16 results on '"Brienen, R.J.W."'
Search Results
2. Amazon tree dominance across forest strata
- Author
-
Draper, F.C., Costa, F.R.C., Arellano, G., Phillips, O.L., Duque, A., Macía, M.J., ter Steege, H., Asner, G.P., Berenguer, E., Schietti, J., Socolar, J.B., de Souza, F.C., Dexter, K.G., Jørgensen, P.M., Tello, J.S., Magnusson, W.E., Baker, T.R., Castilho, C.V., Monteagudo-Mendoza, A., Fine, P.V.A., Ruokolainen, K., Coronado, E.N.H., Aymard, G., Dávila, N., Sáenz, M.S., Paredes, M.A.R., Engel, J., Fortunel, C., Paine, C.E.T., Goret, J.-Y., Dourdain, A., Petronelli, P., Allie, E., Andino, J.E.G., Brienen, R.J.W., Pérez, L.C., Manzatto, Â.G., Zambrana, N.Y.P., Molino, J.-F., Sabatier, D., Chave, J., Fauset, S., Villacorta, R.G., Réjou-Méchain, M., Berry, P.E., Melgaço, K., Feldpausch, T.R., Sandoval, E.V., Martinez, R.V., Mesones, I., Junqueira, A.B., Roucoux, K.H., de Toledo, J.J., Andrade, A.C., Camargo, J.L., del Aguila Pasquel, J., Santana, F.D., Laurance, W.F., Laurance, S.G., Lovejoy, T.E., Comiskey, J.A., Galbraith, D.R., Kalamandeen, M., Aguilar, G.E.N., Arenas, J.V., Guerra, C.A.A., Flores, M., Llampazo, G.F., Montenegro, L.A.T., Gomez, R.Z., Pansonato, M.P., Moscoso, V.C., Vleminckx, J., Barrantes, O.J.V., Duivenvoorden, J.F., de Sousa, S.A., Arroyo, L., Perdiz, R.O., Cravo, J.S., Marimon, B.S., Junior, B.H.M., Carvalho, F.A., Damasco, G., Disney, M., Vital, M.S., Diaz, P.R.S., Vicentini, A., Nascimento, H., Higuchi, N., Van Andel, T., Malhi, Y., Ribeiro, S.C., Terborgh, J.W., Thomas, R.S., Dallmeier, F., Prieto, A., Hilário, R.R., Salomão, R.P., Silva, R.C., Casas, L.F., Vieira, I.C.G., Araujo-Murakami, A., Arevalo, F.R., Ramírez-Angulo, H., Torre, E.V., Peñuela, M.C., Killeen, T.J., Pardo, G., Jimenez-Rojas, E., Castro, W., Cabrera, D.G., Pipoly, J., de Sousa, T.R., Silvera, M., Vos, V., Neill, D., Vargas, P.N., Vela, D.M., Aragão, L.E.O.C., Umetsu, R.K., Sierra, R., Wang, O., Young, K.R., Prestes, N.C.C.S., Massi, K.G., Huaymacari, J.R., Gutierrez, G.A.P., Aldana, A.M., Alexiades, M.N., Baccaro, F., Céron, C., Muelbert, A.E., Rios, J.M.G., Lima, A.S., Lloyd, J.L., Pitman, N.C.A., Gamarra, L.V., Oroche, C.J.C., Fuentes, A.F., Palacios, W., Patiño, S., Torres-Lezama, A., Baraloto, C., Draper, F.C., Costa, F.R.C., Arellano, G., Phillips, O.L., Duque, A., Macía, M.J., ter Steege, H., Asner, G.P., Berenguer, E., Schietti, J., Socolar, J.B., de Souza, F.C., Dexter, K.G., Jørgensen, P.M., Tello, J.S., Magnusson, W.E., Baker, T.R., Castilho, C.V., Monteagudo-Mendoza, A., Fine, P.V.A., Ruokolainen, K., Coronado, E.N.H., Aymard, G., Dávila, N., Sáenz, M.S., Paredes, M.A.R., Engel, J., Fortunel, C., Paine, C.E.T., Goret, J.-Y., Dourdain, A., Petronelli, P., Allie, E., Andino, J.E.G., Brienen, R.J.W., Pérez, L.C., Manzatto, Â.G., Zambrana, N.Y.P., Molino, J.-F., Sabatier, D., Chave, J., Fauset, S., Villacorta, R.G., Réjou-Méchain, M., Berry, P.E., Melgaço, K., Feldpausch, T.R., Sandoval, E.V., Martinez, R.V., Mesones, I., Junqueira, A.B., Roucoux, K.H., de Toledo, J.J., Andrade, A.C., Camargo, J.L., del Aguila Pasquel, J., Santana, F.D., Laurance, W.F., Laurance, S.G., Lovejoy, T.E., Comiskey, J.A., Galbraith, D.R., Kalamandeen, M., Aguilar, G.E.N., Arenas, J.V., Guerra, C.A.A., Flores, M., Llampazo, G.F., Montenegro, L.A.T., Gomez, R.Z., Pansonato, M.P., Moscoso, V.C., Vleminckx, J., Barrantes, O.J.V., Duivenvoorden, J.F., de Sousa, S.A., Arroyo, L., Perdiz, R.O., Cravo, J.S., Marimon, B.S., Junior, B.H.M., Carvalho, F.A., Damasco, G., Disney, M., Vital, M.S., Diaz, P.R.S., Vicentini, A., Nascimento, H., Higuchi, N., Van Andel, T., Malhi, Y., Ribeiro, S.C., Terborgh, J.W., Thomas, R.S., Dallmeier, F., Prieto, A., Hilário, R.R., Salomão, R.P., Silva, R.C., Casas, L.F., Vieira, I.C.G., Araujo-Murakami, A., Arevalo, F.R., Ramírez-Angulo, H., Torre, E.V., Peñuela, M.C., Killeen, T.J., Pardo, G., Jimenez-Rojas, E., Castro, W., Cabrera, D.G., Pipoly, J., de Sousa, T.R., Silvera, M., Vos, V., Neill, D., Vargas, P.N., Vela, D.M., Aragão, L.E.O.C., Umetsu, R.K., Sierra, R., Wang, O., Young, K.R., Prestes, N.C.C.S., Massi, K.G., Huaymacari, J.R., Gutierrez, G.A.P., Aldana, A.M., Alexiades, M.N., Baccaro, F., Céron, C., Muelbert, A.E., Rios, J.M.G., Lima, A.S., Lloyd, J.L., Pitman, N.C.A., Gamarra, L.V., Oroche, C.J.C., Fuentes, A.F., Palacios, W., Patiño, S., Torres-Lezama, A., and Baraloto, C.
- Abstract
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 ‘hyperdominant’ species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.
- Published
- 2021
3. Long-term thermal sensitivity of Earth's tropical forests
- Author
-
Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., Phillips, O.L., Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R.V., Baker, T.R., Brienen, R.J.W., Feldpausch, T.R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M.N., Almeida, E.C., de Oliveira, E.A., Dávila, E.Á., Loayza, P.A., Andrade, A., Vieira, S.A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Ashton, P., Aymard C, G., Baccaro, F.B., Banin, L.F., Baraloto, C., Camargo, P.B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S.A., Beeckman, H., Begne, S.K., Bennett, A.C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F.Q., Brncic, T., Brown, F., Burban, B., Camargo, J.L., Castro, W., Céron, C., Ribeiro, S.C., Moscoso, V.C., Chave, J., Chezeaux, E., Clark, C.J., de Souza, F.C., Collins, M., Comiskey, J.A., Valverde, F.C., Medina, M.C., da Costa, L., Dančák, M., Dargie, G.C., Davies, S., Cardozo, N.D., de Haulleville, T., de Medeiros, M.B., Del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L.F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G.F., Foli, E., Ford, A., Gilpin, M., Hall, J.S., Hamer, K.C., Hamilton, A.C., Harris, D.J., Hart, T.B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E.H., Huamantupa-Chuquimaco, I., Huasco, W.H., Jeffery, K.J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M.N.K., Kearsley, E., Umetsu, R.K., Kho, L.K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M.E., Levesley, A., Lima, A.J.N., Lisingo, J., Lopes, A.P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J.C., Lowe, R., Magnusson, W.E., Malumbres-Olarte, J., Manzatto, ÂG., Marimon B.H., Jr, Marshall, A.R., Marthews, T., de Almeida Reis, S.M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E.T.A., Morandi, P.S., Mossman, H.L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P.N., Palacios, W., Camacho, N.P., Peacock, J., Pendry, C., Peñuela Mora, M.C., Pickavance, G.C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J.R., Poulsen, A.D., Preziosi, R., Prieto, A., Primack, R.B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z.R., de Sousa, T.R., Bayona, L.R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R.P., Schietti, J., Sheil, D., Silva, R.C., Espejo, J.S., Valeria, C.S., Silveira, M., Simo-Droissart, M., Simon, M.F., Singh, J., Soto Shareva, Y.C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M.D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., Ter Steege, H., Terborgh, J., Thomas, R., Thomas, S.C., Torres-Lezama, A., Umunay, P., Gamarra, L.V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I.C.G., Torre, E.V., Vleminckx, J., Vos, V., Wang, O., White, L.J.T., Willcock, S., Woods, J.T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P.A., Zwerts, J.A., and Phillips, O.L.
- Abstract
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
- Published
- 2020
4. Compositional response of Amazon forests to climate change
- Author
-
Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G., Phillips, O.L., Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S., Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., Bonal, D., Davila Cardozo, N., Erwin, T., Fauset, S., Hérault, B., Laurance, S., Poorter, L., Qie, L., Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., Almeida de Oliveira, E., Andrade, A., Vieira, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C, G.A., Baraloto, C., Camargo, P.B., Barroso, J.G., Bongers, F., Boot, R., Camargo, J.L., Castro, W., Chama Moscoso, V., Comiskey, J., Cornejo Valverde, F., Lola da Costa, A.C., del Aguila Pasquel, J., Di Fiore, A., Fernanda Duque, L., Elias, F., Engel, J., Flores Llampazo, G., Galbraith, D., Herrera Fernández, R., Honorio Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima, A.J.N., Umetsu, R.K., Laurance, W., Lopez-Gonzalez, G., Lovejoy, T., Aurelio Melo Cruz, O., Morandi, P.S., Neill, D., Núñez Vargas, P., Pallqui Camacho, N.C., Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Salomão, R., Silva, N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., Valenzuela Gamarra, L., van de Meer, P.J., van der Heijden, G., van der Hout, P., Vasquez Martinez, R., Vela, C., Vieira, I.C.G., and Phillips, O.L.
- Abstract
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
- Published
- 2019
5. Adding new evidence to the attribution puzzle of the recent water shortage over São Paulo (Brazil)
- Author
-
Pattnayak, K.C., primary, Gloor, E., additional, Tindall, J.C., additional, Brienen, R.J.W., additional, Barichivich, J., additional, Baker, J.C.A., additional, Spracklen, D.V., additional, Cintra, B.B.L., additional, and Coelho, C.A.S., additional
- Published
- 2018
- Full Text
- View/download PDF
6. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes
- Author
-
Brienen, R.J.W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A., Bottrell, S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M.J., Mielikäinen, K., Oinonen, M., Timonen, M., Brienen, R.J.W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A., Bottrell, S., Callaghan, M., Heaton, T., Helama, S., Helle, G., Leng, M.J., Mielikäinen, K., Oinonen, M., and Timonen, M.
- Abstract
Various studies report substantial increases in intrinsic water-use efficiency (W i ), estimated using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not, however, correct for the effect of intrinsic developmental changes in W i as trees grow larger. Here we show, by comparing W i across varying tree sizes at one CO2 level, that ignoring such developmental effects can severely affect inferences of trees’ W i . W i doubled or even tripled over a trees’ lifespan in three broadleaf species due to changes in tree height and light availability alone, and there are also weak trends for Pine trees. Developmental trends in broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible future tree ring isotope studies require explicit accounting for species-specific developmental effects before CO2 and climate effects are inferred
- Published
- 2017
7. Long-term decline of Amazon carbon the sink
- Author
-
Brienen, R.J.W., Phillips, O.L., Feldpausch, T., Gloor, E., Baker, T.R., Arets, E.J.M.M., Pena Claros, M., and Poorter, L.
- Subjects
plots ,biomass ,growth ,experimental drought ,food and beverages ,Soil Biology ,PE&RC ,sensitivity ,Forest Ecology and Forest Management ,tropical rain-forests ,turnover rates ,wood productivity ,tree mortality ,co2 ,Vegetatie, Bos- en Landschapsecologie ,Bosecologie en Bosbeheer ,Vegetation, Forest and Landscape Ecology ,Bodembiologie - Abstract
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades1, 2, with a substantial fraction of this sink probably located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale1, 2, and is contrary to expectations based on models6.
- Published
- 2015
8. What drives interannual variation in tree ring oxygen isotopes in the Amazon?
- Author
-
Baker, J.C.A., Gloor, M., Spracklen, D.V., Arnold, S.R., Tindall, J.C., Clerici, S.J., Leng, M.J., Brienen, R.J.W., Baker, J.C.A., Gloor, M., Spracklen, D.V., Arnold, S.R., Tindall, J.C., Clerici, S.J., Leng, M.J., and Brienen, R.J.W.
- Abstract
Oxygen isotope ratios in tree rings (δ18OTR) from northern Bolivia record local precipitation δ18O and correlate strongly with Amazon basin-wide rainfall. While this is encouraging evidence that δ18OTR can be used for paleoclimate reconstructions, it remains unclear whether variation in δ18OTR is truly driven by within-basin processes, thus recording Amazon climate directly, or if the isotope signal may already be imprinted on incoming vapor, perhaps reflecting a pan-tropical climate signal. We use atmospheric back trajectories combined with satellite observations of precipitation, together with water vapor transport analysis to show that δ18OTR in Bolivia are indeed controlled by basin-intrinsic processes, with rainout over the basin the most important factor. Furthermore, interannual variation in basin-wide precipitation and atmospheric circulation are both shown to affect δ18OTR. These findings suggest δ18OTR can be reliably used to reconstruct Amazon precipitation and have implications for the interpretation of other paleoproxy records from the Amazon basin.
- Published
- 2016
9. Soil physical constraints as a limiting factor of palm and tree basal area in amazonian forests
- Author
-
Emilio, T., Quesada, C.A., Costa, F., Monteagudo, A., Araujo, A., Pena-Cruz, A., Torres Lezama, A., Castilho, C.V., Neill, D., Vilanova, E., Oblitas Mendoza, E.M., Alvarez, E., Honorio, E.N., Parada, G.A., ter Steege, H., Ramirez-Angulo, H., Chave, J., Terborgh, J.W., Schietti, J., Silveira, M., Penuela-Mora, M.C., Schwarz, M., Banki, O., Philips, O.L., Thomas, R., Vasquez, R., Brienen, R.J.W., Feldpausch, T.R., Killeen, T.J., Baker, T.R., Magnusson, W.E., Mahli, Y., Ecology and Biodiversity, and CERES
- Subjects
tropical forest ,quantile regression ,International ,life-forms ,vegetation types ,ecological limiting factors ,palm-dominated forests ,soil structure - Abstract
Background: Trees and arborescent palms adopt different rooting strategies and responses to physical limitations imposed by soil structure, depth and anoxia. However, the implications of these differences for understanding variation in the relative abundance of these groups have not been explored. Aims: We analysed the relationship between soil physical constraints and tree and palm basal area to understand how the physical properties of soil are directly or indirectly related to the structure and physiognomy of lowland Amazonian forests. Methods: We analysed inventory data from 74 forest plots across Amazonia, from the RAINFOR and PPBio networks for which basal area, stand turnover rates and soil data were available.We related patterns of basal area to environmental variables in ordinary least squares and quantile regression models. Results: Soil physical properties predicted the upper limit for basal area of both trees and palms. This relationship was direct for palms but mediated by forest turnover rates for trees. Soil physical constraints alone explained up to 24% of palm basal area and, together with rainfall, up to 18% of tree basal area. Tree basal area was greatest in forests with lower turnover rates on well-structured soils, while palm basal area was high in weakly structured soils. Conclusions: Our results show that palms and trees are associated with different soil physical conditions. We suggest that adaptations of these life-forms drive their responses to soil structure, and thus shape the overall forest physiognomy of Amazonian forest vegetation.
- Published
- 2014
10. Detecting evidence for CO2 fertilization from tree ring studies: The potential role of sampling biases
- Author
-
Brienen, R.J.W., Gloor, E., and Zuidema, P.A.
- Subjects
increased atmospheric co2 ,rain-forest ,PE&RC ,carbon-dioxide ,growth-rates ,mortality ,Forest Ecology and Forest Management ,radial growth ,sub-alpine forests ,climate-change ,pinus-cembra ,northeastern france ,Bosecologie en Bosbeheer - Abstract
Tree ring analysis allows reconstructing historical growth rates over long periods. Several studies have reported an increasing trend in ring widths, often attributed to growth stimulation by increasing atmospheric CO2 concentration. However, these trends may also have been caused by sampling biases. Here we describe two biases and evaluate their magnitude. (1) The slow-grower survivorship bias is caused by differences in tree longevity of fast- and slow-growing trees within a population. If fast-growing trees live shorter, they are underrepresented in the ancient portion of the tree ring data set. As a result, reconstructed growth rates in the distant past are biased toward slower growth. (2) The big-tree selection bias is caused by sampling only the biggest trees in a population. As a result, slow-growing small trees are underrepresented in recent times as they did not reach the minimum sample diameter. We constructed stochastic models to simulate growth trajectories based on a hypothetical species with lifetime constant growth rates and on observed tree ring data from the tropical tree Cedrela odorata. Tree growth rates used as input in our models were kept constant over time. By mimicking a standard tree ring sampling approach and selecting only big living trees, we show that both biases lead to apparent increases in historical growth rates. Increases for the slow-grower survivorship bias were relatively small and depended strongly on assumptions about tree mortality. The big-tree selection bias resulted in strong historical increases, with a doubling in growth rates over recent decades. A literature review suggests that historical growth increases reported in many tree ring studies may have been partially due to the big-tree sampling bias. We call for great caution in the interpretation of historical growth trends from tree ring analyses and recommend that such studies include individuals of all sizes.
- Published
- 2012
11. Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines
- Author
-
Brienen, R.J.W., Lebrija Trejos, E.E., Zuidema, P.A., and Martínez- Ramos, M.
- Subjects
ring analysis ,tropical forests ,variability ,deciduous forest ,precipitation ,PE&RC ,Forest Ecology and Forest Management ,brachystegia-spiciformis ,caribbean rainfall ,pterocarpus-angolensis ,responses ,Bosecologie en Bosbeheer ,southern-oscillation - Abstract
Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate-growth relations of a pioneer tree, Mimosa acantholoba, occurring in tropical dry secondary forests in southern Mexico. The role of large-scale climatic drivers in determining interannual growth variation was studied by correlating growth to sea surface temperature anomalies (SSTA) of the Atlantic and Pacific Oceans, including the El Nino-Southern Oscillation (ENSO). Annual growth varied eightfold over 1970-2007, and was correlated with wet season rainfall (r=0.75). Temperature, cloud cover and solar variation did not affect growth, although these climate variables correlated with growth due to their relations with rainfall. Strong positive correlations between growth and SSTA occurred in the North tropical Atlantic during the first half of the year, and in the Pacific during the second half of the year. The Pacific influence corresponded closely to ENSO-like influences with negative effects of high SSTA in the eastern Pacific Nino3.4 region on growth due to decreases in rainfall. During El Nino years growth was reduced by 37%. We estimated how growth would be affected by the predicted trend of decreasing rainfall in Central America towards the end of this century. Using rainfall predictions of two sets of climate models, we estimated that growth at the end of this century will be reduced by 12% under a medium (A1B) and 21% under a high (A2) emission scenario. These results suggest that climate change may have repercussions for the carbon sequestration capacity of tropical dry forests in the region.
- Published
- 2010
12. Soil physical constraints as a limiting factor of palm and tree basal area in amazonian forests
- Author
-
Ecology and Biodiversity, CERES, Emilio, T., Quesada, C.A., Costa, F., Monteagudo, A., Araujo, A., Pena-Cruz, A., Torres Lezama, A., Castilho, C.V., Neill, D., Vilanova, E., Oblitas Mendoza, E.M., Alvarez, E., Honorio, E.N., Parada, G.A., ter Steege, H., Ramirez-Angulo, H., Chave, J., Terborgh, J.W., Schietti, J., Silveira, M., Penuela-Mora, M.C., Schwarz, M., Banki, O., Philips, O.L., Thomas, R., Vasquez, R., Brienen, R.J.W., Feldpausch, T.R., Killeen, T.J., Baker, T.R., Magnusson, W.E., Mahli, Y., Ecology and Biodiversity, CERES, Emilio, T., Quesada, C.A., Costa, F., Monteagudo, A., Araujo, A., Pena-Cruz, A., Torres Lezama, A., Castilho, C.V., Neill, D., Vilanova, E., Oblitas Mendoza, E.M., Alvarez, E., Honorio, E.N., Parada, G.A., ter Steege, H., Ramirez-Angulo, H., Chave, J., Terborgh, J.W., Schietti, J., Silveira, M., Penuela-Mora, M.C., Schwarz, M., Banki, O., Philips, O.L., Thomas, R., Vasquez, R., Brienen, R.J.W., Feldpausch, T.R., Killeen, T.J., Baker, T.R., Magnusson, W.E., and Mahli, Y.
- Published
- 2014
13. Tree height integrated into pantropical forest biomass estimates
- Author
-
Feldpausch, Ted R., Lloyd, J., Lewis, Simon L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, Ieda, Andrade, Ana, Aragao, Luiz, Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, Gerardo, Baker, T.R. de, Banki, Olaf, Berry, N. J., Cardozo, N., Jerome, Chave, Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, Niro, Honorio C., E., Iida, Y., Jimenez, E., Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, Jon C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, Casimiro, Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.-H., Peña Cruz, A., Peñuela, M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramírez, F., Ramirez Angulo, H., Reitsma, J.M., Rudas, A., Saiz, G., Salomao, R. P., Schwarz, M., Silva, N., Silva Espejo, J.E., Silveira, Marcos, Sonke, Bonaventura, Stropp, Juliana, Taedoumg, H. E., Tan, S., Ter Steege, Hans, Terborgh, J., Torello-Raventos, M., Van der Heijden, Geertje, Vasquez, R., Vilanova, Emilio, Vos, V. A., White, L., Willcock, S., Woell, H., Phillip, Oliver L., Feldpausch, Ted R., Lloyd, J., Lewis, Simon L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A., Lopez Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, Ieda, Andrade, Ana, Aragao, Luiz, Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, Gerardo, Baker, T.R. de, Banki, Olaf, Berry, N. J., Cardozo, N., Jerome, Chave, Comiskey, J. A., Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, Niro, Honorio C., E., Iida, Y., Jimenez, E., Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, Jon C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, Casimiro, Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.-H., Peña Cruz, A., Peñuela, M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramírez, F., Ramirez Angulo, H., Reitsma, J.M., Rudas, A., Saiz, G., Salomao, R. P., Schwarz, M., Silva, N., Silva Espejo, J.E., Silveira, Marcos, Sonke, Bonaventura, Stropp, Juliana, Taedoumg, H. E., Tan, S., Ter Steege, Hans, Terborgh, J., Torello-Raventos, M., Van der Heijden, Geertje, Vasquez, R., Vilanova, Emilio, Vos, V. A., White, L., Willcock, S., Woell, H., and Phillip, Oliver L.
- Abstract
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- andWeibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (?40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8Mgha?1 (range 6.6 to 112.4) to 8.0Mgha?1 (?2.5 to 23.0). For all plots, aboveground live biomass was ?52.2 Mgha?1 (?82.0 to ?20.3 bootstrapped 95%CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass p
- Published
- 2012
14. Tree height integrated into pantropical forest biomass estimates
- Author
-
Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Montegudo Mendoza, A., Arets, E.J.M.M., Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Montegudo Mendoza, A., and Arets, E.J.M.M.
- Abstract
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (=40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha-1 (range 6.6 to 112.4) to 8.0 Mg ha-1 (-2.5 to 23.0). For all plots, aboveground live biomass was -52.2 Mg ha-1 (-82.0 to -20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total bi
- Published
- 2012
15. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests
- Author
-
Danaë M A Rozendaal, Daniela Requena Suarez, Veronique De Sy, Valerio Avitabile, Sarah Carter, C Y Adou Yao, Esteban Alvarez-Davila, Kristina Anderson-Teixeira, Alejandro Araujo-Murakami, Luzmila Arroyo, Benjamin Barca, Timothy R Baker, Luca Birigazzi, Frans Bongers, Anne Branthomme, Roel J W Brienen, João M B Carreiras, Roberto Cazzolla Gatti, Susan C Cook-Patton, Mathieu Decuyper, Ben DeVries, Andres B Espejo, Ted R Feldpausch, Julian Fox, Javier G P Gamarra, Bronson W Griscom, Nancy Harris, Bruno Hérault, Eurídice N Honorio Coronado, Inge Jonckheere, Eric Konan, Sara M Leavitt, Simon L Lewis, Jeremy A Lindsell, Justin Kassi N’Dja, Anny Estelle N’Guessan, Beatriz Marimon, Edward T A Mitchard, Abel Monteagudo, Alexandra Morel, Anssi Pekkarinen, Oliver L Phillips, Lourens Poorter, Lan Qie, Ervan Rutishauser, Casey M Ryan, Maurizio Santoro, Dos Santos Silayo, Plinio Sist, J W Ferry Slik, Bonaventure Sonké, Martin J P Sullivan, Gaia Vaglio Laurin, Emilio Vilanova, Maria M H Wang, Eliakimu Zahabu, Martin Herold, Rozendaal D.M.A., Requena Suarez D., De Sy V., Avitabile V., Carter S., Adou Yao C.Y., Alvarez-Davila E., Anderson-Teixeira K., Araujo-Murakami A., Arroyo L., Barca B., Baker T.R., Birigazzi L., Bongers F., Branthomme A., Brienen R.J.W., Carreiras J.M.B., Cazzolla Gatti R., Cook-Patton S.C., Decuyper M., Devries B., Espejo A.B., Feldpausch T.R., Fox J., G P Gamarra J., Griscom B.W., Harris N., Herault B., Honorio Coronado E.N., Jonckheere I., Konan E., Leavitt S.M., Lewis S.L., Lindsell J.A., N'Dja J.K., N'Guessan A.E., Marimon B., Mitchard E.T.A., Monteagudo A., Morel A., Pekkarinen A., Phillips O.L., Poorter L., Qie L., Rutishauser E., Ryan C.M., Santoro M., Silayo D.S., Sist P., Slik J.W.F., Sonke B., Sullivan M.J.P., Vaglio Laurin G., Vilanova E., Wang M.M.H., Zahabu E., Herold M., and University of St Andrews. School of Geography & Sustainable Development
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Suivi et d’évaluation ,forest plot ,forêt tropicale ,E-DAS ,Tropical and subtropical forests ,7. Clean energy ,01 natural sciences ,biomasse aérienne des arbres ,Laboratory of Geo-information Science and Remote Sensing ,Environmental Science(all) ,надземная биомасса ,SDG 13 - Climate Action ,старовозрастные леса ,General Environmental Science ,GE ,Enquête ,IPCC ,tropical and subtropical forests ,Aboveground biomass ,PE&RC ,Forest plots ,secondary and old-growth forest ,Plant Production Systems ,aboveground bioma ,Collecte de données ,P01 - Conservation de la nature et ressources foncières ,Crop and Weed Ecology ,aboveground biomass ,GE Environmental Sciences ,Monitoring ,тропические леса ,Secondary and old-growth forests ,010603 evolutionary biology ,Objectif 13 Mesures relatives à la lutte contre les changements climatique ,лесные участки ,forest plots ,SDG 3 - Good Health and Well-being ,вторичные леса ,forêt primaire ,Bosecologie en Bosbeheer ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,SDG 7 - Affordable and Clean Energy ,0105 earth and related environmental sciences ,MCC ,Renewable Energy, Sustainability and the Environment ,Public Health, Environmental and Occupational Health ,субтропические леса ,15. Life on land ,Forest Ecology and Forest Management ,K10 - Production forestière ,secondary and old-growth forests ,monitoring ,13. Climate action ,Plantaardige Productiesystemen ,forêt secondaire - Abstract
Funding: We acknowledge funding from the following organizations: Norwegian Agency for Development Cooperation (Norad); Norwegian International Climate and Forest Initiative (NICFI); International Climate Initiative (IKI) of the German; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB); CGIAR Research Program on Forests, Trees and Agroforestry (CRP‐FTA) with financial support from the CGIAR Fund Donors; EU Horizon 2020 project VERIFY (776810); European Space Agency GlobBiomass project (ESRIN Contract No. 4000113100/14/I-NB); European Research Council (ERC) Advanced Grants T-FORCES (291585) and PANTROP (834775); JAXA (RA-6, EO-RA2); UK Natural Environment Research Council (NERC; including NE/F005806/, NE/D005590/1, NE/T01279X/1, NE/P008755/1 and NE/N012542/1); agreement PR140015 between NERC and the National Centre for Earth Observation; Gordon and Betty Moore Foundation; CNPq (National Council of Science and Technology, Brazil), Grants #401279/2014‐4 (PVE) and #441244/2016‐5 (PELD); Doris Duke Charitable Foundation; the Children's Investment 309 Fund Foundation; COmON Foundation and Good Energies Foundation. For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps. Publisher PDF
- Published
- 2022
16. Tree mode of death and mortality risk factors across Amazon forests
- Author
-
Lily Rodriguez Bayona, Zorayda Restrepo Correa, Marisol Toledo, Ben Hur Marimon Junior, José Luís Camargo, Ima Célia Guimarães Vieira, Georgia Pickavance, Pieter A. Zuidema, Christopher Baraloto, Javier Silva Espejo, Maria Cristina Peñuela-Mora, Nadir Pallqui Camacho, Wendeson Castro, Simon L. Lewis, Susan G. Laurance, Marcos Silveira, Karina Liana Lisboa Melgaço Ladvocat, René G. A. Boot, Simone Aparecida Vieira, Isau Huamantupa-Chuquimaco, Lourens Poorter, Eurídice N. Honorio Coronado, Jeanneth Villalobos Cayo, Armando Torres-Lezama, David A. Neill, Eric Arets, Thomas E. Lovejoy, Gerardo Flores Llampazo, Benoit Burban, Carlos A. Quesada, Kuo-Jung Chao, Casimiro Mendoza, Hans ter Steege, Gabriela Lopez-Gonzalez, Paulo S. Morandi, Adriana Prieto, Juliana Stropp, Eliana Jimenez-Rojas, James Singh, Jon Lloyd, Timothy R. Baker, Jérôme Chave, Ana Andrade, Patrick Meir, Roderick Zagt, Fernando Cornejo Valverde, Joey Talbot, Marielos Peña-Claros, Luzmila Arroyo, Nigel C. A. Pitman, Frans Bongers, Michel Baisie, Plínio Barbosa de Camargo, Alejandro Araujo-Murakami, Varun Swamy, Julio Serrano, Raquel Thomas, Aurora Levesley, Emanuel Gloor, Julie Peacock, David W. Galbraith, Nallaret Davila Cardozo, Adriane Esquivel-Muelbert, Jeanne Houwing-Duistermaat, Timothy J. Killeen, Yadvinder Malhi, Rodolfo Vásquez Martínez, Abel Monteagudo-Mendoza, Edmar Almeida de Oliveira, Natalino Silva, Rafael de Paiva Salomão, Hirma Ramírez-Angulo, Jorcely Barroso, Adriano José Nogueira Lima, Simone Matias Reis, Emilio Vilanova Torre, William F. Laurance, Guido Pardo, James A. Comiskey, Agustín Rudas, Sophie Fauset, Martin J. P. Sullivan, Everton Cristo de Almeida, Luiz E. O. C. Aragão, Rafael Herrera, Percy Núñez Vargas, John Terborgh, Victor Chama Moscoso, Ted R. Feldpausch, Aurélie Dourdain, Damien Bonal, Beatriz Schwantes Marimon, Gerardo A. Aymard C, Esteban Alvarez Dávila, Peter J. Van Der Meer, Luis Valenzuela Gamarra, Terry L. Erwin, Lilian Blanc, Anthony Di Fiore, Antonio Carlos Lola da Costa, Haiyan Liu, Vincent A. Vos, Foster Brown, Roel J. W. Brienen, Patricia Alvarez Loayza, Oliver L. Phillips, Clément Stahl, Niro Higuchi, John Pipoly, Jhon del Aguila Pasquel, Thomas A. M. Pugh, Maxime Rejou-Machain, Geertje M. F. van der Heijden, Peter van der Hout, University of Leeds, Plymouth University, SILVA (SILVA), AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecologie des forêts de Guyane (UMR ECOFOG), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), European Project: 291585,EC:FP7:ERC,ERC-2011-ADG_20110209,T-FORCES(2012), University of Plymouth, Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Esquivel-Muelbert A., Phillips O.L., Brienen R.J.W., Fauset S., Sullivan M.J.P., Baker T.R., Chao K.-J., Feldpausch T.R., Gloor E., Higuchi N., Houwing-Duistermaat J., Lloyd J., Liu H., Malhi Y., Marimon B., Marimon Junior B.H., Monteagudo-Mendoza A., Poorter L., Silveira M., Torre E.V., Davila E.A., del Aguila Pasquel J., Almeida E., Loayza P.A., Andrade A., Aragao L.E.O.C., Araujo-Murakami A., Arets E., Arroyo L., Aymard C G.A., Baisie M., Baraloto C., Camargo P.B., Barroso J., Blanc L., Bonal D., Bongers F., Boot R., Brown F., Burban B., Camargo J.L., Castro W., Moscoso V.C., Chave J., Comiskey J., Valverde F.C., da Costa A.L., Cardozo N.D., Di Fiore A., Dourdain A., Erwin T., Llampazo G.F., Vieira I.C.G., Herrera R., Honorio Coronado E., Huamantupa-Chuquimaco I., Jimenez-Rojas E., Killeen T., Laurance S., Laurance W., Levesley A., Lewis S.L., Ladvocat K.L.L.M., Lopez-Gonzalez G., Lovejoy T., Meir P., Mendoza C., Morandi P., Neill D., Nogueira Lima A.J., Vargas P.N., de Oliveira E.A., Camacho N.P., Pardo G., Peacock J., Pena-Claros M., Penuela-Mora M.C., Pickavance G., Pipoly J., Pitman N., Prieto A., Pugh T.A.M., Quesada C., Ramirez-Angulo H., de Almeida Reis S.M., Rejou-Machain M., Correa Z.R., Bayona L.R., Rudas A., Salomao R., Serrano J., Espejo J.S., Silva N., Singh J., Stahl C., Stropp J., Swamy V., Talbot J., ter Steege H., Terborgh J., Thomas R., Toledo M., Torres-Lezama A., Gamarra L.V., van der Heijden G., van der Meer P., van der Hout P., Martinez R.V., Vieira S.A., Cayo J.V., Vos V., Zagt R., Zuidema P., Galbraith D., University of St Andrews. School of Geography & Sustainable Development, and Systems Ecology
- Subjects
0106 biological sciences ,Chemistry(all) ,Software_GENERAL ,Bos- en Landschapsecologie ,General Physics and Astronomy ,Forests ,01 natural sciences ,Amazonegebied ,Carbon sink ,Trees ,Growth–survival trade-off ,Risk Factors ,Tropical climate ,Forest and Landscape Ecology ,Biomass ,lcsh:Science ,Biomass (ecology) ,GE ,Multidisciplinary ,Ecology ,Amazon rainforest ,Bomen ,Mortality rate ,food and beverages ,risk factors, mortality, trees ,PE&RC ,Tropical ecology ,Tree (data structure) ,population characteristics ,Vegetatie, Bos- en Landschapsecologie ,InformationSystems_MISCELLANEOUS ,Brazil ,geographic locations ,GE Environmental Sciences ,Environmental Monitoring ,Carbon Sequestration ,Science ,Physics and Astronomy(all) ,Models, Biological ,010603 evolutionary biology ,General Biochemistry, Genetics and Molecular Biology ,Article ,Tree mortality ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Amazonia ,Tropische bossen ,parasitic diseases ,Forest ecology ,Life Science ,Bosecologie en Bosbeheer ,Ecosystem ,Author Correction ,Vegetatie ,Proportional Hazards Models ,Tropical Climate ,Vegetation ,Biochemistry, Genetics and Molecular Biology(all) ,DAS ,social sciences ,General Chemistry ,Carbon Dioxide ,15. Life on land ,Forest Ecology and Forest Management ,Sterfte ,lcsh:Q ,Vegetation, Forest and Landscape Ecology ,010606 plant biology & botany - Abstract
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality., Tree mortality has been shown to be the dominant control on carbon storage in Amazon forests, but little is known of how and why Amazon forest trees die. Here the authors analyse a large Amazon-wide dataset, finding that fast-growing species face greater mortality risk, but that slower-growing individuals within a species are more likely to die, regardless of size.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.