1. Focal plane wavefront sensing and control strategies for high-contrast imaging on the MagAO-X instrument
- Author
-
Miller, Kelsey, Males, Jared R., Guyon, Olivier, Close, Laird M., Doelman, David, Snik, Frans, Por, Emiel, Wilby, Michael J., Bohlman, Chris, Lumbres, Jennifer, Van Gorkom, Kyle, Kautz, Maggie, Rodack, Alexander, Knight, Justin, Jovanovic, Nemanja, Morzinski, Katie, and Schatz, Lauren
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Magellan extreme adaptive optics (MagAO-X) instrument is a new extreme adaptive optics (ExAO) system designed for operation in the visible to near-IR which will deliver high contrast-imaging capabilities. The main AO system will be driven by a pyramid wavefront sensor (PyWFS); however, to mitigate the impact of quasi-static and non-common path (NCP) aberrations, focal plane wavefront sensing (FPWFS) in the form of low-order wavefront sensing (LOWFS) and spatial linear dark field control (LDFC) will be employed behind a vector apodizing phase plate (vAPP) coronagraph using rejected starlight at an intermediate focal plane. These techniques will allow for continuous high-contrast imaging performance at the raw contrast level delivered by the vAPP coronagraph 6 x 10^-5. We present simulation results for LOWFS and spatial LDFC with a vAPP coronagraph, as well as laboratory results for both algorithms implemented with a vAPP coronagraph at the University of Arizona Extreme Wavefront Control Lab., Comment: 17 pages, 22 figures
- Published
- 2018