg, Christian
- Subjects
Bowhunting ,Sports and fitness ,Sports, sporting goods and toys industry - Abstract
There are lots of great places to bowhunt big whitetails, but as far as I am concerned, Iowa stands alone at the top of the list. That's a pretty bold [...]
- Published
- 2021
50. ReSurveyEurope: A database of resurveyed vegetation plots in Europe
- Author
-
Knollová, Ilona, primary, Chytrý, Milan, additional, Bruelheide, Helge, additional, Dullinger, Stefan, additional, Jandt, Ute, additional, Bernhardt‐Römermann, Markus, additional, Biurrun, Idoia, additional, de Bello, Francesco, additional, Glaser, Michael, additional, Hennekens, Stephan, additional, Jansen, Florian, additional, Jiménez‐Alfaro, Borja, additional, Kadaš, Daniel, additional, Kaplan, Ekin, additional, Klinkovská, Klára, additional, Lenzner, Bernd, additional, Pauli, Harald, additional, Sperandii, Marta Gaia, additional, Verheyen, Kris, additional, Winkler, Manuela, additional, Abdaladze, Otar, additional, Aćić, Svetlana, additional, Acosta, Alicia T. R., additional, Alignier, Audrey, additional, Andrews, Christopher, additional, Arlettaz, Raphaël, additional, Attorre, Fabio, additional, Axmanová, Irena, additional, Babbi, Manuel, additional, Baeten, Lander, additional, Baran, Jakub, additional, Barni, Elena, additional, Benito‐Alonso, José‐Luis, additional, Berg, Christian, additional, Bergamini, Ariel, additional, Berki, Imre, additional, Boch, Steffen, additional, Bock, Barbara, additional, Bode, Frank, additional, Bonari, Gianmaria, additional, Boublík, Karel, additional, Britton, Andrea J., additional, Brunet, Jörg, additional, Bruzzaniti, Vanessa, additional, Buholzer, Serge, additional, Burrascano, Sabina, additional, Campos, Juan A., additional, Carlsson, Bengt‐Göran, additional, Carranza, Maria Laura, additional, Černý, Tomáš, additional, Charmillot, Kévin, additional, Chiarucci, Alessandro, additional, Choler, Philippe, additional, Chytrý, Kryštof, additional, Corcket, Emmanuel, additional, Csecserits, Anikó, additional, Cutini, Maurizio, additional, Czarniecka‐Wiera, Marta, additional, Danihelka, Jiří, additional, de Francesco, Maria Carla, additional, De Frenne, Pieter, additional, Di Musciano, Michele, additional, De Sanctis, Michele, additional, Deák, Balázs, additional, Decocq, Guillaume, additional, Dembicz, Iwona, additional, Dengler, Jürgen, additional, Di Cecco, Valter, additional, Dick, Jan, additional, Diekmann, Martin, additional, Dierschke, Hartmut, additional, Dirnböck, Thomas, additional, Doerfler, Inken, additional, Doležal, Jiří, additional, Döring, Ute, additional, Durak, Tomasz, additional, Dwyer, Ciara, additional, Ejrnæs, Rasmus, additional, Ermakova, Inna, additional, Erschbamer, Brigitta, additional, Fanelli, Giuliano, additional, Fernández‐Calzado, María‐Rosa, additional, Fickert, Thomas, additional, Fischer, Andrea, additional, Fischer, Markus, additional, Foremnik, Kacper, additional, Frouz, Jan, additional, García‐González, Ricardo, additional, García‐Magro, Daniel, additional, García‐Mijangos, Itziar, additional, Gavilán, Rosario G., additional, Germ, Mateja, additional, Ghosn, Dany, additional, Gigauri, Khatuna, additional, Gizela, Jaroslav, additional, Golob, Aleksandra, additional, Golub, Valentin, additional, Gómez‐García, Daniel, additional, Gowing, David, additional, Grytnes, John‐Arvid, additional, Güler, Behlül, additional, Gutiérrez‐Girón, Alba, additional, Haase, Peter, additional, Haider, Sylvia, additional, Hájek, Michal, additional, Halassy, Melinda, additional, Harásek, Martin, additional, Härdtle, Werner, additional, Heinken, Thilo, additional, Hester, Alison, additional, Humbert, Jean‐Yves, additional, Ibáñez, Ricardo, additional, Illa, Estela, additional, Jaroszewicz, Bogdan, additional, Jensen, Kai, additional, Jentsch, Anke, additional, Jiroušek, Martin, additional, Kalníková, Veronika, additional, Kanka, Róbert, additional, Kapfer, Jutta, additional, Kazakis, George, additional, Kermavnar, Janez, additional, Kesting, Stefan, additional, Khanina, Larisa, additional, Kindermann, Elisabeth, additional, Kotrík, Marek, additional, Koutecký, Tomáš, additional, Kozub, Łukasz, additional, Kuhn, Gisbert, additional, Kutnar, Lado, additional, La Montagna, Dario, additional, Lamprecht, Andrea, additional, Lenoir, Jonathan, additional, Lepš, Jan, additional, Leuschner, Christoph, additional, Lorite, Juan, additional, Madsen, Bjarke, additional, Ugarte, Rosina Magaña, additional, Malicki, Marek, additional, Maliniemi, Tuija, additional, Máliš, František, additional, Maringer, Alexander, additional, Marrs, Robert, additional, Matesanz, Silvia, additional, Metze, Katrin, additional, Meyer, Stefan, additional, Millett, Jonathan, additional, Mitchell, Ruth J., additional, Moeslund, Jesper Erenskjold, additional, Moiseev, Pavel, additional, di Cella, Umberto Morra, additional, Mudrák, Ondřej, additional, Müller, Frank, additional, Müller, Norbert, additional, Naaf, Tobias, additional, Nagy, Laszlo, additional, Napoleone, Francesca, additional, Nascimbene, Juri, additional, Navrátilová, Jana, additional, Ninot, Josep M., additional, Niu, Yujie, additional, Normand, Signe, additional, Ogaya, Romá, additional, Onipchenko, Vladimir, additional, Orczewska, Anna, additional, Ortmann‐Ajkai, Adrienne, additional, Pakeman, Robin J., additional, Pardo, Iker, additional, Pätsch, Ricarda, additional, Peet, Robert K., additional, Penuelas, Josep, additional, Peppler‐Lisbach, Cord, additional, Pérez‐Hernández, Javier, additional, Pérez‐Haase, Aaron, additional, Petraglia, Alessandro, additional, Petřík, Petr, additional, Pielech, Remigiusz, additional, Piórkowski, Hubert, additional, Pladevall‐Izard, Eulàlia, additional, Poschlod, Peter, additional, Prach, Karel, additional, Praleskouskaya, Safiya, additional, Prokhorov, Vadim, additional, Provoost, Sam, additional, Pușcaș, Mihai, additional, Pustková, Štěpánka, additional, Randin, Christophe François, additional, Rašomavičius, Valerijus, additional, Reczyńska, Kamila, additional, Rédei, Tamás, additional, Řehounková, Klára, additional, Richner, Nina, additional, Risch, Anita C., additional, Rixen, Christian, additional, Rosbakh, Sergey, additional, Roscher, Christiane, additional, Rosenthal, Gert, additional, Rossi, Graziano, additional, Rötzer, Harald, additional, Roux, Camille, additional, Rumpf, Sabine B., additional, Ruprecht, Eszter, additional, Rūsiņa, Solvita, additional, Sanz‐Zubizarreta, Irati, additional, Schindler, Meret, additional, Schmidt, Wolfgang, additional, Schories, Dirk, additional, Schrautzer, Joachim, additional, Schubert, Hendrik, additional, Schuetz, Martin, additional, Schwabe, Angelika, additional, Schwaiger, Helena, additional, Schwartze, Peter, additional, Šebesta, Jan, additional, Seiler, Hallie, additional, Šilc, Urban, additional, Silva, Vasco, additional, Šmilauer, Petr, additional, Šmilauerová, Marie, additional, Sperle, Thomas, additional, Stachurska‐Swakoń, Alina, additional, Stanik, Nils, additional, Stanisci, Angela, additional, Steffen, Kristina, additional, Storm, Christian, additional, Stroh, Hans Georg, additional, Sugorkina, Nadezhda, additional, Świerkosz, Krzysztof, additional, Świerszcz, Sebastian, additional, Szymura, Magdalena, additional, Teleki, Balázs, additional, Thébaud, Gilles, additional, Theurillat, Jean‐Paul, additional, Tichý, Lubomír, additional, Treier, Urs A., additional, Turtureanu, Pavel Dan, additional, Ujházy, Karol, additional, Ujházyová, Mariana, additional, Ursu, Tudor Mihai, additional, Uziębło, Aldona K., additional, Valkó, Orsolya, additional, Van Calster, Hans, additional, Van Meerbeek, Koenraad, additional, Vandevoorde, Bart, additional, Vandvik, Vigdis, additional, Varricchione, Marco, additional, Vassilev, Kiril, additional, Villar, Luis, additional, Virtanen, Risto, additional, Vittoz, Pascal, additional, Voigt, Winfried, additional, von Hessberg, Andreas, additional, von Oheimb, Goddert, additional, Wagner, Eva, additional, Walther, Gian‐Reto, additional, Wellstein, Camilla, additional, Wesche, Karsten, additional, Wilhelm, Markus, additional, Willner, Wolfgang, additional, Wipf, Sonja, additional, Wittig, Burghard, additional, Wohlgemuth, Thomas, additional, Woodcock, Ben A., additional, Wulf, Monika, additional, and Essl, Franz, additional
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.