305 results on '"Bridges, J. C."'
Search Results
2. The Future of Stardust Science
- Author
-
Westphal, A. J., Bridges, J. C., Brownlee, D. E., Butterworth, A. L., De Gregorio, B. T., Dominguez, G., Flynn, G. J., Gainsforth, Z., Ishii, H. A., Joswiak, D., Nittler, L. R., Ogliore, R. C., Palma, R., Pepin, R. O., Stephan, T., and Zolensky, M. E.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Recent observations indicate that >99% of the small bodies in the Solar System reside in its outer reaches --- in the Kuiper Belt and Oort Cloud. Kuiper Belt bodies are probably the best preserved representatives of the icy planetesimals that dominated the bulk of the solid mass in the early Solar System. They likely contain preserved materials inherited from the protosolar cloud, held in cryogenic storage since the formation of the Solar System. Despite their importance, they are relatively underrepresented in our extraterrestrial sample collections by many orders of magnitude ($\sim$10$^{13}$ by mass) as compared with the asteroids, represented by meteorites, which are composed of materials that have generally been strongly altered by thermal and aqueous processes. We have only begun to scratch the surface in understanding Kuiper Belt objects, but it is already clear that the very limited samples of them that we have in our laboratories hold the promise of dramatically expanding our understanding of the formation of the Solar System. Stardust returned the first samples from a known small solar-system body, the Jupiter-family comet 81P/Wild 2, and, in a separate collector, the first solid samples from the local interstellar medium. The first decade of Stardust research resulted in more than 142 peer-reviewed publications, including 15 papers in Science. Analyses of these amazing samples continue to yield unexpected discoveries and to raise new questions about the history of the early Solar System. We identify 9 high-priority scientific objectives for future Stardust analyses that address important unsolved problems in planetary science., Comment: In press at Meteoritics and Planetary Science
- Published
- 2017
- Full Text
- View/download PDF
3. A Self-Consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD172555 System
- Author
-
Johnson, B. C., Lisse, C. M., Chen, C. H., Melosh, H. J., Wyatt, M. C., Thebault, P., Henning, W. G., Gaidos, E., Elkins-Tanton, L. T., Bridges, J. C., and Morlok, A.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10^19 kg of sub-micron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at approximately 6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4 percent over the last 27 years, from IRAS (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that 10^47 molecules of SiO vapor are needed to explain an emission feature at 8 um in the Spitzer IRS spectrum of HD 172555. We find that unless there are 10^48 atoms or 0.05 Earth masses of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the 8 um feature can be emission from solid SiO, which naturally occurs in submicron silicate "smokes" created by quickly condensing vaporized silicate., Comment: Accepted to the Astrophysical Journal
- Published
- 2012
- Full Text
- View/download PDF
4. The Winchcombe meteorite—A regolith breccia from a rubble pile CM chondrite asteroid.
- Author
-
Suttle, M. D., Daly, L., Jones, R. H., Jenkins, L., van Ginneken, M., Mitchell, J. T., Bridges, J. C., Hicks, L. J., Johnson, D., Rollinson, G., Taylor, R., Genge, M. J., Schröder, C., Trimby, P., Mansour, H., Piazolo, S., Bonsall, E., Salge, T., Heard, R., and Findlay, R.
- Subjects
CARBONACEOUS chondrites (Meteorites) ,METEORITES ,BRECCIA ,ASTEROIDS ,REGOLITH ,PETROLOGY ,GRAIN size ,METEOROIDS - Abstract
The Winchcombe meteorite is a CM chondrite breccia composed of eight distinct lithological units plus a cataclastic matrix. The degree of aqueous alteration varies between intensely altered CM2.0 and moderately altered CM2.6. Although no lithology dominates, three heavily altered rock types (CM2.1–2.3) represent >70 area%. Tochilinite–cronstedtite intergrowths (TCIs) are common in several lithologies. Their compositions can vary significantly, even within a single lithology, which can prevent a clear assessment of alteration extent if only TCI composition is considered. We suggest that this is due to early alteration under localized geochemical microenvironments creating a diversity of compositions and because later reprocessing was incomplete, leaving a record of the parent body's fluid history. In Winchcombe, the fragments of primary accretionary rock are held within a cataclastic matrix (~15 area%). This material is impact‐derived fallback debris. Its grain size and texture suggest that the disruption of the original parent asteroid responded by intergranular fracture at grain sizes <100 μm, while larger phases, such as whole chondrules, splintered apart. Re‐accretion formed a poorly lithified body. During atmospheric entry, the Winchcombe meteoroid broke apart with new fractures preferentially cutting through the weaker cataclastic matrix and separating the breccia into its component clasts. The strength of the cataclastic matrix imparts a control on the survival of CM chondrite meteoroids. Winchcombe's unweathered state and diversity of lithologies make it an ideal sample for exploring the geological history of the CM chondrite group. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Oxygen Isotopes and the Early Solar System
- Author
-
Franchi, I. A., Baker, L., Bridges, J. C., Wright, I. P., and Pillinger, C. T.
- Published
- 2001
6. Synchrotron x‐ray diffraction for sealed Mars Sample Return sample tubes.
- Author
-
Adam, L. F., Bridges, J. C., Bedford, C. C., Holt, J. M. C., Rampe, E., Thorpe, M., Mason, K., and Ewing, R. C.
- Subjects
- *
X-ray diffraction , *SYNCHROTRONS , *X-ray powder diffraction , *TUBES , *MARS (Planet) , *TITANIUM alloys - Abstract
The joint NASA‐ESA Mars sample return campaign aims to return up to 31 sample tubes containing drilled sedimentary and igneous cores and regolith. The titanium alloy tubes will initially still be sealed when they are retrieved. Several types of measurement will be carried out on sealed samples in the pre‐basic characterization phase of scientific investigation. We show that powder x‐ray diffraction (XRD) analysis can be successfully carried out on sealed samples using an x‐ray source at the I12 beamline of Diamond Light Source synchrotron. Our experiment used an analog sample tube and a Martian regolith analog (Icelandic basaltic sand). The titanium walls of the tube analog give strong but few diffraction peaks, making identification of the major constituent mineral phases feasible. A more significant constraint on quantification of mineral phase abundances by this XRD technique is likely to be the grain size of the sample. This technique opens up the possibility of initial mineralogical analysis of samples returned from Jezero crater without opening the sample tubes and the potential changes to the sample that entails. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Enhanced Groundwater Flow on and Below Vera Rubin Ridge, the Murray Formation, Gale Crater: Evidence from Thermochemical Modeling.
- Author
-
Turner, S. M. R, Schwenzer, S. P, Bridges, J. C, Rampe, E. B, Bedford, C. C, Achilles, C. N, McAdam, A, Mangold, N, Hicks, L. J, Parnell, J, Kirnbauer, T, Fraeman, A. A, and Reed, M. H
- Subjects
Space Sciences (General) - Abstract
NASA’s Mars Science Laboratory Curiosity rover has been exploring Vera Rubin ridge (VRR), part of the Murray formation in Gale crater, Mars, between sol 1809 and 2302. Evidence for Fe-oxides and phyllosilicates in mineralogical and geochemical data for this region was returned by Curiosity [1-5]. We applied thermochemical modeling to con-strain the formation conditions of the phyllosilicate-hematite assemblage identified on and below VRR. Average alteration compositions for the Murray formation on and below VRR were derived using CheMin and APXS data. These compositions were reacted with Gale Portage Water (GPW) between 25–100 °C and for 10% and 50% Fe3+/Fetot of the host rock [6]. Here we summarize models run at 50 °C and 10% Fe3+/Fetot for alteration compositions derived from Murray host rock compositions.
- Published
- 2020
8. Characterisation of Float Rocks at Ireson Hill, Gale Crater
- Author
-
Bowden, D. L, Bridges, J. C, Schwenzer, S. P, Wiens, R. C, Gasnault, O, Thompson, L, Gasda, P, and Bedford, C
- Subjects
Space Sciences (General) - Abstract
Float rocks discovered by surface missions on Mars have given unique insights into the sedimentary, diagenetic and igneous processes that have operated throughout the planet’s history. In addition, Gale sedimentary rocks, both float and in situ, record a combination of source compositions and diagenetic overprints. We examine a group of float rocks that were identified by the Mars Science Laboratory mission’s Curiosity rover at the Ireson Hill site, circa. sol 1600 using ChemCam LIBS, APXS and images from the MastCam, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro-Imager (RMI) cameras. Geochemical data provided by the APXS and ChemCam instruments allow us to compare the compositions of these rocks to known rock types from Gale crater, as well as elsewhere on Mars. Ireson Hill is a 15 m long butte in the Murray formation with a dark cap-ping unit with chemical and stratigraphic consistency with the Stimson formation. A total of 6 float rocks have been studied on the butte.
- Published
- 2020
9. The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument
- Author
-
Frydenvang, J, Mangold, N, Wiens, R. C, Fraeman, A. A, Edgar, L. A, Fedo, C, L’Haridon, J, Bedford, C. C, Gupta, S, Grotzinger, J. P, Bridges, J. C, Clark, B. C, Rampe, E. B, Gasnault, O, Maurice, S, Gasda, P. J, Lanza, N. L, Olilla, A. M, Meslin, P.-Y, Payr, V, Calef, F, Salvatore, M, House, C. H, and Gabriel, T. S. J
- Subjects
Space Sciences (General) - Abstract
The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign.
- Published
- 2020
10. Thermochemical Modelling of Fluid-Rock Reactions in Vera Rubin Ridge, Galecrater, Mars
- Author
-
Turner, S. M. R, Schwenzer, S. P, Bridges, J. C, Bedford, C. C, Rampe, E. B, Fraeman, A. A, McAdam, A, Mangold, N, and L'Haridon, J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Vera Rubin Ridge (VRR) in Gale Crater, Mars, is a ~200 m wide ~6.5 km long northeast- southwest resistant geomorphological feature on the northern slopes of Aeolis Mons (Mt. Sharp). Analysis of Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) orbital data showed that VRR has strong hematite spectral signatures. Hematite was confirmed in-situ at VRR with the Curiosity rover and has been shown to be present throughout the Mur- ray formation. VRR is stratigraphically continu-ous with the underlying Murray formation. Previous thermochemical modelling showed how hematite at VRR could have formed as the result of open-system weathering at high water/rock ratios. Here we use thermochemical modelling to investigate possible reaction pathways for the hematite-clay- bearing assemblage observed at VRR, starting from an identified least-altered (minimum clay content) Murray composition, and a Mars basal brine.
- Published
- 2019
11. Using Chemcam Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Banham, S, Wiens, R. C, Frydenvang, J, Gasnault, O, Rampe, E. B, and Gasda, P. J
- Subjects
Space Sciences (General) - Abstract
The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition.
- Published
- 2019
12. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter
- Author
-
Thomas, N., Cremonese, G., Ziethe, R., Gerber, M., Brändli, M., Bruno, G., Erismann, M., Gambicorti, L., Gerber, T., Ghose, K., Gruber, M., Gubler, P., Mischler, H., Jost, J., Piazza, D., Pommerol, A., Rieder, M., Roloff, V., Servonet, A., Trottmann, W., Uthaicharoenpong, T., Zimmermann, C., Vernani, D., Johnson, M., Pelò, E., Weigel, T., Viertl, J., De Roux, N., Lochmatter, P., Sutter, G., Casciello, A., Hausner, T., Ficai Veltroni, I., Da Deppo, V., Orleanski, P., Nowosielski, W., Zawistowski, T., Szalai, S., Sodor, B., Tulyakov, S., Troznai, G., Banaskiewicz, M., Bridges, J. C., Byrne, S., Debei, S., El-Maarry, M. R., Hauber, E., Hansen, C. J., Ivanov, A., Keszthelyi, L., Kirk, R., Kuzmin, R., Mangold, N., Marinangeli, L., Markiewicz, W. J., Massironi, M., McEwen, A. S., Okubo, C., Tornabene, L. L., Wajer, P., and Wray, J. J.
- Published
- 2017
- Full Text
- View/download PDF
13. The Winchcombe meteorite—A regolith breccia from a rubble pile CM chondrite asteroid
- Author
-
Suttle, M. D., primary, Daly, L., additional, Jones, R. H., additional, Jenkins, L., additional, Van Ginneken, M., additional, Mitchell, J. T., additional, Bridges, J. C., additional, Hicks, L. J., additional, Johnson, D., additional, Rollinson, G., additional, Taylor, R., additional, Genge, M. J., additional, Schröder, C., additional, Trimby, P., additional, Mansour, H., additional, Piazolo, S., additional, Bonsall, E., additional, Salge, T., additional, Heard, R., additional, Findlay, R., additional, King, A. J., additional, Bates, H. C., additional, Lee, M. R., additional, Stephen, N. R., additional, Willcocks, F. M., additional, Greenwood, R. C., additional, Franchi, I. A., additional, Russell, S. S., additional, Harrison, C. S., additional, Schofield, P. F., additional, Almeida, N. V., additional, Floyd, C., additional, Martin, P.‐E., additional, Joy, K. H., additional, Wozniakiewicz, P. J., additional, Hallatt, D., additional, Burchell, M. J., additional, Alesbrook, L. S., additional, Spathis, V., additional, Cornwell, L. T., additional, and Dignam, A., additional
- Published
- 2022
- Full Text
- View/download PDF
14. Mars Science Laboratory CheMin Data From the Glen Torridon Region and the Significance of Lake‐Groundwater Interactions in Interpreting Mineralogy and Sedimentary History
- Author
-
Thorpe, Michael T., primary, Bristow, Thomas F., additional, Rampe, Elizabeth B., additional, Tosca, Nicholas J., additional, Grotzinger, J. P., additional, Bennett, K. A., additional, Achilles, C. N., additional, Blake, D. F., additional, Chipera, S. J., additional, Downs, G., additional, Downs, R. T., additional, Morrison, S. M., additional, Tu, V., additional, Castle, N., additional, Craig, P., additional, Marais, D. J. Des, additional, Hazen, R. M., additional, Ming, D. W., additional, Morris, R. V., additional, Treiman, A. H., additional, Vaniman, D. T., additional, Yen, A. S., additional, Vasavada, A. R., additional, Dehouck, E., additional, Bridges, J. C., additional, Berger, J., additional, McAdam, A., additional, Peretyazhko, T., additional, Siebach, K. L., additional, Bryk, A. B., additional, Fox, V. K., additional, and Fedo, C. M., additional
- Published
- 2022
- Full Text
- View/download PDF
15. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
16. Geochemical Endmembers Preserved in Gale Crater: A Tale of Two Mudstones and Their Compositional Differences According to Chemcam
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Wiens, R. C, Rampe, E. B, Frydenvang, J, and Gasda, P. J
- Subjects
Geophysics - Abstract
Gale crater contains two fine-grained mudstone sedimentary units: The Sheepbed mudstone member, and the Murray formation mud-stones. These mudstones formed as part of an ancient fluviolacustrine system. The NASA Curiosity rover has analysed these mudstone units using the Chemistry and Camera (ChemCam), Alpha Particle X-ray Spectrometer (APXS) and Chemistry and Mineralogy (CheMin) onboard instrument suites. Subsequent mineralogical analyses have uncovered a wide geochemical and mineralogical diversity across and within these two mudstone formations. This study aims to determine the principal cause (alteration or source region) of this geochemical variation through a statistical analysis of the ChemCam dataset up to sol 1482, including the lower to middle Murray formation.
- Published
- 2018
17. Martian Fluvial Conglomerates at Gale Crater
- Author
-
Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., Mangold, N., Malin, M. C., Edgett, K. S., Maurice, S., Forni, O., Gasnault, O., Ollila, A., Newsom, H. E., Dromart, G., Palucis, M. C., Yingst, R. A., Anderson, R. B., Herkenhoff, K. E., Le Mouélic, S., Goetz, W., Madsen, M. B., Koefoed, A., Jensen, J. K., Bridges, J. C., Schwenzer, S. P., Lewis, K. W., Stack, K. M., Rubin, D., Kah, L. C., Bell, J. F., Farmer, J. D., Sullivan, R., Van Beek, T., Blaney, D. L., Pariser, O., and Deen, R. G.
- Published
- 2013
- Full Text
- View/download PDF
18. Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes
- Author
-
Bridges, J. C., Catling, D. C., Saxton, J. M., Swindle, T. D., Lyon, I. C., Grady, M. M., Kallenbach, Reinald, editor, Geiss, Johannes, editor, and Hartmann, William K., editor
- Published
- 2001
- Full Text
- View/download PDF
19. Fluids During Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars
- Author
-
Schwenzer, S. P, Bridges, J. C, Weins, R. C, Conrad, P. G, Kelley, S. P, Leveille, R, Mangold, N, Martin-Torres, J, McAdam, A, Newsom, H, Zorzano, M. P, Rapin, W, Spray, J, Treiman, A. H, Westall, F, Fairen, A. G, and Meslin, P.-Y
- Subjects
Lunar And Planetary Science And Exploration - Abstract
We model the fluids involved in the alteration processes recorded in the Sheep bed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations relative to terrestrial ground waters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(exp -3) to 10(exp -2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this ground water- type fluid formed impure sulfate- and silica-rich deposits veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay,or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.
- Published
- 2016
- Full Text
- View/download PDF
20. Modeling of Sulfide Microenvironments on Mars
- Author
-
Schwenzer, S. P, Bridges, J. C, McAdam, A, Steer, E. D, Conrad, P. G, Kelley, S. P, Wiens, R. C, Mangold, N, Grotzinger, J, Eigenbrode, J. L, Franz, H. B, and Sutter, B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.
- Published
- 2016
21. Early diagenesis at and below Vera Rubin ridge, Gale crater, Mars
- Author
-
Turner, S. M. R., primary, Schwenzer, S. P., additional, Bridges, J. C., additional, Rampe, E. B., additional, Bedford, C. C., additional, Achilles, C. N., additional, McAdam, A. C., additional, Mangold, N., additional, Hicks, L. J., additional, Parnell, J., additional, Fraeman, A. A., additional, and Reed, M. H., additional
- Published
- 2021
- Full Text
- View/download PDF
22. The Distribution of Peak‐Ring Basins on Mercury and Their Correlation With the High‐Mg/Si Terrane
- Author
-
Hall, G. P., primary, Martindale, A., additional, Bridges, J. C., additional, Nittler, L. R., additional, and Bunce, E. J., additional
- Published
- 2021
- Full Text
- View/download PDF
23. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
McLennan, S. M., Anderson, R. B., Bell, J. F., III, Bridges, J. C., Calef, F., III, Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
24. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars
- Author
-
Nachon, M, Clegg, S. N, Mangold, N, Schroeder, S, Kah, L. C, Dromart, G, Ollila, A, Johnson, J. R, Oehler, D. Z, Bridges, J. C, LeMouelic, S, Forni, O, Wiens, R. C, Rapin, W, Anderson, R. B, Blaney, D. L, Bell, J. F. , III, Clark, B, Cousin, A, Dyar, M. D, Ehlmann, B, Fabre, C, Gasnault, O, Grotzinger, J, Lasue, J, Lewin, E, Leveille, R, McLennan, S, Maurice, S, Meslin, P.-Y, Rice, M, Squyres, S. W, Stack, K, Sumner, D. Y, Vaniman, D, and Wellington, D
- Subjects
Geophysics - Abstract
Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].
- Published
- 2014
25. Chemical Evidence for Smectites and Zeolites on Mars: Criteria and Limitations
- Author
-
Clark, B. C, Ming, D, Vaniman, D, Wiens, R, Gellert, R, Bridges, J. C, and Morris, D
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Aqueous alteration on Mars can produce a range of tell-tale secondary minerals [1]. Surface missions typically obtain detailed and highly localized element compositional information, but not always mineralogical information, whereas orbital missions deduce mineralogy from relatively high spatial resolution IR spectral mapping (decameters scale, for CRISM), but obtain element data only over much larger areas of martian terrain (~200 km). Surface missions have also discovered several occurrences of major geochemical alteration of igneous precursors, for many of which elemental compositional is the only diagnostic information available. Many types of clays and zeolites have quasi-unique element profiles which may be used to implicate their presence. In some cases, one or more candidate minerals are sufficiently close in their component elements and their stoichiometry that ambiguity must remain, unless other constraints can be brought to bear. Geochemical characteristics of alteration products most likely on Mars can be compared to results from MER and MSL rover missions (e.g. Independence [4] and Esperance samples). These considerations are needed for MER Opportunity rover now that Mini-TES is no longer operational. It also has importance for exploration by the MSL Curiosity rover because inferences and deductions available from ChemCam (CCAM) remote LIBS and/or in situ x-ray fluorescence (APXS) can be used as indicators for triage to select materials to sample for limited-resource instruments, SAM and Chemin.
- Published
- 2014
26. Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars:Summary and Synthesis of Curiosity's Exploration Campaign
- Author
-
Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M., Catalano, J. G., Dietrich, W. E., Gabriel, T. S.J., Vasavada, A. R., Grotzinger, J. P., L'Haridon, J., Mangold, N., Sun, V. Z., House, C. H., Bryk, A. B., Hardgrove, C., Czarnecki, S., Stack, K. M., Morris, R. V., Arvidson, R. E., Banham, S. G., Bennett, K. A., Bridges, J. C., Edwards, C. S., Fischer, W. W., Fox, V. K., Gupta, S., Horgan, B. H.N., Jacob, S. R., Johnson, J. R., Johnson, S. S., Rubin, D. M., Salvatore, M. R., Schwenzer, S. P., Siebach, K. L., Stein, N. T., Turner, S. M.R., Wellington, D. F., Wiens, R. C., Williams, A. J., David, G., Wong, G. M., Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M., Catalano, J. G., Dietrich, W. E., Gabriel, T. S.J., Vasavada, A. R., Grotzinger, J. P., L'Haridon, J., Mangold, N., Sun, V. Z., House, C. H., Bryk, A. B., Hardgrove, C., Czarnecki, S., Stack, K. M., Morris, R. V., Arvidson, R. E., Banham, S. G., Bennett, K. A., Bridges, J. C., Edwards, C. S., Fischer, W. W., Fox, V. K., Gupta, S., Horgan, B. H.N., Jacob, S. R., Johnson, J. R., Johnson, S. S., Rubin, D. M., Salvatore, M. R., Schwenzer, S. P., Siebach, K. L., Stein, N. T., Turner, S. M.R., Wellington, D. F., Wiens, R. C., Williams, A. J., David, G., and Wong, G. M.
- Abstract
This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray-colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe-rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric-related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.
- Published
- 2020
27. The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument
- Author
-
Frydenvang, J., Mangold, N., Wiens, R. C., Fraeman, A. A., Edgar, L. A., Fedo, C. M., L'Haridon, J., Bedford, C. C., Gupta, Sanjeev, Grotzinger, J. P., Bridges, J. C., Clark, B. C., Rampe, E. B., Gasnault, O., Maurice, S., Gasda, P. J., Lanza, N. L., Olilla, A. M., Meslin, P. Y., Payré, V., Calef, F., Salvatore, Mark, House, C. H., Frydenvang, J., Mangold, N., Wiens, R. C., Fraeman, A. A., Edgar, L. A., Fedo, C. M., L'Haridon, J., Bedford, C. C., Gupta, Sanjeev, Grotzinger, J. P., Bridges, J. C., Clark, B. C., Rampe, E. B., Gasnault, O., Maurice, S., Gasda, P. J., Lanza, N. L., Olilla, A. M., Meslin, P. Y., Payré, V., Calef, F., Salvatore, Mark, and House, C. H.
- Abstract
Geochemical results are presented from Curiosity's exploration of Vera Rubin ridge (VRR), in addition to the full chemostratigraphy of the predominantly lacustrine mudstone Murray formation up to and including VRR. VRR is a prominent ridge flanking Aeolis Mons (informally Mt. Sharp), the central mound in Gale crater, Mars, and was a key area of interest for the Mars Science Laboratory mission. ChemCam data show that VRR is overall geochemically similar to lower-lying members of the Murray formation, even though the top of VRR shows a strong hematite spectral signature as observed from orbit. Although overall geochemically similar, VRR is characterized by a prominent decrease in Li abundance and Chemical Index of Alteration across the ridge. This decrease follows the morphology of the ridge rather than elevation and is inferred to reflect a nondepositionally controlled decrease in clay mineral abundance in VRR rocks. Additionally, a notable enrichment in Mn above baseline levels is observed on VRR. While not supporting a single model, the results suggest that VRR rocks were likely affected by multiple episodes of postdepositional groundwater interactions that made them more erosionally resistant than surrounding Murray rocks, thus resulting in the modern-day ridge after subsequent erosion.
- Published
- 2020
28. Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of Curiosity's Exploration Campaign
- Author
-
Fraeman, A. A., primary, Edgar, L. A., additional, Rampe, E. B., additional, Thompson, L. M., additional, Frydenvang, J., additional, Fedo, C. M., additional, Catalano, J. G., additional, Dietrich, W. E., additional, Gabriel, T. S. J., additional, Vasavada, A. R., additional, Grotzinger, J. P., additional, L'Haridon, J., additional, Mangold, N., additional, Sun, V. Z., additional, House, C. H., additional, Bryk, A. B., additional, Hardgrove, C., additional, Czarnecki, S., additional, Stack, K. M., additional, Morris, R. V., additional, Arvidson, R. E., additional, Banham, S. G., additional, Bennett, K. A., additional, Bridges, J. C., additional, Edwards, C. S., additional, Fischer, W. W., additional, Fox, V. K., additional, Gupta, S., additional, Horgan, B. H. N., additional, Jacob, S. R., additional, Johnson, J. R., additional, Johnson, S. S., additional, Rubin, D. M., additional, Salvatore, M. R., additional, Schwenzer, S. P., additional, Siebach, K. L., additional, Stein, N. T., additional, Turner, S. M. R., additional, Wellington, D. F., additional, Wiens, R. C., additional, Williams, A. J., additional, David, G., additional, and Wong, G. M., additional
- Published
- 2020
- Full Text
- View/download PDF
29. Fe‐redox changes in Itokawa space‐weathered rims
- Author
-
Hicks, L. J., primary, Bridges, J. C., additional, Noguchi, T., additional, Miyake, A., additional, Piercy, J. D., additional, and Baker, S. H., additional
- Published
- 2020
- Full Text
- View/download PDF
30. The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument
- Author
-
Frydenvang, J., primary, Mangold, N., additional, Wiens, R. C., additional, Fraeman, A. A., additional, Edgar, L. A., additional, Fedo, C. M., additional, L'Haridon, J., additional, Bedford, C. C., additional, Gupta, S., additional, Grotzinger, J. P., additional, Bridges, J. C., additional, Clark, B. C., additional, Rampe, E. B., additional, Gasnault, O., additional, Maurice, S., additional, Gasda, P. J., additional, Lanza, N. L., additional, Olilla, A. M., additional, Meslin, P.‐Y., additional, Payré, V., additional, Calef, F., additional, Salvatore, M., additional, and House, C. H., additional
- Published
- 2020
- Full Text
- View/download PDF
31. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues
- Author
-
Kearsley, A. T, Westphal, A. J, Stadermann, F. J, Armes, S. P, Ball, A. D, Borg, J, Bridges, J. C, Brownlee, D. E, Burchell, M. J, Chater, R. J, Davis, A. M, Floss, C, Flynn, G, Gainsforth, Z, Gruen, E, Heck, P, Hoppe, P, Hoerz, F, Howard, L. E, Howe, G, Huss, G. R, Huth, J, Landgraf, M, Leitner, J, and Leroux, H
- Subjects
Space Sciences (General) - Abstract
Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).
- Published
- 2010
32. Feldspathic Cumulate Samples and Plutonic Rocks in Gale Crater: Comparisons to Martian Meteorites
- Author
-
Bridges, J. C., Cousin, A., Sautter, V., William Rapin, Bowden, D., Thompson, L., Schwenzer, S. P., Bedford, C., Payre, V., Gasnault, O., Forni, O., Pinet, P., Wiens, R., Yingst, R. A., Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
The Curiosity Rover of Mars Science Laboratory has identified igneous float rocks in Gale Crater which offer new insights about the differentiation of the martian lithosphere. Here we describe likely origins for some unique Gale plutonic and cumulate rocks and compare to the martian meteorites. At the Ireson Hill locality around sol 1606 a group of float rocks with resistant, dreikanter morphologies were identified which include igneous textures, notably the 10 cm Pogy sample. On sol 2016 of the MSL mission, a group of float rocks were studied in detail, including Askival, which is a light toned rock igneous rock similar to Peacock_Hills (sol 19) and Bindi (sol 544).
- Published
- 2019
33. Machine Learning Applied to MSL/Chemcam Data
- Author
-
Forni, O., Gasnault, O., Cousin, A., Anderson, R. B., Dehouck, E., David, G., Pinet, P., Bridges, J. C., Wiens, R. C., Maurice, S., Meslin, P.-Y., Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; We want to test and evaluate the performances in terms of classification and prediction of machine learning techniques applied to the ChemCam data.
- Published
- 2019
34. Probable Chondritic Fragments Detected by ChemCam in Gale Crater
- Author
-
Lasue, J., Meslin, P. Y., Sautter, V., Maroger, I., Krämer Ruggiu, L., Bridges, J. C., Lewin, E., Wiens, R. C., Beck, P., Cousin, A., Forni, O., Gasnault, O., Goetz, W., Johnson, J. R., Le Mouélic, S., Nachon, M., Newsom, H., Maurice, S., Wellington, D. F., Los Alamos National Laboratory (LANL), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; ChemCam identified two fragments with elevated Ni (>1wt.%) and MgO ( 20-30wt.%) and an Mg/Si ratio consistent with ordinary chondrites.
- Published
- 2019
35. Using ChemCam-Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C., Schwenzer, S. P., Bridges, J. C., Banham, S., Wiens, R. C., Frydenvang, J., Gasnault, O., Rampe, E. B., Gasda, P. J., Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We have identified the geochemical signature of mineral sorting in Gale's ancient dune deposits and used this to estimate the net sediment transport direction.
- Published
- 2019
36. Diversity and Areal Density of Iron-Nickel Meteorites Analyzed by Chemcam in Gale Crater
- Author
-
Y Meslin, P., Wellington, D., Wiens, R. C., Johnson, J. R., Beek, J., Gasnault, O., Sautter, V., Maroger, I., Lasue, J., Beck, P., Bridges, J. C., Cohen, B., Ashley, J. W., Fairen, A. G., Newsom, H., Cousin, A., Forni, O., Calef, F., William Rapin, Maurice, S., Chide, B., Schröder, S., Goetz, W., Mangold, N., Gabriel, T., Lanza, N., Pinet, P., Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH)-NASA, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; A dozen iron meteorites have been analyzed in Gale Crater, with distinct compositions. We estimate their areal density, discuss their fate and distribution.
- Published
- 2019
37. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution
- Author
-
Borg, J, Horz, F, Bridges, J. C, Burchell, M. J, Djouadi, Z, Floss, C, Graham, G. A, Green, S. F, Heck, P. R, Hoppe, P, Huth, J, Kearsley, A, Leroux, H, Marhas, K, Stadermann, F. J, and Teslich, N
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
- Published
- 2007
38. EURO-CARES AS ROADMAP FOR A EUROPEAN SAMPLE CURATION FACILITY
- Author
-
Brucato, J. R., Russell, S. S., Smith, C. L., Hutzler, A., Meneghin, A., Aléon, J., Bennett, A., Berthou, L., Bridges, J. C., Debaille, V., Ferrière, L., Folco, L., Foucher, F., Franchi, I., Gounelle, M., Grady, M., Leuko, S., Longobardo, A., Pottage, T., Rettberg, Petra, Vrublevskis, J., Westall, F., and Zipfel, J. and EURO-CARES Team
- Subjects
Strahlenbiologie ,Planetary Protection ,Horizon-2020 EURO-CARES project - Abstract
EURO-CARES (European Curation of Astromaterials Returned from Exploration of Space) was a three year (2015-2017), multinational project, funded under the European Commission's Horizon2020 research programme to develop a roadmap for a European Extra-terrestrial Sample Curation Facility (ESCF). Such an ESCF was designed to receive and curate samples returned from Solar System exploration missions to asteroids, Mars, the Moon, and comets. So far, there are only two facilities dedicated for unrestricted returned samples: the NASA Johnson Space Centre in Houston (USA) and the JAXA Hayabusa curation facility in Sagamihara (Japan). Previous studies of an ESCF were either country-specific (e.g., [1]) or mission/target specific (e.g., MarcoPolo-R [2]). With the EURO-CARES project we proposed to move onwards from these specific studies, using experience accumulated at NASA, JAXA, and in various laboratories and museums curating meteorites, in combination with expertise from biosafety laboratories, cleanroom manufacturers, electronics and pharmaceutical companies, nuclear industry, etc. Long-term curation of extra-terrestrial samples requires that the samples are kept as clean as possible to minimize the risk of detrimental contaminants, at the same time ensuring that Martian samples remain contained in case of biohazards. The requirements for a combined high containment and ultraclean facility will naturally lead to the development of a highly specialized and unique facility that will require the development of novel scientific and engineering techniques. We report here a summary of the EUROCARES study.
- Published
- 2018
39. Mineral Surface and Fluid Chemistry in Nakhlite Analog Water-Rock Reactions
- Author
-
Miller, M. A., Susanne Petra Schwenzer, Bridges, J. C., Hicks, L. J., Ott, U., Filiberto, J., Chavez, C., Smith, H., Treiman, A. H., Kelley, S. P., Moore, J. M., Swindle, T. D., Bullock, M. A., and Mcintosh, R. A.
- Subjects
sense organs ,skin and connective tissue diseases - Abstract
We report on experiments with Mars analog materials under diagenetic conditions and find characteristic chemical surface changes in correspondence with the fluid conditions.
- Published
- 2018
40. Amazonian Hydrothermal Alteration Comparing Nakhlite Secondary Mineralogy to Water Rock Reaction Experiments
- Author
-
Bridges, J. C., Hicks, L. J., Miller, M. A., Susanne Petra Schwenzer, Ott, U., Filiberto, J., Chavez, C., Smith, H., Treiman, A. H., Kelley, S. P., Moore, J. M., Swindle, T. D., Bullock, M. A., Mcintosh, R. A., and Craig, P.
- Abstract
We report on results from experiments with Mars analog materials under diagenetic conditions. The mineralogical results of our experiments suggest that an important type of fluid alteration in the Amazonian may be short duration (e.g. less than 1 year) events from near neutral, dilute brines, that were able to exchange CO2 either directly, or via ice reservoirs, with the atmosphere.
- Published
- 2018
41. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars: Silica Enriching Diagenesis, Gale, Mars
- Author
-
Frydenvang, J., Gasda, P. J., Hurowitz, J. A., Grotzinger, J. P., Wiens, R. C., Newsom, H. E., Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S., Fisk, M. R., Johnson, J. R., Rapin, W., Stein, N. T., Clegg, S. M., Schwenzer, S. P., Bedford, C. C., Edwards, P., Mangold, N., Cousin, A., Anderson, R. B., Payré, V., Vaniman, D., Blake, D. F., Lanza, N. L., Gupta, S., Van Beek, J., Sautter, V., Meslin, P.-Y., Rice, M., Milliken, R., Gellert, R., Thompson, L., Clark, B. C., Sumner, D. Y., Fraeman, A. A., Kinch, K. M., Madsen, M. B., Mitrofanov, I. G., Jun, I., Calef, F., and Vasavada, A. R.
- Abstract
Diagenetic silica enrichment in fracture‐associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
- Published
- 2017
42. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
- Author
-
Frydenvang, J., Gasada, P. J., Hurowitz, J. A., Grotzinger, J. P, Wiens, R. C., Newsom, H. E., Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S, Fisk, M. R., Johnson, J. R., Rapin, W., Stein, N. T., Clegg, S. M., Schwenzer, Susanne, Bedford, Candice, Edwards, P., Mangold, N., Cousin, A., Anderson, R. B., Payre, V., Vaniman, D., Blake, D. F., Lanza, N. L., Gupta, S., Van Beek, J., Sautter, V, Meslin, P.-Y., Rice, M., Milliken, R., Gellert, R., Thompson, L., Clark, B. C., Sumner, D. Y., Fraeman, A. A., Kinch, K. M., Madsen, M. B., Mitrofanov, I. G., Jun, I., Calef, F., Vasavada, A. R., Los Alamos National Laboratory (LANL), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth and Planetary Sciences [Albuquerque] (EPS), The University of New Mexico [Albuquerque], Malin Space Science Systems (MSSS), Department of Physics and Astronomy [Leicester], University of Leicester, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), The Open University Business School [Milton Keynes], The Open University [Milton Keynes] (OU), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), NASA Ames Research Center (ARC), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Western Washington University (WWU), Department of Geological Sciences [Providence], Brown University, Department of Physics [Guelph], University of Guelph, University of New Brunswick (UNB), Space Science Institute [Boulder] (SSI), Department of Earth and Planetary Sciences [Univ California Davis] (EPS - UC Davis), University of California [Davis] (UC Davis), University of California (UC)-University of California (UC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), NASA MSL, Villum Fonden, Det Frie Forskningsrad (DFF), UKSA, UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC), and UK Space Agency
- Subjects
[SDU]Sciences of the Universe [physics] ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Silica ,MSL ,Gale crater ,Groundwater ,Diagenesis - Abstract
International audience; Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
- Published
- 2017
- Full Text
- View/download PDF
43. Evolved Igneous Materials in Gale crater, Mars
- Author
-
Gasda, P. J., Bridges, J. C., Sautter, V., Thompson, L., Cousin, A., Mangold, N., Maurice, S., Wiens, R. C., Bedford, C., and Schwenzer, S. P.
- Published
- 2017
44. Geochemical Endmembers preserved in the fluviolacustrine sediments of Gale crater
- Author
-
Bedford, C. C., Bridges, J. C., Schwenzer, S. P., Wiens, R. C., Rampe, E. B., Frydenvang, J., and Gasda, P. J.
- Published
- 2017
45. Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration
- Author
-
Hicks, L. J., MacArthur, J. L., Bridges, J. C., Price, M. C., Wickham-Eade, Jamie E., Burchell, M. J., Hansford, G. M., Butterworth, A. L., Gurman, S. J., Baker, S. H., Hicks, L. J., MacArthur, J. L., Bridges, J. C., Price, M. C., Wickham-Eade, Jamie E., Burchell, M. J., Hansford, G. M., Butterworth, A. L., Gurman, S. J., and Baker, S. H.
- Abstract
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe-K X-ray absorption spectroscopy with insitu transmission XRD and X-ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1kms(-1), using a light-gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel
- Published
- 2017
46. NWA 10659: A CLAY-RICH NAKHLITE PAIR OF NWA 10153
- Author
-
Hicks, L. J., Bridges, J. C., Greenwood, R. C., and Franchi, I. A.
- Published
- 2016
47. Noble gas fractionation in hydrous rock alteration under diagenetic pressure and temperature conditions
- Author
-
Schwenzer, S. P., Bullock, M. A., Bridges, J. C., Chavez, C. L., Filiberto, J., Hicks, L. J., Kelley, S. P., Miller, M. A., Moore, J. M., Smith, H. D., Swindle, T. D., and Treiman, A. H.
- Published
- 2016
48. Identification of the Beagle 2 lander on Mars
- Author
-
Bridges, J. C., primary, Clemmet, J., additional, Croon, M., additional, Sims, M. R., additional, Pullan, D., additional, Muller, J.-P., additional, Tao, Y., additional, Xiong, S., additional, Putri, A. R., additional, Parker, T., additional, Turner, S. M. R., additional, and Pillinger, J. M., additional
- Published
- 2017
- Full Text
- View/download PDF
49. Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration
- Author
-
Hicks, L. J., primary, MacArthur, J. L., additional, Bridges, J. C., additional, Price, M. C., additional, Wickham-Eade, J. E., additional, Burchell, M. J., additional, Hansford, G. M., additional, Butterworth, A. L., additional, Gurman, S. J., additional, and Baker, S. H., additional
- Published
- 2017
- Full Text
- View/download PDF
50. The future of Stardust science
- Author
-
Westphal, A. J., primary, Bridges, J. C., additional, Brownlee, D. E., additional, Butterworth, A. L., additional, De Gregorio, B. T., additional, Dominguez, G., additional, Flynn, G. J., additional, Gainsforth, Z., additional, Ishii, H. A., additional, Joswiak, D., additional, Nittler, L. R., additional, Ogliore, R. C., additional, Palma, R., additional, Pepin, R. O., additional, Stephan, T., additional, and Zolensky, M. E., additional
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.