1. Antimony stable isotope fractionation during adsorption onto birnessite: A molecular perspective from X-ray absorption spectroscopy and density functional theory.
- Author
-
Zhou, Ziyi, Sun, Guangyi, Zhou, Weiqing, Zhou, Jianwei, Feng, Xinbin, Zou Finfrock, Y., and Liu, Peng
- Subjects
- *
ISOTOPIC fractionation , *X-ray absorption , *DENSITY functional theory , *STABLE isotopes , *X-ray spectroscopy - Abstract
Sorption of antimony (Sb) onto birnessite significantly influences the fate of Sb in oceanic and terrestrial environments and fractionates Sb isotopes. Nevertheless, little is known about Sb isotopic fractionation during its adsorption on birnessite. Here, we show the value of Δ123Sb adsorbed-aqueous increases from −0.398 to −0.332 ‰ in 1 h and then decreases and stabilizes at −0.384 ‰ in 72 h. The enrichment of the light Sb isotope is predominantly due to the distortion of the octahedral symmetry. X-ray absorption spectroscopy results indicate Sb first forms a double-corner-sharing complex on birnessite and then transforms to a double-edge-sharing complex during adsorption. The optimized bond distances for double-corner-sharing (3.37 Å) and double-edge-sharing (2.90 Å) complexes calculated using density functional theory (DFT) fits well with the structure (3.41 and 3.00 Å) revealed by X-ray absorption spectroscopy, respectively. The fractionation derived from reduced partition function ratios calculated using DFT aligns well with the experimental results. Therefore, the variation in Sb isotopic fractionation during adsorption is attributed to the evolving structure of Sb complexes on birnessite. Our results demonstrate the isotopic fractionation of Sb during adsorption on birnessite and provide a molecular-scale understanding of Sb behavior, contributing to the correct reconstruction of the Sb isotope composition of ancient seawater using ferromanganese crusts and nodules, and efforts to trace Sb migration in epigenetic mining environments. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF