1. Measurements of extended magnetic fields in laser-solid interaction
- Author
-
J. Griff-McMahon, S. Malko, V. Valenzuela-Villaseca, C. A. Walsh, G. Fiksel, M. J. Rosenberg, D. B. Schaeffer, and W. Fox
- Subjects
Physics ,QC1-999 - Abstract
Magnetic fields generated from a laser-foil interaction are measured with high fidelity using a proton radiography scheme with in situ x-ray fiducials. In contrast to prior findings under similar experimental conditions, this technique reveals the self-generated, Biermann-battery fields extend beyond the edge of the expanding plasma plume to a radius of over 3.5 mm by t=+1.4 ns. An analysis of two monoenergetic proton populations confirms that proton deflection is dominated by magnetic fields far from the interaction (>2 mm) and electric fields are insignificant. The results are not captured in state-of-the-art magnetohydrodynamics simulations and suggest the need to consider additional physics mechanisms for the magnetic field generation and transport in laser-solid interactions.
- Published
- 2024
- Full Text
- View/download PDF