1. Fourier-positivity constraints on QCD dipole models
- Author
-
Bertrand G. Giraud and Robi Peschanski
- Subjects
Physics ,QC1-999 - Abstract
Fourier-positivity (F-positivity), i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r).
- Published
- 2016
- Full Text
- View/download PDF