1. Protein phosphatase-1 regulates the binding of filamin C to FILIP1 in cultured skeletal muscle cells under mechanical stress
- Author
-
Thomas Kokot, Johannes P. Zimmermann, Anja N. Schwäble, Lena Reimann, Anna L. Herr, Nico Höfflin, Maja Köhn, and Bettina Warscheid
- Subjects
Medicine ,Science - Abstract
Abstract The actin-binding protein filamin c (FLNc) is a key mediator in the response of skeletal muscle cells to mechanical stress. In addition to its function as a structural scaffold, FLNc acts as a signaling adaptor which is phosphorylated at S2234 in its mechanosensitive domain 20 (d20) through AKT. Here, we discovered a strong dephosphorylation of FLNc-pS2234 in cultured skeletal myotubes under acute mechanical stress, despite high AKT activity. We found that all three protein phosphatase 1 (PP1) isoforms are part of the FLNc d18-21 interactome. Enzymatic assays demonstrate that PP1 efficiently dephosphorylates FLNc-pS2234 and in vitro and in cells upon PP1 activation using specific modulators. FLNc-pS2234 dephosphorylation promotes the interaction with FILIP1, a mediator for filamin degradation. Altogether, we present a model in which dephosphorylation of FLNc d20 by the dominant action of PP1c prevails over AKT activity to promote the binding of the filamin degradation-inducing factor FILIP1 during acute mechanical stress.
- Published
- 2024
- Full Text
- View/download PDF