16 results on '"Biselli, Elena"'
Search Results
2. MetA is a ‘‘thermal fuse’’ that inhibits growth and protects Escherichia coli at elevated temperatures
- Author
-
Schink, Severin J., Gough, Zara, Biselli, Elena, Huiman, Mariel Garcia, Chang, Yu-Fang, Basan, Markus, and Gerland, Ulrich
- Published
- 2025
- Full Text
- View/download PDF
3. Cancer-driven dynamics of immune cells in a microfluidic environment
- Author
-
Agliari, Elena, Biselli, Elena, De Ninno, Adele, Schiavoni, Giovanna, Gabriele, Lucia, Gerardino, Anna, Mattei, Fabrizio, Barra, Adriano, and Businaro, Luca
- Subjects
Quantitative Biology - Cell Behavior ,Condensed Matter - Disordered Systems and Neural Networks ,Physics - Biological Physics - Abstract
Scope of the present work is to frame into a rigorous, quantitative scaffold - stemmed from stochastic process theory - two sets of experiments designed to infer the spontaneous organization of leukocytes against cancer cells, namely mice splenocytes vs. B16 mouse tumor cells, and embedded in an "ad hoc" microfluidic environment developed on a LabOnChip technology. In the former, splenocytes from knocked out (KO) mice engineered to silence the transcription factor IRF-8, crucial for the development and function of several immune populations, were used. In this case lymphocytes and cancer cells exhibited a poor reciprocal exchange, resulting in the inability of coordinating or mounting an effective immune response against melanoma. In the second class of tests, wild type (WT) splenocytes were able to interact with and to coordinate a response against the tumor cells through physical interaction. The environment where cells moved was built of by two different chambers, containing respectively melanoma cells and splenocytes, connected by capillary migration channels allowing leucocytes to migrate from their chamber toward the melanoma one. We collected and analyzed data on the motility of the cells and found that the first ensemble of IRF-8 KO cells performed pure uncorrelated random walks, while WT splenocytes were able to make singular drifted random walks, that, averaged over the ensemble of cells, collapsed on a straight ballistic motion for the system as a whole. At a finer level of investigation, we found that IRF-8 KO splenocytes moved rather uniformly since their step lengths were exponentially distributed, while WT counterpart displayed a qualitatively broader motion as their step lengths along the direction of the melanoma were log-normally distributed.
- Published
- 2014
- Full Text
- View/download PDF
4. Death Rate of E. coli during Starvation Is Set by Maintenance Cost and Biomass Recycling
- Author
-
Schink, Severin J., Biselli, Elena, Ammar, Constantin, and Gerland, Ulrich
- Published
- 2019
- Full Text
- View/download PDF
5. Erratum To: Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate
- Author
-
Biselli, Elena, Schink, Severin Josef, and Gerland, Ulrich
- Published
- 2021
- Full Text
- View/download PDF
6. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate
- Author
-
Biselli, Elena, Schink, Severin Josef, and Gerland, Ulrich
- Published
- 2020
- Full Text
- View/download PDF
7. MetA is a ‘‘thermal fuse’’ that inhibits growth and protects Escherichia coliat elevated temperatures
- Author
-
Schink, Severin J., Gough, Zara, Biselli, Elena, Huiman, Mariel Garcia, Chang, Yu-Fang, Basan, Markus, and Gerland, Ulrich
- Published
- 2025
- Full Text
- View/download PDF
8. MetA is a ‘thermal fuse’ that arrests growth and protects Escherichia coli at elevated temperatures
- Author
-
Schink, Severin, primary, Gough, Zara, additional, Biselli, Elena, additional, Huiman, Mariel Garcia, additional, Chang, Yu-Fang, additional, Basan, Markus, additional, and Gerland, Ulrich, additional
- Published
- 2021
- Full Text
- View/download PDF
9. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate
- Author
-
Biselli, Elena, primary, Schink, Severin Josef, additional, and Gerland, Ulrich, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Quantitative physiology of bacterial survival under carbon starvation and temperature stress
- Author
-
Biselli, Elena
- Subjects
FOS: Physical sciences - Abstract
A large number of the bacteria on Earth live for long periods in states of very low metabolic activity and little or no growth due to starvation and other environmental stresses. Within millions of years, bacteria have developed several strategies to adapt to many different environments, where they survive and evolve to optimize their fitness and to undergo rapid division cycles when conditions become favourable. However, many of these survival strategies are still a puzzle and relatively little is known about the mechanisms that underpin the dominant modes of bacterial existence. This is particularly alarming, as the growth-arrest phase has become crucial to understand the contribution of microorganisms to human physiology and predisposition to disease as well as microbial tolerance and resistance to antibiotics. The dearth of information is mainly due to the difficulties in defining, reproducing and measuring bacterial behaviours in growth-arrest states, which may often seem erratic and unpredictable, while cell physiology is similarly diverse and often specific to the particular environmental conditions. Thus, determining how molecular contributions affect survival is challenging. This explains why, in the last century, bacteria have been mainly studied during the exponential growth phase, which is, on the contrary, a well-defined and reproducible steady state of constant growth, gene expression and molecular compositions. As a result, an increasing combined use of experiments and predictive models focused on this phase has provided a deep understanding of bacterial physiology and gene regulation during growth. A similar quantitative approach that focuses on the growth-arrest phase is largely missing. In this thesis, we contribute to fill this gap by developing new quantitative approaches to investigate bacterial physiology in hostile environments where stresses, such as lack of nutrients and additional environmental perturbations, like temperature increase, force the cells to activate strategies of survival. To do so, we choose to work with the bacterium Escherichia coli (E. coli) that, among the estimated 10^12 microbial species living in our planet, is one of the most studied thanks to its hardiness, versatility and ease of handling. In Chapter 1, we provide an overview of the physiology of E. coli life cycle and of the main quantitative methods so far used to study it, especially focusing on its behaviour during the growth-arrest phase. In Chapter 2, we establish the missing quantitative approach to study E. coli physiology in the death phase. We show that in carbon starvation, an exponential decay of viability emerges as a collective phenomenon, with viable cells recycling nutrients from dead cells to maintain viability. The observed collective death rate is determined by the maintenance rate of viable cells and the amount of nutrients recovered from dead cells, the yield. Using this relation, we study the cost of a wasteful enzyme during starvation and the benefit of the stress response sigma factor RpoS. While the enzyme activity increases maintenance and thereby the death rate, RpoS improves biomass recycling, decreasing the death rate. Our approach thus enables quantitative analyses of how cellular components affect the survival of non-growing cells. In Chapter 3, we use the quantitative approach developed in the previous chapter to study how survival of E. coli in carbon starvation depends on the previous culture conditions. We show that environments that support only slow growth lead to longer survival in starvation because of a decrease of maintenance rate, meaning that slower growing cells need less energy to survive. Our results suggest a physiological trade-off between the ability to proliferate fast and the ability to survive long that could shed light on the long-standing question of why bacteria outside of laboratory environments are not optimized for fast growth. In Chapter 4, we study E. coli physiology under the combined stresses of carbon starvation and high temperatures, characterizing a thermal fuse that leads to a dormant and antibiotic persistent sub-population. This fuse is implemented by a thermally unstable enzyme, MetA, in the methionine synthesis pathway. The combination of a positive feed-back in the methionine system and a dual-use of methionine for protein synthesis and as a methyl-donor results in the bacterial population splitting into two distinct states at elevated temperatures, growing and dormant. We then reveal that these dormant bacteria not only survive antibiotic treatment, but also heat shocks, suggesting that the thermal fuse has originally evolved as a ''bet-hedging'' strategy to ensure survival in heat shocks. Our findings, summarized in Chapter 5, pave the way for the development of a new theoretical framework and experimental approach to understand bacterial physiology in the growth-arrest phase, by linking phenomenological modeling to molecular mechanisms., Eine große Anzahl der Bakterien auf der Erde lebt über große Zeiträume in einem Zustand mit sehr geringer Stoffwechselaktivität und nur geringem oder keinem Wachstum. Ein Grund dafür sind widrige Umwelteinflüsse und die damit einhergehenden Belastungen wie beispielsweise Ressourcenmangel. Innerhalb von Millionen von Jahren haben Bakterien diverse Strategien zur Anpassung an verschiedene Umgebungen, in denen sie überleben und sich weiterentwickeln, entwickelt, um ihre Fitness zu optimieren und bei günstigen Bedingungen schnelle Teilungszyklen zu durchlaufen. Viele dieser Überlebensstrategien sind jedoch immer noch ein Rätsel und es ist nur relativ wenig über die Mechanismen bekannt, die den dominanten Formen der bakteriellen Existenz zu Grunde liegen. Dies ist von besonderer Bedeutung, da die Phase unterdrückten Wachstums entscheidend ist, um den Beitrag von Mikroorganismen zur menschlichen Physiologie und Anfälligkeit für Krankheiten, sowie zur mikrobiellen Verträglichkeit und Antibiotikaresistenz zu verstehen. Der Mangel an Informationen ist hauptsächlich auf die Schwierigkeiten bei der Definition, Reproduktion und Messung des Verhaltens von Bakterien in Zuständen des Wachstumsstillstands zurückzuführen, die oft unberechenbar und unvorhersehbar erscheinen, während die Zellphysiologie ähnlich vielfältig und oft spezifisch für die jeweiligen Umgebungsbedingungen ist. Daher ist es schwierig zu bestimmen, wie sich molekulare Mechanismen auf das Überleben auswirken. Dies erklärt, warum im letzten Jahrhundert Bakterien hauptsächlich während der exponentiellen Wachstumsphase untersucht wurden, die im Gegenteil ein genau definierter und reproduzierbarer Gleichgewichtszustand des konstanten Wachstums, der Genexpression und der molekularen Zusammensetzung ist. Infolgedessen hat eine zunehmende Kombination von Experimenten und Vorhersagemodellen, die sich auf diese Phase konzentrieren, ein tiefes Verständnis der bakteriellen Physiologie und Genregulation während des Wachstums geliefert. Ein ähnlicher quantitativer Ansatz, der sich auf die Phase der Stagnation konzentriert, fehlt weitgehend. In dieser Doktorarbeit tragen wir dazu bei, diese Lücke durch die Entwicklung neuer quantitativer Ansätze zur Untersuchung der bakteriellen Physiologie in ungünstigen Umgebungen zu füllen, in denen Stressfaktoren, wie beispielsweise Nährstoffmangel, auftreten und zusätzliche umweltbedingte Störungen, wie eine Temperaturerhöhung, die Zellen zwingen, Strategien zum Überleben zu aktivieren. Dazu arbeiten wir mit dem Bakterium Escherichia coli (E. coli), das unter den circa 10^12 mikrobiellen Spezies, die auf unserem Planeten leben, wegen seiner Widerstandsfähigkeit, Vielseitigkeit und einfachen Handhabung eines der am besten untersuchten Bakterien darstellt. In Kapitel 1, geben wir einen Überblick über die Physiologie des Lebenszyklus von E. coli und über die wichtigsten bisher verwendeten quantitativen Methoden, wobei wir uns auf das Verhalten während der Wachstumsphase konzentrieren. In Kapitel 2, stellen wir den fehlenden quantitativen Ansatz zur Untersuchung der Physiologie von E. coli während der Sterbephase fest. Wir zeigen, dass bei Kohlenstoffmangel ein exponentieller Zerfall der Lebensfähigkeit als kollektives Phänomen auftritt, wobei lebensfähige Zellen Nährstoffe aus toten Zellen recyceln, um die Lebensfähigkeit aufrechtzuerhalten. Die beobachtete kollektive Sterberate wird durch die Erhaltungsrate lebensfähiger Zellen und die Menge an Nährstoffen, die aus toten Zellen als Ertrag gewonnen werden, bestimmt. Unter Verwendung dieser Beziehung untersuchen wir die Kosten einer verschwenderischen Enzymaktivität während des Hungerns und den Nutzen des Sigma Faktors RpoS für die Stressreaktion. Während diese Aktivität die Instandhaltung und damit die Sterblichkeitsrate erhöht, verbessert RpoS das Recycling der Biomasse und senkt die Sterblichkeitsrate. Unser Ansatz ermöglicht daher quantitative Analysen darüber, wie sich zelluläre Komponenten auf das Überleben nicht wachsender Zellen auswirken. In Kapitel 3, verwenden wir den im vorherigen Kapitel entwickelten quantitativen Ansatz, um zu untersuchen, wie das Überleben von E. coli bei Kohlenstoffmangel von den vorherigen Kulturbedingungen abhängt. Wir zeigen, dass Umgebungen, die nur langsames Wachstum unterstützen, aufgrund einer verringerten Erhaltungsrate zu einem längeren Überleben führen, was bedeutet, dass langsamer wachsende Zellen weniger Energie zum Überleben benötigen. Unsere Ergebnisse legen einen physiologischen Kompromiss zwischen der Fähigkeit, sich schnell zu vermehren, und der Fähigkeit, lange zu überleben, nahe, der Auschluss darüber geben könnte, warum Bakterien außerhalb von Laborumgebungen nicht für schnelles Wachstum optimiert sind. In Kapitel 4, untersuchen wir die Physiologie von E. coli unter dem kombinierten Stress von Kohlenstoffmangel und hohen Temperaturen und charakterisieren eine thermische Sicherung, die zu einer ruhenden und antibiotisch persistierenden Subpopulation führt. Diese Sicherung wird durch ein thermisch instabiles Enzym, MetA, im Methioninsyntheseweg implementiert. Die Kombination aus einer positiven Rückkopplung im Methioninsystem und einer doppelten Verwendung von Methionin für die Proteinsynthese und als Methyldonor führt dazu, dass sich die Bakterienpopulation bei erhöhten Temperaturen in zwei verschiedene Zustände aufspaltet, wobei jeweils eine Subpopulation wächst und die Andere schläft. Wir zeigen dann, dass diese ruhenden Bakterien nicht nur eine Antibiotikabehandlung, sondern auch Hitzeschocks überstehen, was darauf hindeutet, dass sich die thermische Sicherung ursprünglich als eine ''bet-hedging'' Strategie entwickelt hat, um das Überleben bei Hitzeschocks sicherzustellen. Unsere Ergebnisse, die in Kapitel 5 zusammengefasst sind, ebnen den Weg für die Entwicklung eines neuen theoretischen Rahmens und experimentellen Ansatzes zum Verständnis der Bakterienphysiologie in der Phase des Wachstumsstopps, indem phänomenologische Modelle mit molekularen Mechanismen verknüpft werden.
- Published
- 2019
- Full Text
- View/download PDF
11. Maintenance Cost and Biomass Recycling Determine Fitness of E. Coli During Starvation
- Author
-
Schink, Severin J., primary, Biselli, Elena, additional, Ammar, Constantin, additional, and Gerland, Ulrich, additional
- Published
- 2018
- Full Text
- View/download PDF
12. Organs on chip approach: a tool to evaluate cancer -immune cells interactions
- Author
-
Biselli, Elena, primary, Agliari, Elena, additional, Barra, Adriano, additional, Bertani, Francesca Romana, additional, Gerardino, Annamaria, additional, De Ninno, Adele, additional, Mencattini, Arianna, additional, Di Giuseppe, Davide, additional, Mattei, Fabrizio, additional, Schiavoni, Giovanna, additional, Lucarini, Valeria, additional, Vacchelli, Erika, additional, Kroemer, Guido, additional, Di Natale, Corrado, additional, Martinelli, Eugenio, additional, and Businaro, Luca, additional
- Published
- 2017
- Full Text
- View/download PDF
13. Cancer-driven dynamics of immune cells in a microfluidic environment
- Author
-
Agliari, Elena, primary, Biselli, Elena, additional, De Ninno, Adele, additional, Schiavoni, Giovanna, additional, Gabriele, Lucia, additional, Gerardino, Anna, additional, Mattei, Fabrizio, additional, Barra, Adriano, additional, and Businaro, Luca, additional
- Published
- 2014
- Full Text
- View/download PDF
14. MetA is a “thermal fuse” that inhibits growth and protects Escherichia coliat elevated temperatures
- Author
-
Schink, Severin J., Gough, Zara, Biselli, Elena, Huiman, Mariel Garcia, Chang, Yu-Fang, Basan, Markus, and Gerland, Ulrich
- Abstract
Adaptive stress resistance in microbes is mostly attributed to the expression of stress response genes, including heat-shock proteins. Here, we report a response of E. colito heat stress caused by degradation of an enzyme in the methionine biosynthesis pathway (MetA). While MetA degradation can inhibit growth, which by itself is detrimental for fitness, we show that it directly benefits survival at temperatures exceeding 50°C, increasing survival chances by more than 1,000-fold. Using both experiments and mathematical modeling, we show quantitatively how protein expression, degradation rates, and environmental stressors cause long-term growth inhibition in otherwise habitable conditions. Because growth inhibition can be abolished with simple mutations, namely point mutations of MetA and protease knockouts, we interpret the breakdown of methionine synthesis as a system that has evolved to halt growth at high temperatures, analogous to “thermal fuses” in engineering that shut off electricity to prevent overheating.
- Published
- 2022
- Full Text
- View/download PDF
15. Death Rate of E. coliduring Starvation Is Set by Maintenance Cost and Biomass Recycling
- Author
-
Schink, Severin J., Biselli, Elena, Ammar, Constantin, and Gerland, Ulrich
- Abstract
To break down organismal fitness into molecular contributions, costs and benefits of cellular components must be analyzed in all phases of the organism’s life cycle. Here, we establish the required quantitative approach for the death phase of the model bacterium Escherichia coli. We show that in carbon starvation, an exponential decay of viability emerges as a collective phenomenon, with viable cells recycling nutrients from cell carcasses to maintain viability. The observed collective death rate is determined by the maintenance rate of viable cells and the amount of nutrients recovered from dead cells. Using this relation, we study the cost of a wasteful enzyme during starvation and the benefit of the stress response sigma factor RpoS. While the enzyme increases maintenance and thereby the death rate, RpoS improves biomass recycling, decreasing the death rate. Our approach thus enables quantitative analyses of how cellular components affect the survival of non-growing cells.
- Published
- 2019
- Full Text
- View/download PDF
16. Organs on chip approach: A tool to evaluate cancer-immune cells interactions
- Author
-
Luca Businaro, Eugenio Martinelli, Corrado Di Natale, Guido Kroemer, Elena Agliari, Giovanna Schiavoni, Elena Biselli, Adele De Ninno, Erika Vacchelli, Davide Di Giuseppe, Valeria Lucarini, Arianna Mencattini, Francesca Romana Bertani, Fabrizio Mattei, Annamaria Gerardino, Adriano Barra, Biselli, Elena, Agliari, Elena, Barra, Adriano, Bertani, Francesca Romana, Gerardino, Annamaria, De Ninno, Adele, Mencattini, Arianna, Di Giuseppe, Davide, Mattei, Fabrizio, Schiavoni, Giovanna, Lucarini, Valeria, Vacchelli, Erika, Kroemer, Guido, Di Natale, Corrado, Martinelli, Eugenio, and Businaro, Luca
- Subjects
0301 basic medicine ,Cell signaling ,Mutant ,lcsh:Medicine ,statistical physics ,Cell Communication ,02 engineering and technology ,Computational biology ,Biology ,Settore ING-INF/01 - Elettronica ,Article ,Motion ,03 medical and health sciences ,Immune system ,Cell Movement ,Cell Line, Tumor ,Lab-On-A-Chip Devices ,Neoplasms ,Leukocytes ,Humans ,Allele ,lcsh:Science ,Gene ,Genetics ,Multidisciplinary ,lcsh:R ,Wild type ,021001 nanoscience & nanotechnology ,030104 developmental biology ,Cell culture ,Cancer cell ,lcsh:Q ,organs on chip ,complexity ,0210 nano-technology ,multidisciplinary - Abstract
In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a microfluidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from ‘wild type’ donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative confirmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.