21 results on '"Boone MM"'
Search Results
2. Measuring the Quality of Life at Norgerhaven Prison
- Author
-
Johnsen, B, Rokkan, T, Liebling, A, Beyens, K, Boone, MM, Kox, Mieke, Schmidt, B, Vanhouche, A, Mjaland, K, and Criminology
- Published
- 2017
3. Klachten tegen niet-vervolging (art. 12 Sv-procedure): Doorlooptijden, instroom, verwachtingen van klagers en het belang van procedurele rechtvaardigheid
- Author
-
van Lent, L, Boone, MM, van den Bos, K, Ansems, LF, Lipman, Stefan, Versteegt, Lisanne, and Department of Business-Society Management
- Published
- 2016
4. Gevangene van het verleden
- Author
-
Boone, MM, Bunt, Henk, Siegel, D, and Criminology
- Published
- 2014
5. Neutrality as an Element of Perceived Justice in prison
- Author
-
Boone, MM, Kox, Mieke, and Criminology
- Abstract
In the procedural justice literature, usually four elements are distinguished that are assumed to contribute to the experienced feelings of justice of those who are confronted with the power of the authorities: voice, neutrality, respect & dignity, and trust in the authorities. According to Tyler (2010), the same elements are decisive for the experienced feelings of legitimacy of prisoners and other persons subjected to penal correction. From the general prison literature, however, it becomes clear that besides neutrality and consistency, also individual treatment is an important element of how prisoners perceive legitimacy in prison. Based on the results of a qualitative study of the experiences of Belgian prisoners detained in a Dutch penitentiary the tension between consistency and individuality is defined and further developed. The results of this study can have a broader significance than for the prison field as such, since the tension between individualized treatment and consistency is a topic that has so far been neglected in the procedural justice literature.
- Published
- 2014
6. What works for irregular migrants in the Netherlands
- Author
-
Boone, MM, Kox, Mieke, Effective Criminal Law, and Criminology
- Published
- 2012
7. Detentiebeleving van strafrechtelijk gedetineerden zonder verblijfsrecht
- Author
-
Kox, Mieke, Ridder, S de, Vanhouche, A-S, Boone, MM, Beyens, K, Kox, Mieke, Ridder, S de, Vanhouche, A-S, Boone, MM, and Beyens, K
- Abstract
The detention experiences of male criminal foreign national prisoners without legal residence receive little attention in penological literature. A qualitative study amongst 30 prisoners with and 16 prisoners without legal residence in the penitentiary institution Tilburg shows that contacts with the social network and the preparation of the reintegration in society are (more) complicated for foreign national prisoners without legal residence. Besides, communication with the staff is more difficult for this group. These factors have negative impact on their detention experiences. The results show that both deprivation and importation theory apply to foreign national prisoners without legal residence. However, importation aspects - especially the lack of legal residence - may substantially and systematically increase the deprivation and result in additional exclusion and isolation mechanisms for this particular group.
- Published
- 2014
8. Towards geospatially-resolved public-health surveillance via wastewater sequencing.
- Author
-
Tierney BT, Foox J, Ryon KA, Butler D, Damle N, Young BG, Mozsary C, Babler KM, Yin X, Carattini Y, Andrews D, Lucaci AG, Solle NS, Kumar N, Shukla B, Vidović D, Currall B, Williams SL, Schürer SC, Stevenson M, Amirali A, Beaver CC, Kobetz E, Boone MM, Reding B, Laine J, Comerford S, Lamar WE, Tallon JJ Jr, Wain Hirschberg J, Proszynski J, Al Ghalith G, Can Kurt K, Sharkey ME, Church GM, Grills GS, Solo-Gabriele HM, and Mason CE
- Subjects
- Humans, Public Health Surveillance, Florida, Bacteria genetics, Bacteria isolation & purification, Bacteria classification, Sequence Analysis, RNA methods, Wastewater microbiology, Wastewater virology, SARS-CoV-2 genetics, SARS-CoV-2 isolation & purification, COVID-19 virology, COVID-19 epidemiology
- Abstract
Wastewater is a geospatially- and temporally-linked microbial fingerprint of a given population, making it a potentially valuable tool for tracking public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (N = 2238 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County, USA, from 2020-2022. We used targeted amplicon sequencing to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with positive PCR tests from University students and Miami-Dade hospital patients. Additionally, in bulk metatranscriptomic data, we demonstrate that the bacterial content of different wastewater sampling locations serving small population sizes can be used to detect putative, host-derived microorganisms that themselves have known associations with human health and diet. We also detect multiple enteric pathogens (e.g., Norovirus) and characterize viral diversity across sites. Moreover, we observed an enrichment of antimicrobial resistance genes (ARGs) in hospital wastewater; antibiotic-specific ARGs correlated to total prescriptions of those same antibiotics (e.g Ampicillin, Gentamicin). Overall, this effort lays the groundwork for systematic characterization of wastewater that can potentially influence public health decision-making., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Wastewater based surveillance can be used to reduce clinical testing intensity on a university campus.
- Author
-
Amirali A, Babler KM, Sharkey ME, Beaver CC, Boone MM, Comerford S, Cooper D, Currall BB, Goodman KW, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Mason CE, Reding BD, Roca MA, Ryon K, Schürer SC, Shukla BS, Solle NS, Stevenson M, Tallon JJ Jr, Vidović D, Williams SL, Yin X, and Solo-Gabriele HM
- Subjects
- Humans, Wastewater-Based Epidemiological Monitoring, COVID-19 Testing, Pandemics, Universities, SARS-CoV-2, Wastewater, COVID-19 epidemiology
- Abstract
Clinical testing has been a vital part of the response to and suppression of the COVID-19 pandemic; however, testing imposes significant burdens on a population. College students had to contend with clinical testing while simultaneously dealing with health risks and the academic pressures brought on by quarantines, changes to virtual platforms, and other disruptions to daily life. The objective of this study was to analyze whether wastewater surveillance can be used to decrease the intensity of clinical testing while maintaining reliable measurements of diseases incidence on campus. Twelve months of human health and wastewater surveillance data for eight residential buildings on a university campus were analyzed to establish how SARS-CoV-2 levels in the wastewater can be used to minimize clinical testing burden on students. Wastewater SARS-CoV-2 levels were used to create multiple scenarios, each with differing levels of testing intensity, which were compared to the actual testing volumes implemented by the university. We found that scenarios in which testing intensity fluctuations matched rise and falls in SARS-CoV-2 wastewater levels had stronger correlations between SARS-CoV-2 levels and recorded clinical positives. In addition to stronger correlations, most scenarios resulted in overall fewer weekly clinical tests performed. We suggest the use of wastewater surveillance to guide COVID-19 testing as it can significantly increase the efficacy of COVID-19 surveillance while reducing the burden placed on college students during a pandemic. Future efforts should be made to integrate wastewater surveillance into clinical testing strategies implemented on college campuses., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. Expanding a Wastewater-Based Surveillance Methodology for DNA Isolation from a Workflow Optimized for SARS-CoV-2 RNA Quantification.
- Author
-
Babler KM, Sharkey ME, Amirali A, Boone MM, Comerford S, Currall BB, Grills GS, Laine J, Mason CE, Reding B, Schürer S, Stevenson M, Vidović D, Williams SL, and Solo-Gabriele HM
- Subjects
- Humans, SARS-CoV-2 genetics, RNA, Viral genetics, Wastewater, Wastewater-Based Epidemiological Monitoring, Workflow, COVID-19
- Abstract
Wastewater-based surveillance (WBS) is a noninvasive, epidemiological strategy for assessing the spread of COVID-19 in communities. This strategy was based upon wastewater RNA measurements of the viral target, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The utility of WBS for assessing the spread of COVID-19 has motivated research to measure targets beyond SARS-CoV-2, including pathogens containing DNA. The objective of this study was to establish the necessary steps for isolating DNA from wastewater by modifying a long-standing RNA-specific extraction workflow optimized for SARS-CoV-2 detection. Modifications were made to the sample concentration process and included an evaluation of bead bashing prior to the extraction of either DNA or RNA. Results showed that bead bashing reduced detection of RNA from wastewater but improved recovery of DNA as assessed by quantitative polymerase chain reaction (qPCR). Bead bashing is therefore not recommended for the quantification of RNA viruses using qPCR. Whereas for Mycobacterium bacterial DNA isolation, bead bashing was necessary for improving qPCR quantification. Overall, we recommend 2 separate workflows, one for RNA viruses that does not include bead bashing and one for other microbes that use bead bashing for DNA isolation. The experimentation done here shows that current-standing WBS program methodologies optimized for SARS-CoV-2 need to be modified and reoptimized to allow for alternative pathogens to be readily detected and monitored, expanding its utility as a tool for public health assessment., Competing Interests: Conflict of Interest: The authors declare no conflict or competing interest., (Copyright © 2023 Association of Biomolecular Resource Facilities. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Correlative analysis of wastewater trends with clinical cases and hospitalizations through five dominant variant waves of COVID-19.
- Author
-
Zhan Q, Solo-Gabriele HM, Sharkey ME, Amirali A, Beaver CC, Boone MM, Comerford S, Cooper D, Cortizas EM, Cosculluela GA, Currall BB, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Lyu J, Mason CE, Reding BD, Roca MA, Schürer SC, Shukla BS, Solle NS, Suarez MM, Stevenson M, Tallon JJ Jr, Thomas C, Vidović D, Williams SL, Yin X, Zarnegarnia Y, and Babler KM
- Abstract
Wastewater-based epidemiology (WBE) has been utilized to track community infections of Coronavirus Disease 2019 (COVID-19) by detecting RNA of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), within samples collected from wastewater. The correlations between community infections and wastewater measurements of the RNA can potentially change as SARS-CoV-2 evolves into new variations by mutating. This study analyzed SARS-CoV-2 RNA, and indicators of human waste in wastewater from two sewersheds of different scales (University of Miami (UM) campus and Miami-Dade County Central District wastewater treatment plant (CDWWTP)) during five internally defined COVID-19 variant dominant periods (Initial, Pre-Delta, Delta, Omicron and Post-Omicron wave). SARS-CoV-2 RNA quantities were compared against COVID-19 clinical cases and hospitalizations to evaluate correlations with wastewater SARS-CoV-2 RNA. Although correlations between documented clinical cases and hospitalizations were high, prevalence for a given wastewater SARS-CoV-2 level varied depending upon the variant analyzed. The correlative relationship was significantly steeper (more cases per level found in wastewater) for the Omicron-dominated period. For hospitalization, the relationships were steepest for the Initial wave, followed by the Delta wave with flatter slopes during all other waves. Overall results were interpreted in the context of SARS-CoV-2 virulence and vaccination rates among the community.
- Published
- 2023
- Full Text
- View/download PDF
12. Geospatially-resolved public-health surveillance via wastewater sequencing.
- Author
-
Tierney BT, Foox J, Ryon KA, Butler D, Damle N, Young BG, Mozsary C, Babler KM, Yin X, Carattini Y, Andrews D, Solle NS, Kumar N, Shukla B, Vidovic D, Currall B, Williams SL, Schürer SC, Stevenson M, Amirali A, Beaver CC, Kobetz E, Boone MM, Reding B, Laine J, Comerford S, Lamar WE, Tallon JJ, Hirschberg JW, Proszynski J, Sharkey ME, Church GM, Grills GS, Solo-Gabriele HM, and Mason CE
- Abstract
Wastewater, which contains everything from pathogens to pollutants, is a geospatially-and temporally-linked microbial fingerprint of a given population. As a result, it can be leveraged for monitoring multiple dimensions of public health across locales and time. Here, we integrate targeted and bulk RNA sequencing (n=1,419 samples) to track the viral, bacterial, and functional content over geospatially distinct areas within Miami Dade County from 2020-2022. First, we used targeted amplicon sequencing (n=966) to track diverse SARS-CoV-2 variants across space and time, and we found a tight correspondence with clinical caseloads from University students (N = 1,503) and Miami-Dade County hospital patients (N = 3,939 patients), as well as an 8-day earlier detection of the Delta variant in wastewater vs. in patients. Additionally, in 453 metatranscriptomic samples, we demonstrate that different wastewater sampling locations have clinically and public-health-relevant microbiota that vary as a function of the size of the human population they represent. Through assembly, alignment-based, and phylogenetic approaches, we also detect multiple clinically important viruses (e.g., norovirus ) and describe geospatial and temporal variation in microbial functional genes that indicate the presence of pollutants. Moreover, we found distinct profiles of antimicrobial resistance (AMR) genes and virulence factors across campus buildings, dorms, and hospitals, with hospital wastewater containing a significant increase in AMR abundance. Overall, this effort lays the groundwork for systematic characterization of wastewater to improve public health decision making and a broad platform to detect emerging pathogens.
- Published
- 2023
- Full Text
- View/download PDF
13. Immature natural killer cells promote progression of triple-negative breast cancer.
- Author
-
Thacker G, Henry S, Nandi A, Debnath R, Singh S, Nayak A, Susnik B, Boone MM, Zhang Q, Kesmodel SB, Gumber S, Das GM, Kambayashi T, Dos Santos CO, and Chakrabarti R
- Subjects
- Humans, Animals, Mice, Killer Cells, Natural, B7-H1 Antigen metabolism, Tumor Microenvironment, Triple Negative Breast Neoplasms drug therapy, Antineoplastic Agents therapeutic use
- Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3
high CD11b- CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.- Published
- 2023
- Full Text
- View/download PDF
14. Comparison of Electronegative Filtration to Magnetic Bead-Based Concentration and V2G-qPCR to RT-qPCR for Quantifying Viral SARS-CoV-2 RNA from Wastewater.
- Author
-
Babler KM, Amirali A, Sharkey ME, Williams SL, Boone MM, Cosculluela GA, Currall BB, Grills GS, Laine J, Mason CE, Reding BD, Schürer SC, Stevenson M, Vidovic D, and Solo-Gabriele HM
- Abstract
Methods of wastewater concentration (electronegative filtration (ENF) versus magnetic bead-based concentration (MBC)) were compared for the analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), beta-2 microglobulin, and human-coronavirus OC43. Using ENF as the concentration method, two quantitative Polymerase Chain Reaction (qPCR) analytical methods were also compared: Volcano 2
nd Generation (V2G)-qPCR and reverse transcriptase (RT)-qPCR measuring three different targets of the virus responsible for the COVID-19 illness (N1, modified N3, and ORF1ab). Correlations between concentration methods were strong and statistically significant for SARS-CoV-2 (r=0.77, p<0.001) and B2M (r=0.77, p<0.001). Comparison of qPCR analytical methods indicate that, on average, each method provided equivalent results with average ratios of 0.96, 0.96 and 1.02 for N3 to N1, N3 to ORF1ab, and N1 to ORF1ab and were supported by significant (p<0.001) correlation coefficients (r =0.67 for V2G (N3) to RT (N1), r =0.74 for V2G (N3) to RT (ORF1ab), r = 0.81 for RT (N1) to RT (ORF1ab)). Overall results suggest that the two concentration methods and qPCR methods provide equivalent results, although variability is observed for individual measurements. Given the equivalency of results, additional advantages and disadvantages, as described in the discussion, are to be considered when choosing an appropriate method.- Published
- 2022
- Full Text
- View/download PDF
15. Relationships between SARS-CoV-2 in Wastewater and COVID-19 Clinical Cases and Hospitalizations, with and without Normalization against Indicators of Human Waste.
- Author
-
Zhan Q, Babler KM, Sharkey ME, Amirali A, Beaver CC, Boone MM, Comerford S, Cooper D, Cortizas EM, Currall BB, Foox J, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Mantero AMA, Mason CE, Reding BD, Robertson M, Roca MA, Ryon K, Schürer SC, Shukla BS, Solle NS, Stevenson M, Tallon JJ Jr, Thomas C, Thomas T, Vidović D, Williams SL, Yin X, and Solo-Gabriele HM
- Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), β-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry ( r
s = 0.69 without normalization, rs = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets., Competing Interests: The authors declare no competing financial interest., (© 2022 The Authors. Published by American Chemical Society.)- Published
- 2022
- Full Text
- View/download PDF
16. Identification of novel early pancreatic cancer biomarkers KIF5B and SFRP2 from "first contact" interactions in the tumor microenvironment.
- Author
-
Charles Jacob HK, Signorelli R, Charles Richard JL, Kashuv T, Lavania S, Middleton A, Gomez BA, Ferrantella A, Amirian H, Tao J, Ergonul AB, Boone MM, Hadisurya M, Tao WA, Iliuk A, Kashyap MK, Garcia-Buitrago M, Dawra R, and Saluja AK
- Subjects
- Animals, Biomarkers, Tumor metabolism, Humans, Matrix Metalloproteinase 3, Mice, Proteome metabolism, Proteomics methods, Kinesins, Membrane Proteins, Pancreatic Neoplasms pathology, Tumor Microenvironment
- Abstract
Background: Pancreatic cancer is one of the most difficult cancers to detect early and most patients die from complications arising due to distant organ metastases. The lack of bona fide early biomarkers is one of the primary reasons for late diagnosis of pancreatic cancer. It is a multifactorial disease and warrants a novel approach to identify early biomarkers., Methods: In order to characterize the proteome, Extracellular vesicles (EVs) isolated from different in vitro conditions mimicking tumor-microenvironment interactions between pancreatic cancer epithelial and stromal cells were analyzed using high throughput mass spectrometry. The biological activity of the secreted EVome was analyzed by investigating changes in distant organ metastases and associated early changes in the microbiome. Candidate biomarkers (KIF5B, SFRP2, LOXL2, and MMP3) were selected and validated on a mouse-human hybrid Tissue Microarray (TMA) that was specifically generated for this study. Additionally, a human TMA was used to analyze the expression of KIF5B and SFRP2 in progressive stages of pancreatic cancer., Results: The EVome of co-cultured epithelial and stromal cells is different from individual cells with distinct protein compositions. EVs secreted from stromal and cancer cells cultures could not induce significant changes in Pre-Metastatic Niche (PMN) modulation, which was assessed by changes in the distant organ metastases. However, they did induce significant changes in the early microbiome, as indicated by differences in α and β-diversities. KIF5B and SFRP2 show promise for early detection and investigation in progressive pancreatic cancer. These markers are expressed in all stages of pancreatic cancer such as low grade PanINs, advanced cancer, and in liver and soft tissue metastases., Conclusions: Proteomic characterization of EVs derived from mimicking conditions of epithelial and stromal cells in the tumor-microenvironment resulted in the identification of several proteins, some for the first time in EVs. These secreted EVs cannot induce changes in distant organ metastases in in vivo models of EV education, but modulate changes in the early murine microbiome. Among all the proteins that were analyzed (MMP3, KIF5B, SFRP2, and LOXL2), KIF5B and SFRP2 show promise as bona fide early pancreatic cancer biomarkers expressed in progressive stages of pancreatic cancer., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
17. ALCAM: A Novel Surface Marker on EpCAM low Circulating Tumor Cells.
- Author
-
Signorelli R, Giret TM, Umland O, Hadisurya M, Lavania S, Charles Richard JL, Middleton A, Boone MM, Ergonul AB, Tao WA, Amirian H, Iliuk A, Khan A, Diaz R, Cortes DB, Garcia-Buitrago M, and Charles Jacob HK
- Abstract
Background: Current strategies in circulating tumor cell (CTC) isolation in pancreatic cancer heavily rely on the EpCAM and cytokeratin cell status. EpCAM is generally not considered a good marker given its transitory change during Epithelial to Mesenchymal Transition (EMT) or reverse EMT. There is a need to identify other surface markers to capture the complete repertoire of PDAC CTCs. The primary objective of the study is to characterize alternate surface biomarkers to EpCAM on CTCs that express low or negligible levels of surface EpCAM in pancreatic cancer patients. Methods: Flow cytometry and surface mass spectrometry were used to identify proteins expressed on the surface of PDAC CTCs in culture. CTCs were grown under conditions of attachment and in co-culture with naïve neutrophils. Putative biomarkers were then validated in GEMMs and patient samples. Results: Surface proteomic profiling of CTCs identified several novel protein biomarkers. ALCAM was identified as a novel robust marker in GEMM models and in patient samples. Conclusions: We identified several novel surface biomarkers on CTCs expressed under differing conditions of culture. ALCAM was validated and identified as a novel alternate surface marker on EpCAM
low CTCs.- Published
- 2022
- Full Text
- View/download PDF
18. Lessons learned from SARS-CoV-2 measurements in wastewater.
- Author
-
Sharkey ME, Kumar N, Mantero AMA, Babler KM, Boone MM, Cardentey Y, Cortizas EM, Grills GS, Herrin J, Kemper JM, Kenney R, Kobetz E, Laine J, Lamar WE, Mader CC, Mason CE, Quintero AZ, Reding BD, Roca MA, Ryon K, Solle NS, Schürer SC, Shukla B, Stevenson M, Stone T, Tallon JJ Jr, Venkatapuram SS, Vidovic D, Williams SL, Young B, and Solo-Gabriele HM
- Subjects
- Humans, Pandemics, RNA, Viral, Wastewater, COVID-19, SARS-CoV-2
- Abstract
Standardized protocols for wastewater-based surveillance (WBS) for the RNA of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, are being developed and refined worldwide for early detection of disease outbreaks. We report here on lessons learned from establishing a WBS program for SARS-CoV-2 integrated with a human surveillance program for COVID-19. We have established WBS at three campuses of a university, including student residential dormitories and a hospital that treats COVID-19 patients. Lessons learned from this WBS program address the variability of water quality, new detection technologies, the range of detectable viral loads in wastewater, and the predictive value of integrating environmental and human surveillance data. Data from our WBS program indicated that water quality was statistically different between sewer sampling sites, with more variability observed in wastewater coming from individual buildings compared to clusters of buildings. A new detection technology was developed based upon the use of a novel polymerase called V2G. Detectable levels of SARS-CoV-2 in wastewater varied from 10
2 to 106 genomic copies (gc) per liter of raw wastewater (L). Integration of environmental and human surveillance data indicate that WBS detection of 100 gc/L of SARS-CoV-2 RNA in wastewater was associated with a positivity rate of 4% as detected by human surveillance in the wastewater catchment area, though confidence intervals were wide (β ~ 8.99 ∗ ln(100); 95% CI = 0.90-17.08; p < 0.05). Our data also suggest that early detection of COVID-19 surges based on correlations between viral load in wastewater and human disease incidence could benefit by increasing the wastewater sample collection frequency from weekly to daily. Coupling simpler and faster detection technology with more frequent sampling has the potential to improve the predictive potential of using WBS of SARS-CoV-2 for early detection of the onset of COVID-19., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
19. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection in Pancreatic Ductal Adenocarcinoma.
- Author
-
Charles Jacob HK, Charles Richard JL, Signorelli R, Kashuv T, Lavania S, Vaish U, Boopathy R, Middleton A, Boone MM, Sundaram R, Dudeja V, and Saluja AK
- Abstract
Tumor cells dissociate from the primary site and enter into systemic circulation (circulating tumor cells, CTCs) either alone or as tumor microemboli (clusters); the latter having an increased predisposition towards forming distal metastases than single CTCs. The formation of clusters is, in part, created by contacts between cell-cell junction proteins and/or cytokine receptor pairs with other cells such as neutrophils, platelets, fibroblasts, etc. In the present study, we provide evidence for an extravesicular (EV) mode of communication between pancreatic cancer CTCs and neutrophils. Our results suggest that the EV proteome of CTCs contain signaling proteins that can modulate degranulation and granule mobilization in neutrophils and, also, contain tissue plasminogen activator and other proteins that can regulate cluster formation. By exposing naïve neutrophils to EVs isolated from CTCs, we further show how these changes are modulated in a dynamic fashion indicating evidence for a deeper EV based remodulatory effect on companion cells in clusters.
- Published
- 2021
- Full Text
- View/download PDF
20. Specificity of a new lipid mediator produced by testicular and peritoneal macrophages on steroidogenesis.
- Author
-
Lukyanenko YO, Carpenter AM, Boone MM, Baker CR, McGunegle DE, and Hutson JC
- Subjects
- Adrenal Glands cytology, Animals, Cell Line, Cells, Cultured, Humans, Macrophages, Peritoneal cytology, Male, Mice, Rats, Rats, Sprague-Dawley, Steroids biosynthesis, Testis cytology, Lipid Metabolism, Macrophages, Peritoneal metabolism, Progesterone biosynthesis, Testis metabolism, Testosterone biosynthesis
- Abstract
Macrophage-derived factor (MDF) is a lipophilic factor produced by rat testicular and peritoneal macrophages that maximally stimulates testosterone production by rat Leydig cells through a steroidogenic acute regulatory protein independent mechanism. The purpose of the present study was to determine whether MDF is also produced by human macrophages, and/or if it acts on human steroidogenic cells. We also studied the tissue-specific functions of MDF by determining if it also acts on steroidogenic cells of the ovary and adrenal glands and, if so, does it require new protein synthesis. It was found that MDF was produced by human peritoneal macrophages, and was capable of stimulating human steroidogenic cells. In terms of tissue specificity, it was found that primary cultures of rat adrenocortical cells respond to MDF with increased secretion of aldosterone and corticosterone, as did rat granulosa cells by producing progesterone. MDF acted in the presence of cycloheximide, indicating that it does not require new protein synthesis. These results indicate that MDF may have significant therapeutic potential and provide a basis for future studies concerning its physiological role in humans. These results further suggest that MDF is not only involved in paracrine regulation of Leydig cells, but also has the potential for the local regulation of steroidogenesis in both granulosa and adrenal cortical cells.
- Published
- 2000
- Full Text
- View/download PDF
21. A new field flattening filter for the Clinac-4.
- Author
-
Hansen HH, Connor WG, Doppke K, and Boone MM
- Subjects
- Antimony, Filtration, Lead, Radiometry, Radiotherapy instrumentation
- Published
- 1972
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.