10 results on '"Boonfueng T"'
Search Results
2. Heavy Metal Immobilization Through Phosphate and Thermal Treatment of Dredged Sediments
- Author
-
Boonfueng, T
- Published
- 2008
- Full Text
- View/download PDF
3. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating.
- Author
-
Boonfueng T, Axe L, Yee N, Hahn D, and Ndiba PK
- Subjects
- Adsorption, Hydrogen-Ion Concentration, Leptothrix enzymology, Manganese Compounds isolation & purification, Oxides isolation & purification, Polysaccharides, Bacterial isolation & purification, Spectrum Analysis, X-Rays, Leptothrix chemistry, Manganese Compounds chemistry, Oxides chemistry, Polysaccharides, Bacterial chemistry, Zinc chemistry
- Abstract
Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10(-19) cm(2) s(-1) is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants.
- Published
- 2009
- Full Text
- View/download PDF
4. Heavy metal immobilization through phosphate and thermal treatment of dredged sediments.
- Author
-
Ndiba P, Axe L, and Boonfueng T
- Subjects
- Absorptiometry, Photon, Crystallization, Minerals, Zinc chemistry, Geologic Sediments chemistry, Metals, Heavy isolation & purification, Phosphates chemistry, Temperature
- Abstract
Disposal of dredged sediments is expensive and poses a major challenge for harbor dredging projects. Therefore beneficial reuse of these sediments as construction material is highly desirable assuming contaminants such as heavy metals are immobilized and organics are mineralized. In this research, the effect of the addition of 2.5% phosphate, followed by thermal treatment at 700 degrees C, was investigated for metal contaminants in dredged sediments. Specifically, Zn speciation was evaluated, using X-ray absorption spectroscopy (XAS), by applying principal component analysis (PCA), target transformation (TT), and linear combination fit (LCF) to identify the main phases and their combination from an array of reference compounds. In dredged sediments, Zn was present as smithsonite (67%) and adsorbed to hydrous manganese oxides (18%) and hydrous iron oxides (15%). Phosphate addition resulted in precipitation of hopeite (22%), while calcination induced formation of spinels, gahnite (44%), and franklinite (34%). Although calcination was previously used to agglomerate phosphate phases by sintering, we found that it formed sparingly soluble Zn phases. Results from the U.S. EPA toxicity characteristic leaching procedure (TCLP) confirmed both phosphate addition and calcination reduced leachability of heavy metals with the combined treatment achieving up to an 89% reduction.
- Published
- 2008
- Full Text
- View/download PDF
5. Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study.
- Author
-
Xu Y, Axe L, Boonfueng T, Tyson TA, Trivedi P, and Pandya K
- Subjects
- Absorption, X-Ray Diffraction, X-Rays, Ferric Compounds chemistry, Nickel chemistry, Spectrum Analysis methods
- Abstract
Ni(II) sorption onto iron oxides and in particular hydrous ferric oxide (HFO) is among the important processes impacting its distribution, mobility, and bioavailability in environment. To develop mechanistic models for Ni, extended X-ray absorption fine structure (EXAFS) analysis has been conducted on Ni(II) sorbed to HFO. Coprecipitation revealed the formation of the metastable alpha-Ni(OH)(2) at a Ni(II) loading of 3.5 x 10(-3) molg(-1). On the other hand, Ni(II) formed inner-sphere mononuclear bidentate complexes along edges of FeO(6) octahedra when sorbed to HFO surfaces with Ni-O distances of 2.05-2.07 A and Ni-Fe distances of 3.07-3.11 A. This surface complex was observed by EXAFS study over 2.8 x 10(-3) to 10(-1) ionic strength, pH from 6 to 7, a Ni(II) loading of 8 x 10(-4) to 8.1 x 10(-3) molg(-1) HFO, and reaction times from 4 hours to 8 months. The short- and long-range structure analyses suggest that the presence of Ni(II) inhibited transformation of the amorphous iron oxide into a more crystalline form. However, Ni(2+) was not observed to substitute for Fe(3+) in the oxide structure. This study systematically addresses Ni(II) adsorption mechanisms to amorphous iron oxide. The experimentally defined surface complexes can be used to constrain surface complexation modeling for improved prediction of metal distribution at the iron oxide/aqueous interface.
- Published
- 2007
- Full Text
- View/download PDF
6. Nickel and lead sequestration in manganese oxide-coated montmorillonite.
- Author
-
Boonfueng T, Axe L, Xu Y, and Tyson TA
- Subjects
- Adsorption, Hydrogen-Ion Concentration, Osmolar Concentration, Bentonite chemistry, Lead chemistry, Manganese Compounds chemistry, Models, Chemical, Nickel chemistry, Oxides chemistry
- Abstract
Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillonite behaved similarly to the discrete Mn oxide, where both ions sorbed onto HMO-coated montmorillonite as inner-sphere complexes. Ni coordinated to the vacancy sites in the Mn oxide structure, while Pb formed bidentate corner-sharing complexes. These coordination environments were observed not only as a function of loading, pH, and ionic strength, but also in long-term studies where sorption increased by as much as 100% (from 6x10(-4) to 1.2x10(-3) mol Ni/g HMO-coated montmorillonite). In this slower sorption process, intraparticle diffusion, the internal surface sites along microporous walls appear to be no different than external ones. Best fit diffusivities ranged from 10(-12) to 10(-13) cm2/s for Ni and 10(-17) to 10(-20) cm2/s for Pb. The significant difference in the diffusivities for the two ions is consistent with site activation theory, where theoretical surface diffusivities were predicted and given their error were in agreement with experimental results. Mn oxides sequester heavy metals in the environment.
- Published
- 2006
- Full Text
- View/download PDF
7. Surface complexation of Pb(II) on amorphous iron oxide and manganese oxide: spectroscopic and time studies.
- Author
-
Xu Y, Boonfueng T, Axe L, Maeng S, and Tyson T
- Abstract
Hydrous Fe and Mn oxides (HFO and HMO) are important sinks for heavy metals and Pb(II) is one of the more prevalent metal contaminants in the environment. In this work, Pb(II) sorption to HFO (Fe(2)O(3) x nH(2)O, n=1-3) and HMO (MnO(2)) surfaces has been studied with EXAFS: mononuclear bidentate surface complexes were observed on FeO(6) (MnO(6)) octahedra with PbO distance of 2.25-2.35 Angstrom and PbFe(Mn) distances of 3.29-3.36 (3.65-3.76) Angstrom. These surface complexes were invariant of pH 5 and 6, ionic strength 2.8 x 10(-3) to 1.5 x 10(-2), loading 2.03 x 10(-4) to 9.1 x 10(-3) mol Pb/g, and reaction time up to 21 months. EXAFS data at the Fe K-edge revealed that freshly precipitated HFO exhibits short-range order; the sorbed Pb(II) ions do not substitute for Fe but may inhibit crystallization of HFO. Pb(II) sorbed to HFO through a rapid initial uptake ( approximately 77%) followed by a slow intraparticle diffusion step ( approximately 23%) resulting in a surface diffusivity of 2.5 x 10(-15) cm(2)/s. Results from this study suggest that mechanistic investigations provide a solid basis for successful adsorption modeling and that inclusion of intraparticle surface diffusion may lead to improved geochemical transport depiction.
- Published
- 2006
- Full Text
- View/download PDF
8. The impact of Mn oxide coatings on Zn distribution.
- Author
-
Boonfueng T, Axe L, Xu Y, and Tyson TA
- Abstract
Zinc sorption to hydrous manganese oxide (HMO)-coated clay was investigated macroscopically, kinetically, and spectroscopically. Adsorption edges and isotherms revealed that the affinity and capacity of the HMO-coated montmorillonite was greater than that of montmorillonite, and when normalized to the oxide present, the coatings behaved similarly to the discrete Mn oxide. Over two pH conditions, 5 and 6, a linear relationship was observed for the isotherms; further analysis with X-ray absorption spectroscopy (XAS) resulted in one type of sorption configuration as a function of loading and ionic strength at pH 5. However, at a surface loading of 10(-3) mol(Zn) g(HMO-coatedclay)(-1) when the pH increased from 5 to 7, the first shell distance decreased slightly, while the atoms and coordination numbers remained the same; this change may be attributed to an increase in electrostatic interactions. After a contact time of 4 months where an additional 60% of the sites become occupied, the slower sorption process was modeled as intraparticle surface diffusion. Best fit diffusivities ranged from 10(-18) to 10(-17) cm2/s, where a slower process was observed for the coated surface as compared to the discrete oxide. Interestingly, the porosity of the Mn oxide coating appears to be influenced by the substrate during its growth, as its increase and shift to a smaller pore size distribution resulted in a diffusivity between that observed for discrete HMO and montmorillonite.
- Published
- 2006
- Full Text
- View/download PDF
9. Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings.
- Author
-
Fan M, Boonfueng T, Xu Y, Axe L, and Tyson TA
- Abstract
Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represent sorption processes. Experiments were conducted to evaluate Pb sorption to microporous Al, Fe, and Mn oxides, as well as to montmorillonite and HAO-coated montmorillonite. Intraparticle diffusion, a natural attenuating process, was observed to be the rate-limiting mechanism in the sorption process, where best-fit surface diffusivities ranged from 10(-18) to 10(-15) cm(2) s(-1). Specifically, diffusivities of Pb sorption to discrete aluminum oxide, aluminum oxide-coated montmorillonite, and montmorillonite indicated substrate surface characteristics influence metal mobility where diffusivity increased as affinity decreased. Furthermore, the diffusivity for aluminum oxide-coated montmorillonite was consistent with the concentrations of the individual minerals present and their associated particle size distributions. These results suggest that diffusivities for other coated systems can be predicted, and that oxide coatings and montmorillonite are effective sinks for heavy metal ions.
- Published
- 2005
- Full Text
- View/download PDF
10. Properties and structure of manganese oxide-coated clay.
- Author
-
Boonfueng T, Axe L, and Xu Y
- Abstract
In the environment, heavy metals are important contaminants that sorb to and accumulate in soils and sediments. Dominant minerals in the subsurface are oxides and clay, which occur as discrete particles and heterogeneous systems; these surfaces can significantly impact the mobility and bioavailability of metals through sorption. To better understand heterogeneous systems, amorphous (hydrous manganese oxide (HMO)) and crystalline manganese oxides (birnessite and pyrolusite) were coated on montmorillonite. However, the montmorillonite substrate potentially inhibited crystallization of the pyrolusite coating, and also resulted in a poorly crystalline birnessite. Mineralogy and morphology of the coated systems suggest an amorphous structure for HMO and uniform coverage for HMO and birnessite coatings; the presence of Si and Al indicates uncoated areas along intraplanar surfaces. The coating surface charge behaved similarly to that of discrete oxides and clay where the pH(znpc) of HMO- and birnessite-coated clay were 2.8 and 3.1, respectively. Surface area of the coated systems increased while the pore size distribution decreased as compared to the external surface area and pores of montmorillonite. X-ray absorption spectroscopy (XAS) revealed the local structural environment of Mn in the HMO- and birnessite-coated clay was consistent with the pure phase oxides: for HMO-coated clay 3.1 atoms of oxygen at 1.89 +/- 0.02 A in the first shell and 2.7 atoms of manganese at 2.85 +/- 0.02 in the second shell; and, for birnessite-coated clay 6 atoms of oxygen at 1.91 +/- 0.02 A in the first shell and 6 atoms of manganese at distance 2.99 +/- 0.02 A in the second shell. Overall, the surface properties suggest that the coating behaves like that of discrete oxides, an important sink for metal contaminants.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.