1. Dams facilitate predation during Atlantic salmon (Salmo salar) smolt migration
- Author
-
Mensinger, Matthew A., Hawkes, James P., Goulette, Graham S., Mortelliti, Alessio, Blomberg, Erik J., and Zydlewski, Joseph D.
- Subjects
Dams -- Environmental aspects -- United States ,Atlantic salmon -- Environmental aspects ,Fishes -- Migration ,Predation (Biology) -- Environmental aspects - Abstract
Diadromous fish populations have incurred precipitous declines across the globe. Among many stressors, these species are threatened by anthropogenic barriers that impede movement, alter riverine habitat, and augment predator communities. In this study, we used acoustic transmitters (n = 220) with predation and temperature sensors to characterize Atlantic salmon (Salmo salar) smolt predation risk in the Penobscot River, Maine, USA. Across two seasons, we documented 79 predation events through a 170 km migratory pathway, which included three hydropower projects and a large estuary. We detected tagged smolts that were predated by fish (n = 42), marine mammals (n = 28), and birds (n = 9). Using a multistate mark- recapture framework, we estimated that 46% of smolts were predated during downstream migration, which accounted for at least 55% of all mortality. Relative predation risk was greatest through impoundments and the lower estuary, where on average, predation rates were 4.8-fold and 9.0-fold greater than free-flowing reaches, respectively. These results suggest that predation pressure on Atlantic salmon smolts is exacerbated by hydropower projects and that predation in the lower estuary may be greater than expected. Key words: predation, salmon, dams, telemetry, migration, Introduction Human-mediated changes to river systems (e.g., climate change, habitat degradation, and introduction of non-native species) may alter predator-prey dynamics (Alexander et al. 2015; Thakur et al. 2017; Murphy et [...]
- Published
- 2024
- Full Text
- View/download PDF