6 results on '"Bolton, Fiona M. S."'
Search Results
2. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms
- Author
-
Casewell, Nicholas R., Wagstaff, Simon C., Wüster, Wolfgang, Cook, Darren A. N., Bolton, Fiona M. S., King, Sarah I., Pla, Davinia, Sanz, Libia, Calvete, Juan J., and Harrison, Robert A.
- Published
- 2014
3. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms
- Author
-
Ainsworth, Stuart, Slagboom, Julien, Alomran, Nessrin, Pla, Davinia, Alhamdi, Yasir, King, Sarah I., Bolton, Fiona M. S., Gutiérrez, José María, Vonk, Freek J., Toh, Cheng-Hock, Calvete, Juan J., Kool, Jeroen, Harrison, Robert A., and Casewell, Nicholas R.
- Published
- 2018
- Full Text
- View/download PDF
4. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals.
- Author
-
Casewell, Nicholas R, Petras, Daniel, Card, Daren C, Suranse, Vivek, Mychajliw, Alexis M, Richards, David, Koludarov, Ivan, Albulescu, Laura-Oana, Slagboom, Julien, Hempel, Benjamin-Florian, Ngum, Neville M, Kennerley, Rosalind J, Brocca, Jorge L, Whiteley, Gareth, Harrison, Robert A, Bolton, Fiona M S, Debono, Jordan, Vonk, Freek J, Alföldi, Jessica, Johnson, Jeremy, Karlsson, Elinor K, Lindblad-Toh, Kerstin, Mellor, Ian R, Süssmuth, Roderich D, Fry, Bryan G, Kuruppu, Sanjaya, Hodgson, Wayne C, Kool, Jeroen, Castoe, Todd A, Barnes, Ian, Sunagar, Kartik, Undheim, Eivind A B, Turvey, Samuel T, Casewell, Nicholas R, Petras, Daniel, Card, Daren C, Suranse, Vivek, Mychajliw, Alexis M, Richards, David, Koludarov, Ivan, Albulescu, Laura-Oana, Slagboom, Julien, Hempel, Benjamin-Florian, Ngum, Neville M, Kennerley, Rosalind J, Brocca, Jorge L, Whiteley, Gareth, Harrison, Robert A, Bolton, Fiona M S, Debono, Jordan, Vonk, Freek J, Alföldi, Jessica, Johnson, Jeremy, Karlsson, Elinor K, Lindblad-Toh, Kerstin, Mellor, Ian R, Süssmuth, Roderich D, Fry, Bryan G, Kuruppu, Sanjaya, Hodgson, Wayne C, Kool, Jeroen, Castoe, Todd A, Barnes, Ian, Sunagar, Kartik, Undheim, Eivind A B, and Turvey, Samuel T
- Abstract
Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.
- Published
- 2019
- Full Text
- View/download PDF
5. Data from: Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms
- Author
-
Casewell, Nicholas R., Wagstaff, Simon C., Wüster, Wolfgang, Cook, Darren A. N., Bolton, Fiona M. S., King, Sarah I., Pla, Davinia, Sanz, Libia, Calvete, Juan J., Harrison, Robert A., Casewell, Nicholas R., Wagstaff, Simon C., Wüster, Wolfgang, Cook, Darren A. N., Bolton, Fiona M. S., King, Sarah I., Pla, Davinia, Sanz, Libia, Calvete, Juan J., and Harrison, Robert A.
- Abstract
Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.
- Published
- 2015
6. Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom.
- Author
-
Whiteley G, Casewell NR, Pla D, Quesada-Bernat S, Logan RAE, Bolton FMS, Wagstaff SC, Gutiérrez JM, Calvete JJ, and Harrison RA
- Subjects
- Animals, Horses, Humans, Immunization, Male, Mice, Snake Bites drug therapy, Snake Bites immunology, Snake Bites metabolism, South Africa, Antivenins immunology, Antivenins pharmacology, Coral Snakes metabolism, Elapid Venoms chemistry, Elapid Venoms immunology, Elapid Venoms metabolism, Elapid Venoms toxicity, Reptilian Proteins chemistry, Reptilian Proteins immunology, Reptilian Proteins metabolism, Reptilian Proteins toxicity
- Abstract
While envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product. This leaves clinicians, albeit rarely, in a therapeutic vacuum when treating envenoming by these snakes. This is a significantly understudied small group of nocturnal snakes and little is known about their venom compositions and toxicities. Using a murine preclinical model, this study determined that the paralysing toxicity of venoms from Aspidelaps scutatus intermedius, A. lubricus cowlesi and A. l. lubricus approached that of venoms from highly neurotoxic African cobras and mambas. This finding was consistent with the cross-genus dominance of venom three-finger toxins, including numerous isoforms which showed extensive interspecific variation. Our comprehensive analysis of venom proteomes showed that the three Aspidelaps species possess highly similar venom proteomic compositions. We also revealed that the SAIMR polyvalent antivenom cross-reacted extensively in vitro with venom proteins of the three Aspidelaps. Importantly, this cross-genus venom-IgG binding translated to preclinical (in a murine model) neutralisation of A. s. intermedius venom-induced lethality by the SAIMR polyvalent antivenom, at doses comparable with those that neutralise venom from the cape cobra (Naja nivea), which the antivenom is directed against. Our results suggest a wider than anticipated clinical utility of the SAIMR polyvalent antivenom, and here we seek to inform southern African clinicians that this readily available antivenom is likely to prove effective for victims of Aspidelaps envenoming. BIOLOGICAL SIGNIFICANCE: Coral and shield-nosed snakes (genus Aspidelaps) comprise two species and several subspecies of potentially medically important venomous snakes distributed in Namibia, Botswana, Zimbabwe, Mozambique and South Africa. Documented human fatalities, although rare, have occurred from both A. lubricus and A. scutatus. However, their venom proteomes and the pathological effects of envenomings by this understudied group of nocturnal snakes remain uncharacterised. Furthermore, no commercial antivenom is made using venom from species of the genus Aspidelaps. To fill this gap, we have conducted a transcriptomics-guided comparative proteomics analysis of the venoms of the intermediate shield-nose snake (A. s. intermedius), southern coral snake (A. l. lubricus), and Cowle's shield snake (A. l. cowlesi); investigated the mechanism of action underpinning lethality by A. s. intermedius in the murine model; and assessed the in vitro immunoreactivity of the SAIMR polyvalent antivenom towards the venom toxins of A. l. lubricus and A. l. cowlesi, and the in vivo capability of this antivenom at neutralising the lethal effect of A. s. intermedius venom. Our data revealed a high degree of conservation of the global composition of the three Aspidelaps venom proteomes, all characterised by the overwhelming predominance of neurotoxic 3FTxs, which induced classical signs of systemic neurotoxicity in mice. The SAIMR polyvalent antivenom extensively binds to Aspidelaps venom toxins and neutralised, with a potency of 0.235 mg venom/mL antivenom, the lethal effect of A. s. intermedius venom. Our data suggest that the SAIMR antivenom could be a useful therapeutic tool for treating human envenomings by Aspidelaps species., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.