20 results on '"Bosselmann, C"'
Search Results
2. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture
- Author
-
Stevelink, R, Campbell, C, Chen, S, Abou-Khalil, B, Adesoji, OM, Afawi, Z, Amadori, E, Anderson, A, Anderson, J, Andrade, DM, Annesi, G, Auce, P, Avbersek, A, Bahlo, M, Baker, MD, Balagura, G, Balestrini, S, Barba, C, Barboza, K, Bartolomei, F, Bast, T, Baum, L, Baumgartner, T, Baykan, B, Bebek, N, Becker, AJ, Becker, F, Bennett, CA, Berghuis, B, Berkovic, SF, Beydoun, A, Bianchini, C, Bisulli, F, Blatt, I, Bobbili, DR, Borggraefe, I, Bosselmann, C, Braatz, V, Bradfield, JP, Brockmann, K, Brody, LC, Buono, RJ, Busch, RM, Caglayan, H, Campbell, E, Canafoglia, L, Canavati, C, Cascino, GD, Castellotti, B, Catarino, CB, Cavalleri, GL, Cerrato, F, Chassoux, F, Cherny, SS, Cheung, C-L, Chinthapalli, K, Chou, I-J, Chung, S-K, Churchhouse, C, Clark, PO, Cole, AJ, Compston, A, Coppola, A, Cosico, M, Cossette, P, Craig, JJ, Cusick, C, Daly, MJ, Davis, LK, de Haan, G-J, Delanty, N, Depondt, C, Derambure, P, Devinsky, O, Di Vito, L, Dlugos, DJ, Doccini, V, Doherty, CP, El-Naggar, H, Elger, CE, Ellis, CA, Eriksson, JG, Faucon, A, Feng, Y-CA, Ferguson, L, Ferraro, TN, Ferri, L, Feucht, M, Fitzgerald, M, Fonferko-Shadrach, B, Fortunato, F, Franceschetti, S, Franke, A, French, JA, Freri, E, Gagliardi, M, Gambardella, A, Geller, EB, Giangregorio, T, Gjerstad, L, Glauser, T, Goldberg, E, Goldman, A, Granata, T, Greenberg, DA, Guerrini, R, Gupta, N, Haas, KF, Hakonarson, H, Hallmann, K, Hassanin, E, Hegde, M, Heinzen, EL, Helbig, I, Hengsbach, C, Heyne, HO, Hirose, S, Hirsch, E, Hjalgrim, H, Howrigan, DP, Hucks, D, Hung, P-C, Iacomino, M, Imbach, LL, Inoue, Y, Ishii, A, Jamnadas-Khoda, J, Jehi, L, Johnson, MR, Kalviainen, R, Kamatani, Y, Kanaan, M, Kanai, M, Kantanen, A-M, Kara, B, Kariuki, SM, Kasperaviciute, D, Trenite, DK-N, Kato, M, Kegele, J, Kesim, Y, Khoueiry-Zgheib, N, King, C, Kirsch, HE, Klein, KM, Kluger, G, Knake, S, Knowlton, RC, Koeleman, BPC, Korczyn, AD, Koupparis, A, Kousiappa, I, Krause, R, Krenn, M, Krestel, H, Krey, I, Kunz, WS, Kurki, MI, Kurlemann, G, Kuzniecky, R, Kwan, P, Labate, A, Lacey, A, Lal, D, Landoulsi, Z, Lau, Y-L, Lauxmann, S, Leech, SL, Lehesjoki, A-E, Lemke, JR, Lerche, H, Lesca, G, Leu, C, Lewin, N, Lewis-Smith, D, Li, GH-Y, Li, QS, Licchetta, L, Lin, K-L, Lindhout, D, Linnankivi, T, Lopes-Cendes, I, Lowenstein, DH, Lui, CHT, Madia, F, Magnusson, S, Marson, AG, May, P, McGraw, CM, Mei, D, Mills, JL, Minardi, R, Mirza, N, Moller, RS, Molloy, AM, Montomoli, M, Mostacci, B, Muccioli, L, Muhle, H, Mueller-Schlueter, K, Najm, IM, Nasreddine, W, Neale, BM, Neubauer, B, Newton, CRJC, Noethen, MM, Nothnagel, M, Nuernberg, P, O'Brien, TJ, Okada, Y, Olafsson, E, Oliver, KL, Ozkara, C, Palotie, A, Pangilinan, F, Papacostas, SS, Parrini, E, Pato, CN, Pato, MT, Pendziwiat, M, Petrovski, S, Pickrell, WO, Pinsky, R, Pippucci, T, Poduri, A, Pondrelli, F, Powell, RHW, Privitera, M, Rademacher, A, Radtke, R, Ragona, F, Rau, S, Rees, MI, Regan, BM, Reif, PS, Rhelms, S, Riva, A, Rosenow, F, Ryvlin, P, Saarela, A, Sadleir, LG, Sander, JW, Sander, T, Scala, M, Scattergood, T, Schachter, SC, Schankin, CJ, Scheffer, IE, Schmitz, B, Schoch, S, Schubert-Bast, S, Schulze-Bonhage, A, Scudieri, P, Sham, P, Sheidley, BR, Shih, JJ, Sills, GJ, Sisodiya, SM, Smith, MC, Smith, PE, Sonsma, ACM, Speed, D, Sperling, MR, Stefansson, H, Stefansson, K, Steinhoff, BJ, Stephani, U, Stewart, WC, Stipa, C, Striano, P, Stroink, H, Strzelczyk, A, Surges, R, Suzuki, T, Tan, KM, Taneja, RS, Tanteles, GA, Tauboll, E, Thio, LL, Thomas, GN, Thomas, RH, Timonen, O, Tinuper, P, Todaro, M, Topaloglu, P, Tozzi, R, Tsai, M-H, Tumiene, B, Turkdogan, D, Unnsteinsdottir, U, Utkus, A, Vaidiswaran, P, Valton, L, van Baalen, A, Vetro, A, Vining, EPG, Visscher, F, von Brauchitsch, S, von Wrede, R, Wagner, RG, Weber, YG, Weckhuysen, S, Weisenberg, J, Weller, M, Widdess-Walsh, P, Wolff, M, Wolking, S, Wu, D, Yamakawa, K, Yang, W, Yapici, Z, Yucesan, E, Zagaglia, S, Zahnert, F, Zara, F, Zhou, W, Zimprich, F, Zsurka, G, Ali, QZ, Stevelink, R, Campbell, C, Chen, S, Abou-Khalil, B, Adesoji, OM, Afawi, Z, Amadori, E, Anderson, A, Anderson, J, Andrade, DM, Annesi, G, Auce, P, Avbersek, A, Bahlo, M, Baker, MD, Balagura, G, Balestrini, S, Barba, C, Barboza, K, Bartolomei, F, Bast, T, Baum, L, Baumgartner, T, Baykan, B, Bebek, N, Becker, AJ, Becker, F, Bennett, CA, Berghuis, B, Berkovic, SF, Beydoun, A, Bianchini, C, Bisulli, F, Blatt, I, Bobbili, DR, Borggraefe, I, Bosselmann, C, Braatz, V, Bradfield, JP, Brockmann, K, Brody, LC, Buono, RJ, Busch, RM, Caglayan, H, Campbell, E, Canafoglia, L, Canavati, C, Cascino, GD, Castellotti, B, Catarino, CB, Cavalleri, GL, Cerrato, F, Chassoux, F, Cherny, SS, Cheung, C-L, Chinthapalli, K, Chou, I-J, Chung, S-K, Churchhouse, C, Clark, PO, Cole, AJ, Compston, A, Coppola, A, Cosico, M, Cossette, P, Craig, JJ, Cusick, C, Daly, MJ, Davis, LK, de Haan, G-J, Delanty, N, Depondt, C, Derambure, P, Devinsky, O, Di Vito, L, Dlugos, DJ, Doccini, V, Doherty, CP, El-Naggar, H, Elger, CE, Ellis, CA, Eriksson, JG, Faucon, A, Feng, Y-CA, Ferguson, L, Ferraro, TN, Ferri, L, Feucht, M, Fitzgerald, M, Fonferko-Shadrach, B, Fortunato, F, Franceschetti, S, Franke, A, French, JA, Freri, E, Gagliardi, M, Gambardella, A, Geller, EB, Giangregorio, T, Gjerstad, L, Glauser, T, Goldberg, E, Goldman, A, Granata, T, Greenberg, DA, Guerrini, R, Gupta, N, Haas, KF, Hakonarson, H, Hallmann, K, Hassanin, E, Hegde, M, Heinzen, EL, Helbig, I, Hengsbach, C, Heyne, HO, Hirose, S, Hirsch, E, Hjalgrim, H, Howrigan, DP, Hucks, D, Hung, P-C, Iacomino, M, Imbach, LL, Inoue, Y, Ishii, A, Jamnadas-Khoda, J, Jehi, L, Johnson, MR, Kalviainen, R, Kamatani, Y, Kanaan, M, Kanai, M, Kantanen, A-M, Kara, B, Kariuki, SM, Kasperaviciute, D, Trenite, DK-N, Kato, M, Kegele, J, Kesim, Y, Khoueiry-Zgheib, N, King, C, Kirsch, HE, Klein, KM, Kluger, G, Knake, S, Knowlton, RC, Koeleman, BPC, Korczyn, AD, Koupparis, A, Kousiappa, I, Krause, R, Krenn, M, Krestel, H, Krey, I, Kunz, WS, Kurki, MI, Kurlemann, G, Kuzniecky, R, Kwan, P, Labate, A, Lacey, A, Lal, D, Landoulsi, Z, Lau, Y-L, Lauxmann, S, Leech, SL, Lehesjoki, A-E, Lemke, JR, Lerche, H, Lesca, G, Leu, C, Lewin, N, Lewis-Smith, D, Li, GH-Y, Li, QS, Licchetta, L, Lin, K-L, Lindhout, D, Linnankivi, T, Lopes-Cendes, I, Lowenstein, DH, Lui, CHT, Madia, F, Magnusson, S, Marson, AG, May, P, McGraw, CM, Mei, D, Mills, JL, Minardi, R, Mirza, N, Moller, RS, Molloy, AM, Montomoli, M, Mostacci, B, Muccioli, L, Muhle, H, Mueller-Schlueter, K, Najm, IM, Nasreddine, W, Neale, BM, Neubauer, B, Newton, CRJC, Noethen, MM, Nothnagel, M, Nuernberg, P, O'Brien, TJ, Okada, Y, Olafsson, E, Oliver, KL, Ozkara, C, Palotie, A, Pangilinan, F, Papacostas, SS, Parrini, E, Pato, CN, Pato, MT, Pendziwiat, M, Petrovski, S, Pickrell, WO, Pinsky, R, Pippucci, T, Poduri, A, Pondrelli, F, Powell, RHW, Privitera, M, Rademacher, A, Radtke, R, Ragona, F, Rau, S, Rees, MI, Regan, BM, Reif, PS, Rhelms, S, Riva, A, Rosenow, F, Ryvlin, P, Saarela, A, Sadleir, LG, Sander, JW, Sander, T, Scala, M, Scattergood, T, Schachter, SC, Schankin, CJ, Scheffer, IE, Schmitz, B, Schoch, S, Schubert-Bast, S, Schulze-Bonhage, A, Scudieri, P, Sham, P, Sheidley, BR, Shih, JJ, Sills, GJ, Sisodiya, SM, Smith, MC, Smith, PE, Sonsma, ACM, Speed, D, Sperling, MR, Stefansson, H, Stefansson, K, Steinhoff, BJ, Stephani, U, Stewart, WC, Stipa, C, Striano, P, Stroink, H, Strzelczyk, A, Surges, R, Suzuki, T, Tan, KM, Taneja, RS, Tanteles, GA, Tauboll, E, Thio, LL, Thomas, GN, Thomas, RH, Timonen, O, Tinuper, P, Todaro, M, Topaloglu, P, Tozzi, R, Tsai, M-H, Tumiene, B, Turkdogan, D, Unnsteinsdottir, U, Utkus, A, Vaidiswaran, P, Valton, L, van Baalen, A, Vetro, A, Vining, EPG, Visscher, F, von Brauchitsch, S, von Wrede, R, Wagner, RG, Weber, YG, Weckhuysen, S, Weisenberg, J, Weller, M, Widdess-Walsh, P, Wolff, M, Wolking, S, Wu, D, Yamakawa, K, Yang, W, Yapici, Z, Yucesan, E, Zagaglia, S, Zahnert, F, Zara, F, Zhou, W, Zimprich, F, Zsurka, G, and Ali, QZ
- Abstract
Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment.
- Published
- 2023
3. Social media use in German visceral surgeons: a cross‐sectional study of a national cohort
- Author
-
Boßelmann, C. M., Griffiths, B., Gallagher, H. J., Matzel, K. E., and Brady, R. R. W.
- Published
- 2018
- Full Text
- View/download PDF
4. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
- Author
-
Motelow, JE, Povysil, G, Dhindsa, RS, Stanley, KE, Allen, AS, Feng, Y-CA, Howrigan, DP, Abbott, LE, Tashman, K, Cerrato, F, Cusick, C, Singh, T, Heyne, H, Byrnes, AE, Churchhouse, C, Watts, N, Solomonson, M, Lal, D, Gupta, N, Neale, BM, Cavalleri, GL, Cossette, P, Cotsapas, C, De Jonghe, P, Dixon-Salazar, T, Guerrini, R, Hakonarson, H, Heinzen, EL, Helbig, I, Kwan, P, Marson, AG, Petrovski, S, Kamalakaran, S, Sisodiya, SM, Stewart, R, Weckhuysen, S, Depondt, C, Dlugos, DJ, Scheffer, IE, Striano, P, Freyer, C, Krause, R, May, P, McKenna, K, Regan, BM, Bennett, CA, Leu, C, Leech, SL, O'Brien, TJ, Todaro, M, Stamberger, H, Andrade, DM, Ali, QZ, Sadoway, TR, Krestel, H, Schaller, A, Papacostas, SS, Kousiappa, I, Tanteles, GA, Christou, Y, Sterbova, K, Vlckova, M, Sedlackova, L, Lassuthova, P, Klein, KM, Rosenow, F, Reif, PS, Knake, S, Neubauer, BA, Zimprich, F, Feucht, M, Reinthaler, EM, Kunz, WS, Zsurka, G, Surges, R, Baumgartner, T, von Wrede, R, Pendziwiat, M, Muhle, H, Rademacher, A, van Baalen, A, von Spiczak, S, Stephani, U, Afawi, Z, Korczyn, AD, Kanaan, M, Canavati, C, Kurlemann, G, Muller-Schluter, K, Kluger, G, Haeusler, M, Blatt, I, Lemke, JR, Krey, I, Weber, YG, Wolking, S, Becker, F, Lauxmann, S, Bosselmann, C, Kegele, J, Hengsbach, C, Rau, S, Steinhoff, BJ, Schulze-Bonhage, A, Borggraefe, I, Schankin, CJ, Schubert-Bast, S, Schreiber, H, Mayer, T, Korinthenberg, R, Brockmann, K, Wolff, M, Dennig, D, Madeleyn, R, Kalviainen, R, Saarela, A, Timonen, O, Linnankivi, T, Lehesjoki, A-E, Rheims, S, Lesca, G, Ryvlin, P, Maillard, L, Valton, L, Derambure, P, Bartolomei, F, Hirsch, E, Michel, V, Chassoux, F, Rees, M, Chung, S-K, Pickrell, WO, Powell, R, Baker, MD, Fonferko-Shadrach, B, Lawthom, C, Anderson, J, Schneider, N, Balestrini, S, Zagaglia, S, Braatz, V, Johnson, MR, Auce, P, Sills, GJ, Baum, LW, Sham, PC, Cherny, SS, Lui, CHT, Delanty, N, Doherty, CP, Shukralla, A, El-Naggar, H, Widdess-Walsh, P, Barisi, N, Canafoglia, L, Franceschetti, S, Castellotti, B, Granata, T, Ragona, F, Zara, F, Iacomino, M, Riva, A, Madia, F, Vari, MS, Salpietro, V, Scala, M, Mancardi, MM, Nobili, L, Amadori, E, Giacomini, T, Bisulli, F, Pippucci, T, Licchetta, L, Minardi, R, Tinuper, P, Muccioli, L, Mostacci, B, Gambardella, A, Labate, A, Annesi, G, Manna, L, Gagliardi, M, Parrini, E, Mei, D, Vetro, A, Bianchini, C, Montomoli, M, Doccini, V, Barba, C, Hirose, S, Ishii, A, Suzuki, T, Inoue, Y, Yamakawa, K, Beydoun, A, Nasreddine, W, Zgheib, NK, Tumiene, B, Utkus, A, Sadleir, LG, King, C, Caglayan, SH, Arslan, M, Yapici, Z, Topaloglu, P, Kara, B, Yis, U, Turkdogan, D, Gundogdu-Eken, A, Bebek, N, Tsai, M-H, Ho, C-J, Lin, C-H, Lin, K-L, Chou, I-J, Poduri, A, Shiedley, BR, Shain, C, Noebels, JL, Goldman, A, Busch, RM, Jehi, L, Najm, IM, Ferguson, L, Khoury, J, Glauser, TA, Clark, PO, Buono, RJ, Ferraro, TN, Sperling, MR, Lo, W, Privitera, M, French, JA, Schachter, S, Kuzniecky, R, Devinsky, O, Hegde, M, Greenberg, DA, Ellis, CA, Goldberg, E, Helbig, KL, Cosico, M, Vaidiswaran, P, Fitch, E, Berkovic, SF, Lerche, H, Lowenstein, DH, Goldstein, DB, Motelow, JE, Povysil, G, Dhindsa, RS, Stanley, KE, Allen, AS, Feng, Y-CA, Howrigan, DP, Abbott, LE, Tashman, K, Cerrato, F, Cusick, C, Singh, T, Heyne, H, Byrnes, AE, Churchhouse, C, Watts, N, Solomonson, M, Lal, D, Gupta, N, Neale, BM, Cavalleri, GL, Cossette, P, Cotsapas, C, De Jonghe, P, Dixon-Salazar, T, Guerrini, R, Hakonarson, H, Heinzen, EL, Helbig, I, Kwan, P, Marson, AG, Petrovski, S, Kamalakaran, S, Sisodiya, SM, Stewart, R, Weckhuysen, S, Depondt, C, Dlugos, DJ, Scheffer, IE, Striano, P, Freyer, C, Krause, R, May, P, McKenna, K, Regan, BM, Bennett, CA, Leu, C, Leech, SL, O'Brien, TJ, Todaro, M, Stamberger, H, Andrade, DM, Ali, QZ, Sadoway, TR, Krestel, H, Schaller, A, Papacostas, SS, Kousiappa, I, Tanteles, GA, Christou, Y, Sterbova, K, Vlckova, M, Sedlackova, L, Lassuthova, P, Klein, KM, Rosenow, F, Reif, PS, Knake, S, Neubauer, BA, Zimprich, F, Feucht, M, Reinthaler, EM, Kunz, WS, Zsurka, G, Surges, R, Baumgartner, T, von Wrede, R, Pendziwiat, M, Muhle, H, Rademacher, A, van Baalen, A, von Spiczak, S, Stephani, U, Afawi, Z, Korczyn, AD, Kanaan, M, Canavati, C, Kurlemann, G, Muller-Schluter, K, Kluger, G, Haeusler, M, Blatt, I, Lemke, JR, Krey, I, Weber, YG, Wolking, S, Becker, F, Lauxmann, S, Bosselmann, C, Kegele, J, Hengsbach, C, Rau, S, Steinhoff, BJ, Schulze-Bonhage, A, Borggraefe, I, Schankin, CJ, Schubert-Bast, S, Schreiber, H, Mayer, T, Korinthenberg, R, Brockmann, K, Wolff, M, Dennig, D, Madeleyn, R, Kalviainen, R, Saarela, A, Timonen, O, Linnankivi, T, Lehesjoki, A-E, Rheims, S, Lesca, G, Ryvlin, P, Maillard, L, Valton, L, Derambure, P, Bartolomei, F, Hirsch, E, Michel, V, Chassoux, F, Rees, M, Chung, S-K, Pickrell, WO, Powell, R, Baker, MD, Fonferko-Shadrach, B, Lawthom, C, Anderson, J, Schneider, N, Balestrini, S, Zagaglia, S, Braatz, V, Johnson, MR, Auce, P, Sills, GJ, Baum, LW, Sham, PC, Cherny, SS, Lui, CHT, Delanty, N, Doherty, CP, Shukralla, A, El-Naggar, H, Widdess-Walsh, P, Barisi, N, Canafoglia, L, Franceschetti, S, Castellotti, B, Granata, T, Ragona, F, Zara, F, Iacomino, M, Riva, A, Madia, F, Vari, MS, Salpietro, V, Scala, M, Mancardi, MM, Nobili, L, Amadori, E, Giacomini, T, Bisulli, F, Pippucci, T, Licchetta, L, Minardi, R, Tinuper, P, Muccioli, L, Mostacci, B, Gambardella, A, Labate, A, Annesi, G, Manna, L, Gagliardi, M, Parrini, E, Mei, D, Vetro, A, Bianchini, C, Montomoli, M, Doccini, V, Barba, C, Hirose, S, Ishii, A, Suzuki, T, Inoue, Y, Yamakawa, K, Beydoun, A, Nasreddine, W, Zgheib, NK, Tumiene, B, Utkus, A, Sadleir, LG, King, C, Caglayan, SH, Arslan, M, Yapici, Z, Topaloglu, P, Kara, B, Yis, U, Turkdogan, D, Gundogdu-Eken, A, Bebek, N, Tsai, M-H, Ho, C-J, Lin, C-H, Lin, K-L, Chou, I-J, Poduri, A, Shiedley, BR, Shain, C, Noebels, JL, Goldman, A, Busch, RM, Jehi, L, Najm, IM, Ferguson, L, Khoury, J, Glauser, TA, Clark, PO, Buono, RJ, Ferraro, TN, Sperling, MR, Lo, W, Privitera, M, French, JA, Schachter, S, Kuzniecky, R, Devinsky, O, Hegde, M, Greenberg, DA, Ellis, CA, Goldberg, E, Helbig, KL, Cosico, M, Vaidiswaran, P, Fitch, E, Berkovic, SF, Lerche, H, Lowenstein, DH, and Goldstein, DB
- Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
- Published
- 2021
5. Epitheliale Insulinrezeptor-Expression – prognostische Relevanz beim kolorektalen Karzinom
- Author
-
Pellinghaus, M, additional, Heckl, SM, additional, Krüger, S, additional, Bosselmann, C, additional, Wilhelm, F, additional, Behrens, HM, additional, Schreiber, S, additional, and Röcken, C, additional
- Published
- 2019
- Full Text
- View/download PDF
6. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals
- Author
-
Joshua E. Motelow, Gundula Povysil, Ryan S. Dhindsa, Kate E. Stanley, Andrew S. Al- len, Yen-Chen Anne Feng, Daniel P. Howrigan, Liam E. Abbott, Ka- therine Tashman, Felecia Cerrato, Caroline Cusick, Tarjinder Singh, Henrike Heyne, Andrea E. Byrnes, Claire Churchhouse, Nick Watts, Matthew Solomonson, Dennis Lal, Namrata Gupta, Benjamin M. Neale, Gianpiero L. Cavalleri, Patrick Cossette, Chris Cotsapas, Peter De Jonghe, Tracy Dixon-Salazar, Renzo Guerrini, Hakon Hakonarson, Erin L. Heinzen, Ingo Helbig, Patrick Kwan, Anthony G. Marson, Slave ? Petrovski, Sitharthan Kamalakaran, Sanjay M. Sisodiya, Randy Stewart, Sarah Weckhuysen, Chantal Depondt, Dennis J. Dlugos, Ingrid E. Scheffer, Pasquale Striano, Catharine Freyer, Roland Krause, Patrick May, Kevin McKenna, Brigid M. Regan, Caitlin A. Bennett, Costin Leu, Stephanie L. Leech, Terence J. O'Brien, Marian Todaro, Hannah Stamberger, Danielle M. Andrade, Quratulain Zulfiqar Ali, Tara R. Sadoway, Heinz Krestel, Andre ? Schaller, Savvas S. Papacostas, Ioanna Kou- siappa, George A. Tanteles, Yiolanda Christou, Katalin Sterbova ?, Marke ? ta Vlckova ?, Lucie Sedlackova, Petra Lassuthova ?, Karl Martin Klein, Felix Rosenow, Philipp S. Reif, Susanne Knake, Bernd A. Neubauer, Friedrich Zimprich, Martha Feucht, Eva M. Reinthaler, Wolfram S. Kunz, Ga ?bor Zsurka, Rainer Surges, Tobias Baumgart- ner, Randi von Wrede, Manuela Pendziwiat, Hiltrud Muhle, An- nika Rademacher, Andreas van Baalen, Sarah von Spiczak, Ulrich Stephani, Zaid Afawi, Amos D. Korczyn, Moien Kanaan, Christina Canavati, Gerhard Kurlemann, Karen Mu ?ller-Schlu ?ter, Gerhard Kluger, Martin Ha ?usler, Ilan Blatt, Johannes R. Lemke, Ilona Krey, Yvonne G. Weber, Stefan Wolking, Felicitas Becker, Stephan Lauxmann, Christian Boßelmann, Josua Kegele, Christian Hengs- bach, Sarah Rau, Bernhard J. Steinhoff, Andreas Schulze-Bonhage, IngoBorggra ?fe, ChristophJ.Schankin, SusanneSchubert-Bast, Herbert Schreiber, Thomas Mayer, Rudolf Korinthenberg, Knut Brockmann, Markus Wolff, Dieter Dennig, Rene Madeleyn, Reetta Ka ?lvia ?inen, Anni Saarela, Oskari Timonen, Tarja Linnankivi, Anna-Elina Lehesjoki, Sylvain Rheims, Gaetan Lesca, Philippe Ryvlin, Louis Maillard, Luc Valton, Philippe Derambure, Fabrice Bartolomei, Edouard Hirsch, Ve ?ronique Michel, Francine Chas- soux, Mark I. Rees, Seo-Kyung Chung, William O. Pickrell, Robert Powell, Mark D. Baker, Beata Fonferko-Shadrach, Charlotte Law- thom, Joseph Anderson, Natascha Schneider, Simona Balestrini, Sara Zagaglia, Vera Braatz, Michael R. Johnson, Pauls Auce, Graeme J. Sills, Larry W. Baum, Pak C. Sham, Stacey S. Cherny, Colin H.T. Lui, Norman Delanty, Colin P. Doherty, Arif Shukralla, Hany El-Naggar, Peter Widdess-Walsh, Nina Barisic, Laura 12 The American Journal of Human Genetics 108, 1-18, June 3, 2021 Please cite this article in press as: Epi25 Collaborative, Sub-genic intolerance, ClinVar, the epilepsies: A whole-exome sequencing study of 29, 165 individuals, The American Journal of Human Genetics (2021), https://doi.org/10.1016/j.ajhg.2021.04.009 Canafoglia, Silvana Franceschetti, Barbara Castellotti, Tiziana Granata, Francesca Ragona, Federico Zara, Michele Iacomino, An- tonella Riva, Francesca Madia, Maria Stella Vari, Vincenzo Salpie- tro, Marcello Scala, Maria Margherita Mancardi, Lino Nobili, Elisa- betta Amadori, Thea Giacomini, Francesca Bisulli, Tommaso Pippucci, Laura Licchetta, Raffaella Minardi, Paolo Tinuper, Lor- enzo Muccioli, Barbara Mostacci, Antonio Gambardella, Angelo Labate, Grazia Annesi, Lorella Manna, Monica Gagliardi, Elena Parrini, Davide Mei, Annalisa Vetro, Claudia Bianchini, Martino Montomoli, Viola Doccini, Carmen Barba, Shinichi Hirose, At- sushi Ishii, Toshimitsu Suzuki, Yushi Inoue, Kazuhiro Yamakawa, Ahmad Beydoun, Wassim Nasreddine, Nathalie Khoueiry Zgheib, Birute Tumiene, Algirdas Utkus, Lynette G. Sadleir, Chontelle King, S. Hande Caglayan, Mutluay Arslan, Zuhal Yap?c?, P?nar To- paloglu, Bulent Kara, Uluc Yis, Dilsad Turkdogan, Asl? Gun- dogdu-Eken, Nerses Bebek, Meng-Han Tsai, Chen-Jui Ho, Chih- Hsiang Lin, Kuang-Lin Lin, I-Jun Chou, Annapurna Poduri, Beth R. Shiedley, Catherine Shain, Jeffrey L. Noebels, Alicia Goldman, Robyn M. Busch, Lara Jehi, Imad M. Najm, Lisa Ferguson, Jean Khoury, Tracy A. Glauser, Peggy O. Clark, Russell J. Buono, Thomas N. Ferraro, Michael R. Sperling, Warren Lo, Michael Privitera, Jac- queline A. French, Steven Schachter, Ruben I. Kuzniecky, Orrin Devinsky, Manu Hegde, David A. Greenberg, Colin A. Ellis, Ethan Goldberg, Katherine L. Helbig, Mahgenn Cosico, Priya Vaidis- waran, Eryn Fitch, Samuel F. Berkovic, Holger Lerche, Daniel H. Lowenstein, David B. Goldstein., Motelow J.E., Povysil G., Dhindsa R.S., Stanley K.E., Allen A.S., Feng Y.-C.A., Howrigan D.P., Abbott L.E., Tashman K., Cerrato F., Cusick C., Singh T., Heyne H., Byrnes A.E., Churchhouse C., Watts N., Solomonson M., Lal D., Gupta N., Neale B.M., Cavalleri G.L., Cossette P., Cotsapas C., De Jonghe P., Dixon-Salazar T., Guerrini R., Hakonarson H., Heinzen E.L., Helbig I., Kwan P., Marson A.G., Petrovski S., Kamalakaran S., Sisodiya S.M., Stewart R., Weckhuysen S., Depondt C., Dlugos D.J., Scheffer I.E., Striano P., Freyer C., Krause R., May P., McKenna K., Regan B.M., Bennett C.A., Leu C., Leech S.L., O'Brien T.J., Todaro M., Stamberger H., Andrade D.M., Ali Q.Z., Sadoway T.R., Krestel H., Schaller A., Papacostas S.S., Kousiappa I., Tanteles G.A., Christou Y., Sterbova K., Vlckova M., Sedlackova L., Lassuthova P., Klein K.M., Rosenow F., Reif P.S., Knake S., Neubauer B.A., Zimprich F., Feucht M., Reinthaler E.M., Kunz W.S., Zsurka G., Surges R., Baumgartner T., von Wrede R., Pendziwiat M., Muhle H., Rademacher A., van Baalen A., von Spiczak S., Stephani U., Afawi Z., Korczyn A.D., Kanaan M., Canavati C., Kurlemann G., Muller-Schluter K., Kluger G., Hausler M., Blatt I., Lemke J.R., Krey I., Weber Y.G., Wolking S., Becker F., Lauxmann S., Bosselmann C., Kegele J., Hengsbach C., Rau S., Steinhoff B.J., Schulze-Bonhage A., Borggrafe I., Schankin C.J., Schubert-Bast S., Schreiber H., Mayer T., Korinthenberg R., Brockmann K., Wolff M., Dennig D., Madeleyn R., Kalviainen R., Saarela A., Timonen O., Linnankivi T., Lehesjoki A.-E., Rheims S., Lesca G., Ryvlin P., Maillard L., Valton L., Derambure P., Bartolomei F., Hirsch E., Michel V., Chassoux F., Rees M.I., Chung S.-K., Pickrell W.O., Powell R., Baker M.D., Fonferko-Shadrach B., Lawthom C., Anderson J., Schneider N., Balestrini S., Zagaglia S., Braatz V., Johnson M.R., Auce P., Sills G.J., Baum L.W., Sham P.C., Cherny S.S., Lui C.H.T., Delanty N., Doherty C.P., Shukralla A., El-Naggar H., Widdess-Walsh P., Barisic N., Canafoglia L., Franceschetti S., Castellotti B., Granata T., Ragona F., Zara F., Iacomino M., Riva A., Madia F., Vari M.S., Salpietro V., Scala M., Mancardi M.M., Nobili L., Amadori E., Giacomini T., Bisulli F., Pippucci T., Licchetta L., Minardi R., Tinuper P., Muccioli L., Mostacci B., Gambardella A., Labate A., Annesi G., Manna L., Gagliardi M., Parrini E., Mei D., Vetro A., Bianchini C., Montomoli M., Doccini V., Barba C., Hirose S., Ishii A., Suzuki T., Inoue Y., Yamakawa K., Beydoun A., Nasreddine W., Khoueiry Zgheib N., Tumiene B., Utkus A., Sadleir L.G., King C., Caglayan S.H., Arslan M., Yapici Z., Topaloglu P., Kara B., Yis U., Turkdogan D., Gundogdu-Eken A., Bebek N., Tsai M.-H., Ho C.-J., Lin C.-H., Lin K.-L., Chou I.-J., Poduri A., Shiedley B.R., Shain C., Noebels J.L., Goldman A., Busch R.M., Jehi L., Najm I.M., Ferguson L., Khoury J., Glauser T.A., Clark P.O., Buono R.J., Ferraro T.N., Sperling M.R., Lo W., Privitera M., French J.A., Schachter S., Kuzniecky R.I., Devinsky O., Hegde M., Greenberg D.A., Ellis C.A., Goldberg E., Helbig K.L., Cosico M., Vaidiswaran P., Fitch E., Berkovic S.F., Lerche H., Lowenstein D.H., Goldstein D.B., Epi25 Collaborative, Institut de Neurosciences des Systèmes (INS), and Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,focal epilepsy ,Whole Exome Sequencing ,Cohort Studies ,Epilepsy ,0302 clinical medicine ,Genetic Marker ,Missense mutation ,Exome ,whole-exome sequencing ,generalized epilepsy ,ComputingMilieux_MISCELLANEOUS ,Genetics (clinical) ,Exome sequencing ,seizures ,Genetics ,ClinVar ,Phenotype ,epileptic encephalopathy ,Epi25 ,intolerance ,Case-Control Studie ,Human ,Genetic Markers ,seizure ,Disease Association ,Biology ,Article ,03 medical and health sciences ,Exome Sequencing ,medicine ,Humans ,Genetic Predisposition to Disease ,Genetic Testing ,Generalized epilepsy ,Gene ,Louvain ,[SCCO.NEUR]Cognitive science/Neuroscience ,Correction ,Genetic Variation ,medicine.disease ,epilepsy ,Human genetics ,030104 developmental biology ,Case-Control Studies ,Human medicine ,Cohort Studie ,Genetic generalized epilepsy ,030217 neurology & neurosurgery - Abstract
Summary Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
- Published
- 2021
- Full Text
- View/download PDF
7. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes.
- Author
-
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe P, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Di Vito L, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YA, Ferguson L, Ferraro TN, Da Silva IF, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, La Vega-Talbott M, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GH, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O'Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, and Berkovic SF
- Abstract
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies., Competing Interests: Competing Interests B.M.N is a member of the scientific advisory board at Deep Genomics and Neumora. No other authors have competing interests to declare
- Published
- 2024
- Full Text
- View/download PDF
8. Modeling Clinical Guidelines for an Epilepsy-CDSS: The EDiTh Project.
- Author
-
Pérez Garriga A, Wolking S, Fortmann J, Majeed RW, Stockem C, Niekrenz L, Bosselmann C, Weber Y, Röhrig R, and Lipprandt M
- Subjects
- Software, Knowledge Bases, Decision Support Systems, Clinical
- Abstract
The knowledge transformation process involves the guideline for the diagnosis and therapy of epilepsy to an executable and computable knowledge base that serves as the basis for a decision-support system. We present a transparent knowledge representation model which facilitates technical implementation and verification. Knowledge is represented in a plain table, used in the frontend code of the software where simple reasoning is performed. The simple structure is sufficient and comprehensible also for non-technical persons (i.e., clinicians).
- Published
- 2023
- Full Text
- View/download PDF
9. Sponge EEG is equivalent regarding signal quality, but faster than routine EEG.
- Author
-
Günther M, Schuster L, Boßelmann C, Lerche H, Ziemann U, Feil K, and Marquetand J
- Abstract
Objective: Emergency diagnostics, such as acquisition of an electroencephalogram (EEG), are of great diagnostic importance, but there is often a lack of experienced personnel. Wet active electrode sponge-based electroencephalogram (sp-EEG) systems can be applied rapidly and by inexperienced personnel. This makes them an attractive alternative to routine EEG (r-EEG) systems in these settings. Here, we examined the feasibility and signal quality of sp-EEG compared to r-EEG., Methods: In this case-control, single-blind, non-randomized study, EEG recordings using a sp- and a r-EEG system were performed in 18 individuals with a variety of epileptiform discharges and 11 healthy control subjects. The time was stopped until all electrodes in both systems displayed adequate skin-electrode impedances. The resulting 58 EEGs were visually inspected by 7 experienced, blinded neurologists. Raters were asked to score physiological and pathological graphoelements, and to distinguish between the different systems by visual inspection of the EEGs., Results: Time to signal acquisition for sp-EEG was significantly faster (4.8 min (SD 2.01) vs. r-EEG 13.3 min (SD 2.72), p < 0.001). All physiological and pathological graphoelements of all 58 EEGs could be identified. Raters were unable to distinguish between sp-EEG or r-EEG based on visual inspection of the EEGs alone., Conclusions: Sp-EEG represents a feasible alternative to r-EEG in emergency diagnostics or resource-limited settings., Significance: Given shortage of trained personnel or resources, the easy implementation and comparable quality of a novel sp-EEG system may increase general availability of EEG and thus improve patient care., (©elmann a, Holger Lerche a, Ulf Ziemann d,.)
- Published
- 2023
- Full Text
- View/download PDF
10. Successful treatment of adult Dravet syndrome patients with cenobamate.
- Author
-
Makridis KL, Friedo AL, Kellinghaus C, Losch FP, Schmitz B, Boßelmann C, and Kaindl AM
- Subjects
- Humans, Adult, Retrospective Studies, Epilepsies, Myoclonic drug therapy, Epilepsies, Myoclonic genetics
- Abstract
Dravet syndrome (DS) is a rare, drug-resistant, severe developmental and epileptic encephalopathy caused by pathogenic variants in the α subunit of the voltage-gated sodium channel gene SCN1A. Hyperexcitability in DS results from loss of function in inhibitory interneurons. Thus sodium channel blockers are usually contraindicated in patients with DS as they may lead to disease aggravation. Cenobamate (CNB) is a novel antiseizure medication (ASM) with promising rates of seizure freedom in patients with focal-onset, drug-resistant epilepsy. CNB blocks persistent sodium currents by promoting the inactive states of sodium channels. In a multi-center study, we analyzed retrospectively the effect of an add-on therapy of CNB in adult patients with DS. We report four adult patients with DS in whom the use of CNB resulted in a significant seizure reduction of more than 80%, with a follow-up of up to 542 days. CNB was the first drug in these patients that resulted in a long-lasting and significant seizure reduction. No severe adverse events occurred. We highlight CNB as an ASM that may lead to a clinically meaningful reduction of seizure frequency in adult patients with DS. It is unclear, however, if all patients with DS benefit, requiring further investigation and functional experiments., (© 2022 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.)
- Published
- 2022
- Full Text
- View/download PDF
11. Do all patients in the epilepsy monitoring unit experience the same level of comfort? A quantitative exploratory secondary analysis.
- Author
-
Egger-Rainer A, Hettegger SM, Feldner R, Arnold S, Bosselmann C, Hamer H, Hengsberger A, Lang J, Lorenzl S, Lerche H, Noachtar S, Pataraia E, Schulze-Bonhage A, Staack AM, Trinka E, Unterberger I, and Zimmermann G
- Subjects
- Female, Humans, Male, Monitoring, Physiologic, Patient Comfort, Surveys and Questionnaires, Epilepsy, Hospital Units
- Abstract
Aims: To find out which variables may be associated with comfort of patients in an epilepsy monitoring unit., Design: Exploratory, quantitative study design., Methods: Data were collected from October 2018 to November 2019 in Austria and Southern Germany. A total of 267 patients of 10 epilepsy centres completed the Epilepsy Monitoring Unit Comfort Questionnaire which is based on Kolcaba's General Comfort Questionnaire. Secondary data analysis were conducted by using descriptive statistics and an exploratory model building approach, including different linear regression models and several sensitivity analyses., Results: Total comfort scores ranged from 83 to 235 points. Gender, occupation and centre turned out to be possible influential variables. On average, women had a total comfort score 4.69 points higher than men, and retired persons 28.2 points higher than high school students ≥18 years. Comfort scores of younger patients were lower than those of older patients. However, age did not show a statistically significant effect. The same could be observed in marital status and educational levels., Conclusion: When implementing comfort measures, nurses must be aware of variables which could influence the intervention negatively. Especially, high school students ≥18 years should be supported by epilepsy specialist nurses, in order to reduce uncertainty, anxiety and discomfort. But, since the identified variables account only for a small proportion of the inter-individual variability in comfort scores, further studies are needed to find out additional relevant aspects and to examine centre-specific effects more closely., Impact: Nurses ensure patient comfort during a hospital stay. However, there are variables that may impair the effectiveness of the nursing measures. Our study showed that the experience of comfort was highly individual and could be explained by sociodemographic variables only to a limited extent. Nurses must be aware that additional factors, such as the situation in the individual setting, may be relevant., (© 2021 The Authors. Journal of Advanced Nursing published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
12. Pyridoxine or pyridoxal-5-phosphate treatment for seizures in glycosylphosphatidylinositol deficiency: A cohort study.
- Author
-
Bayat A, Aledo-Serrano A, Gil-Nagel A, Korff CM, Thomas A, Boßelmann C, Weber Y, Gardella E, Lund AM, de Sain-van der Velden MGM, and Møller RS
- Subjects
- Cohort Studies, Female, Glycosylphosphatidylinositols deficiency, Glycosylphosphatidylinositols therapeutic use, Humans, Infant, Male, Phosphates therapeutic use, Prospective Studies, Pyridoxal Phosphate therapeutic use, Pyridoxine therapeutic use, Seizures drug therapy, Seizures etiology, Drug Resistant Epilepsy drug therapy, Epilepsy complications, Epilepsy drug therapy, Epilepsy genetics
- Abstract
Aim: To investigate the short-term efficacy and safety of high-dose pyridoxine and pyridoxal 5-phosphate (P5P) in the treatment of inherited glycosylphosphatidylinositol (GPI) deficiency-associated epilepsy., Method: Participants with genetically confirmed GPI deficiency were treated with oral pyridoxine or P5P as compassionate use in an agreed-upon clinical regimen. Pyridoxine (20-30 mg/kg/day) was used for 3 months. Baseline evaluation included 4 weeks of prospective seizure data and one video electroencephalogram (EEG). Seizure frequency was captured daily. The EEG was repeated after reaching maximum dosage of pyridoxine. Pyridoxine was switched to P5P (20-30 mg/kg/day) if seizure burden was unchanged after 3 months' treatment. Another EEG was done after 3 months of P5P treatment. Primary outcome measures were reduction of seizure frequency and EEG improvements., Results: Seven participants (one female, six males; age range 5-23 year; mean age 11 years 10 months, SD 5 year 2 months) were included. The genetic causes of inherited GPI deficiency were phosphatidylinositol N-acetylglucosaminyltransferase subunit A/T/V deficiency. All had drug-resistant epilepsy and neurodevelopmental impairment. We observed more than 50% seizure frequency reduction in 2 out of 7 and less than 50% reduction in another 3 out of 7 participants. No participants reached seizure freedom. No remarkable changes in electrophysiological findings were observed in 6 out of 7 participants treated with pyridoxine or P5P when comparing the baseline and follow-up EEGs., Interpretation: We observed no long-lasting electrophysiological improvements during treatment but pyridoxine may reduce seizure frequency or burden in inherited GPI deficiency., What This Paper Adds: Inherited glycosylphosphatidylinositol (GPI) deficiency often causes early-onset and drug-resistant epilepsy. Vitamin B
6 is a potential disease-specific treatment; however, efficacy and safety are ill-defined. Pyridoxine may reduce seizure frequency or burden in inherited GPI deficiency. Pyridoxine and P5P could prove to be a useful treatment in some individuals with inherited GPI deficiency and epilepsy., (© 2021 Mac Keith Press.)- Published
- 2022
- Full Text
- View/download PDF
13. Therapeutic Potential of Sodium Channel Blockers as a Targeted Therapy Approach in KCNA1 -Associated Episodic Ataxia and a Comprehensive Review of the Literature.
- Author
-
Lauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, Wuttke TV, Hedrich UBS, Liu Y, Lerche H, Benda J, and Kegele J
- Abstract
Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1 , the gene coding for K
V 1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV 1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV 1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV 1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Lauxmann, Sonnenberg, Koch, Bosselmann, Winter, Schwarz, Wuttke, Hedrich, Liu, Lerche, Benda and Kegele.)- Published
- 2021
- Full Text
- View/download PDF
14. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2 -encephalopathy.
- Author
-
Hedrich UBS, Lauxmann S, Wolff M, Synofzik M, Bast T, Binelli A, Serratosa JM, Martínez-Ulloa P, Allen NM, King MD, Gorman KM, Zeev BB, Tzadok M, Wong-Kisiel L, Marjanovic D, Rubboli G, Sisodiya SM, Lutz F, Ashraf HP, Torge K, Yan P, Bosselmann C, Schwarz N, Fudali M, and Lerche H
- Subjects
- 4-Aminopyridine therapeutic use, Gain of Function Mutation, Humans, Kv1.2 Potassium Channel genetics, Mutation, Brain Diseases, Epilepsy
- Abstract
Developmental and epileptic encephalopathies are devastating disorders characterized by epilepsy, intellectual disability, and other neuropsychiatric symptoms, for which available treatments are largely ineffective. Following a precision medicine approach, we show for KCNA2 -encephalopathy that the K
+ channel blocker 4-aminopyridine can antagonize gain-of-function defects caused by variants in the KV 1.2 subunit in vitro, by reducing current amplitudes and negative shifts of steady-state activation and increasing the firing rate of transfected neurons. In n-of-1 trials carried out in nine different centers, 9 of 11 patients carrying such variants benefitted from treatment with 4-aminopyridine. All six patients experiencing daily absence, myoclonic, or atonic seizures became seizure-free (except some remaining provoked seizures). Two of six patients experiencing generalized tonic-clonic seizures showed marked improvement, three showed no effect, and one worsening. Nine patients showed improved gait, ataxia, alertness, cognition, or speech. 4-Aminopyridine was well tolerated up to 2.6 mg/kg per day. We suggest 4-aminopyridine as a promising tailored treatment in KCNA2 -(gain-of-function)–encephalopathy and provide an online tool assisting physicians to select patients with gain-of-function mutations suited to this treatment.- Published
- 2021
- Full Text
- View/download PDF
15. Delirium REduction after administration of melatonin in acute ischemic stroke (DREAMS): A propensity score-matched analysis.
- Author
-
Mengel A, Zurloh J, Boßelmann C, Brendel B, Stadler V, Sartor-Pfeiffer J, Meisel A, Fleischmann R, Ziemann U, Poli S, and Stefanou MI
- Subjects
- Humans, Propensity Score, Prospective Studies, Brain Ischemia complications, Brain Ischemia drug therapy, Delirium, Ischemic Stroke, Melatonin, Stroke complications, Stroke drug therapy
- Abstract
Background and Purpose: Poststroke delirium (PSD) comprises a common and severe complication after stroke. However, treatment options for PSD remain insufficient. We investigated whether prophylactic melatonin supplementation may be associated with reduced risk for PSD., Methods: Consecutive patients admitted to the Tübingen University Stroke Unit, Tübingen, Germany, with acute ischemic stroke (AIS), who underwent standard care between August 2017 and December 2017, and patients who additionally received prophylactic melatonin (2 mg per day at night) within 24 h of symptom onset between August 2018 and December 2018 were included. Primary outcomes were (i) PSD prevalence in AIS patients and (ii) PSD risk and PSD-free survival in patients with cerebral infarction who underwent melatonin supplementation compared to propensity score-matched (PSM) controls. Secondary outcomes included time of PSD onset and PSD duration., Results: Out of 465 (81.2%) patients with cerebral infarction and 108 (18.8%) transient ischemic attack (TIA) patients, 152 (26.5%) developed PSD (median time to onset [IQR]: 16 [8-32] h; duration 24 [8-40] h). Higher age, cerebral infarction rather than TIA, and higher National Institutes of Health Stroke Scale score and aphasia on admission were significant predictors of PSD. After PSM (164 melatonin-treated patients with cerebral infarction versus 164 matched controls), 42 (25.6%) melatonin-treated patients developed PSD versus 60 (36.6%) controls (odds ratio, 0.597; 95% confidence interval, 0.372-0.958; p = 0.032). PSD-free survival differed significantly between groups (p = 0.027), favoring melatonin-treated patients. In patients with PSD, no between-group differences in the time of PSD onset and PSD duration were noted., Conclusions: Patients prophylactically treated with melatonin within 24 h of AIS onset had lower risk for PSD than patients undergoing standard care. Prospective randomized trials are warranted to corroborate these findings., (© 2021 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.)
- Published
- 2021
- Full Text
- View/download PDF
16. Assessing comfort in the epilepsy monitoring unit: Psychometric testing of an instrument.
- Author
-
Egger-Rainer A, Trinka E, Zimmermann G, Arnold S, Boßelmann C, Hamer H, Hengsberger A, Lang J, Lerche H, Noachtar S, Pataraia E, Schulze-Bonhage A, Staack AM, Unterberger I, and Lorenzl S
- Subjects
- Humans, Psychometrics, Reproducibility of Results, Surveys and Questionnaires, Epilepsy diagnosis, Hospital Units
- Published
- 2020
- Full Text
- View/download PDF
17. Sonographic features of carotid artery dissection due to extension of aortic dissection: a case report.
- Author
-
Boßelmann C and Poli S
- Abstract
Background: Carotid artery dissection due to extension of aortic dissection (CAEAD) is a severe complication of acute aortic dissection. The risk of ischemic stroke is increased. Early sonographic detection and repeat evaluation are necessary to guide clinical management., Case Presentation: A 58-year-old male patient presents with sudden, tearing retrosternal pain. Point-of-care carotid ultrasound is used to establish the diagnosis of CAEAD. We describe a number of sonographic features and compare ultrasound to other imaging modalities., Conclusions: Bedside carotid ultrasound enables rapid, sensitive and safe hemodynamic assessment, especially in critically ill patients.
- Published
- 2019
- Full Text
- View/download PDF
18. Neuro-Sweet syndrome - a rare differential diagnosis in aseptic meningoencephalitis.
- Author
-
Hoffmann E, Boßelmann C, Forchhammer S, Lerche H, and Freilinger T
- Abstract
Acute febrile neutrophilic dermatosis (Sweet's syndrome) is a dermatological entity, which may be associated with malignancies, drugs, and infections and which is characterized by high fever, elevated neutrophils, and tender erythematous skin lesions. Involvement of the nervous system - Neuro-Sweet syndrome (NSS) - is rare, manifesting most commonly with an encephalitic syndrome in addition to fever and dermal lesions. Here, we report an unusual case of NSS in a Caucasian male patient in the setting of B-cell-lymphocytosis, with encephalitis preceding dermal lesions. Symptoms resolved completely in response to corticoids. NSS is a rare, but important differential diagnosis in the work-up of febrile aseptic meningoencephalitis unresponsive to anti-infectious treatment. Due to its rarity and clinical variability, diagnosis of NSS might be challenging. Knowledge of this entity may facilitate proper diagnosis and differentiation from conditions with similar clinical presentation, especially Neuro-Behçet's disease. It may further lead to early detection of a potentially underlying malignancy and help in initiating adequate therapy., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2019.)
- Published
- 2019
- Full Text
- View/download PDF
19. Delirium Screening in Aphasic Patients With the Intensive Care Delirium Screening Checklist (ICDSC): A Prospective Cohort Study.
- Author
-
Boßelmann C, Zurloh J, Stefanou MI, Stadler V, Weber Y, Lerche H, Poli S, Ziemann U, and Mengel A
- Abstract
Background: Ten to thirty percent of stroke patients suffer from post-stroke delirium. This leads to a longer hospital stay and increased mortality. Therefore, early detection and treatment are needed. All established delirium screening tools require some degree of language function. We sought to investigate whether the Intensive Care Delirium Screening Checklist (ICDSC) is suitable for delirium screening in patients with post-stroke aphasia. Methods: A prospective cohort study was carried out in adult patients consecutively admitted to the Stroke Unit of University Hospital Tuebingen, between July 2017 and December 2018. The index test, ICDSC, was compared with the DSM-V diagnostic criteria as reference standard. Measures of diagnostic precision and the degree of agreement were obtained. Results: Three hundred and forty six patients were included in the analysis. Aphasia was present in 231 (66.8%) and absent in 115 (33.2%) patients. Delirium was present in 83 out of 231 (36%) patients with aphasia and 32 out of 115 (27.8%) patients without aphasia ( p = 0.132). For patients without aphasia, sensitivity and specificity at the established cut-off value of ≥ 4 points were 100% and 78%, respectively. For patients with aphasia, the test demonstrated inferior performance, with a sensitivity and specificity of 98% and 55%, respectively. It was necessary to increase the cut-off value to ≥ 5 points. Through this, sensitivity was 90% (95% CI, 81.9-95.8%) and specificity was 75% (95% CI, 67.2-81.8%). The degree of agreement to the DSM-V criteria was "substantial" (Cohen's κ = 0.61). Conclusion: For the purpose of delirium screening in patients with aphasia, increasing the ICDSC cut-off value to ≥ 5 points enables effective screening. Further studies are necessary to characterize post-stroke delirium., (Copyright © 2019 Boßelmann, Zurloh, Stefanou, Stadler, Weber, Lerche, Poli, Ziemann and Mengel.)
- Published
- 2019
- Full Text
- View/download PDF
20. Epithelial insulin receptor expression-prognostic relevance in colorectal cancer.
- Author
-
Heckl SM, Pellinghaus M, Krüger S, Bosselmann C, Wilhelm F, Behrens HM, Schreiber S, and Röcken C
- Abstract
Background: Metabolic reprogramming in cancer encompasses the insulin receptor (IR) as a player of energy homeostasis and proliferation. We aimed to characterize vascular (VIR) and epithelial (EIR) IR expression in CRC and correlate it with clinico-pathological parameters and survival., Methods: 1580 primary CRCs were explored by immunohistochemistry for evaluation of VIR and EIR. Subgroup analyses included in situ hybridization for IR isoform A (IR-A) and DNA mismatch repair protein immunohistochemistry. Clinico-pathological and survival parameters were studied., Results: High VIR was evident in 63.5% of all CRC samples and was associated with T-stage ( P = 0.005). EIR was present in 72.2% and was associated with lower T-stages ( P = 0.006) and UICC-stages ( P < 0.001). EIR negativity was associated with increased metastasis ( P = 0.028), nodal spread ( P < 0.001), lymphatic invasion ( P = 0.008) and a decreased tumor-specific ( P = 0.011) and overall survival ( P = 0.007; 95%-C.I.: 44.5-84.1). EIR negativity in UICC-stage II was associated with a significantly worse tumor-specific ( P = 0.045) and overall ( P = 0.043) survival. IR-A was expressed in CRC vessels and cells., Conclusions: We demonstrate VIR to be frequent in CRC and characterize EIR negativity as an important prognostic risk factor. The association between EIR negativity and worse survival in UICC-stage II should be prospectively evaluated for an application in therapeutic algorithms., Competing Interests: CONFLICTS OF INTEREST The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.