Joel A. Thornton, Andrew P. Ault, Eliane G. Alves, Cristine M. D. Machado, Nicole E. Olson, Brett B. Palm, Eric S. Edgerton, Avram Gold, Stephanie L. Shaw, Zhenfa Zhang, Erickson O. dos Santos, Rodrigo Augusto Ferreira de Souza, Rafael Lopes e Oliveira, Havala O. T. Pye, Mike Fort, Barbara J. Turpin, William Vizuete, Yue Zhao, Cari S. Dutcher, C. Rose, Ziying Lei, Sergio Duvoisin Junior, Matthieu Riva, Sri Hapsari Budisulistiorini, Jose L. Jimenez, Sophie Szopa, Yuzhi Chen, Scot T. Martin, Shweta Narayan, Karsten Baumann, Suzane S. de Sá, Eladio M. Knipping, H. Green, Yue Zhang, Jason D. Surratt, Tianqu Cui, Hallie C. Boyer, Igor O. Ribeiro, Marianne Glasius, Lindsay D. Yee, Allen H. Goldstein, Weiwei Hu, IRCELYON-Catalytic and Atmospheric Reactivity for the Environment (CARE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation du climat (CLIM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
International audience; Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this report, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX:Sulf inorg), as determined by laboratory measurements. Characterization of total sulfur aerosol observed at Look Rock, Tennessee, from 2007-2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulf inorg , consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modifies critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO 2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX:Sulf inorg will play an important role in understanding historical climate and determining future impacts of biogenic SOA on global climate and air quality.