1. Deep-Learning-Based Approach for IoT Attack and Malware Detection
- Author
-
Burak Taşcı
- Subjects
IoT security ,1DCNN ,deep learning ,malware detection ,network attack detection ,CIC IoT 2023 ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Internet of Things (IoT), introduced by Kevin Ashton in the late 1990s, has transformed technology usage globally, enhancing efficiency and convenience but also posing significant security challenges. With the proliferation of IoT devices expected to exceed 29 billion by 2030, securing these devices is crucial. This study proposes an optimized 1D convolutional neural network (1D CNN) model for effectively classifying IoT security data. The model architecture includes input, convolutional, self-attention, and output layers, utilizing GELU activation, dropout, and normalization techniques to improve performance and prevent overfitting. The model was evaluated using the CIC IoT 2023, CIC-MalMem-2022, and CIC-IDS2017 datasets, achieving impressive results: 98.36% accuracy, 100% precision, 99.96% recall, and 99.95% F1-score for CIC IoT 2023; 99.90% accuracy, 99.98% precision, 99.97% recall, and 99.96% F1-score for CIC-MalMem-2022; and 99.99% accuracy, 99.99% precision, 99.98% recall, and 99.98% F1-score for CIC-IDS2017. These outcomes demonstrate the model’s effectiveness in detecting and classifying various IoT-related attacks and malware. The study highlights the potential of deep-learning techniques to enhance IoT security, with the developed model showing high performance and low computational overhead, making it suitable for real-time applications and resource-constrained devices. Future research should aim at testing the model on larger datasets and incorporating adaptive learning capabilities to further enhance its robustness. This research significantly contributes to IoT security by providing advanced insights into deploying deep-learning models, encouraging further exploration in this dynamic field.
- Published
- 2024
- Full Text
- View/download PDF