194 results on '"C. Martinet"'
Search Results
2. Memory effect in the plasticity of a silicate glass densified at room temperature
- Author
-
T. Deschamps, C. Martinet, B. Champagnon, G. Molnár, and E. Barthel
- Published
- 2022
- Full Text
- View/download PDF
3. High-pressure plastic deformation of lead metasilicate glass accessed by Raman spectroscopy: Insights into the Qn distribution
- Author
-
C. Martinet, Thierry Deschamps, E. Romeo, A. Picinin, R.B. Pena, Paulo S. Pizani, V. Laurent, Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Federal University of São Carlos (UFSCar)
- Subjects
Materials science ,Population ,Analytical chemistry ,02 engineering and technology ,01 natural sciences ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,Materials Chemistry ,[CHIM]Chemical Sciences ,education ,010302 applied physics ,[PHYS]Physics [physics] ,Metasilicate ,education.field_of_study ,Depolymerization ,A diamond ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Distribution (mathematics) ,High pressure ,Ceramics and Composites ,symbols ,0210 nano-technology ,Raman spectroscopy ,Natural bond orbital - Abstract
International audience; In this study, lead metasilicate glasses (PbSiO3) were densified at different maximum pressures in a diamond anvil cell (DAC) at room temperature. The densified glass samples were investigated ex-situ by Raman spectroscopy to probe their pressure-induced plastic deformation limit and permanent structural modifications on the Q(n) distribution. With a high Pb content, this glass exhibits a low elastic limit at similar to 4 GPa, which is linked to an initial compact structure. Spectral curve fitting of the high-frequency region of the Raman spectra, consisting of symmetric Si-O stretching modes, exhibit subtle Q(n) population modifications with maximum pressure. This reveals silica network depolymerization where the proportion of non-bridging oxygens (NBO) increases at the expense of bridging oxygens (BO). Possible densification mechanisms are discussed in contrast to those known in other silicate glasses.
- Published
- 2021
- Full Text
- View/download PDF
4. Une fistule durale de révélation atypique
- Author
-
C. Joubert, A. Renard, and C. Martinet
- Subjects
business.industry ,Emergency Medicine ,Medicine ,business - Published
- 2020
- Full Text
- View/download PDF
5. Can the number of surgery delays and postponements due to unavailable instrumentation be reduced? Evaluating the benefits of enhanced collaboration between the sterilization and orthopedic surgery units
- Author
-
F. Le Mercier, E. Huynh, A. Lecoeur, C. Martinet, Thomas W. Bauer, Shahnaz Klouche, Hopital Saint-Louis [AP-HP] (AP-HP), and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
- Subjects
medicine.medical_specialty ,Traceability ,[SDV]Life Sciences [q-bio] ,Outpatient surgery ,Economic shortage ,Appointments and Schedules ,03 medical and health sciences ,0302 clinical medicine ,medicine ,Humans ,Orthopedic Procedures ,Orthopedics and Sports Medicine ,Prospective Studies ,Intersectoral Collaboration ,Retrospective Studies ,030222 orthopedics ,business.industry ,Postponement ,Sterilization ,030229 sport sciences ,Evidence-based medicine ,Surgical procedures ,Surgical Instruments ,Checklist ,3. Good health ,Surgery ,Orthopedics ,Ambulatory Surgical Procedures ,Sterilization (medicine) ,Orthopedic surgery ,business - Abstract
Introduction The development of outpatient surgery, cost-reduction pressures and instrumentation storage limitations have led to their use “just-in-time”. A recent study showed that stoppage of surgical procedures immediately before the incision (No-Go) was often due to the management of supplies and implantable medical devices. To our knowledge, since the development of outpatient surgery and the shortening of hospital stays, managing the flow of instrumentation has not been optimized. At our hospital, we used a two-prong approach consisting of a tool to manage instrumentation and working group from the sterilization and orthopedic surgery units. The aims of this study were to: 1) evaluate whether this approach led to better notification of the risk of supply shortage for instrumentation and 2) determine whether it could reduce by at least half operating room disruptions such as delays or cancellation of surgical procedures. Hypothesis This approach results in better notification of the risk of supply shortage for instrumentation and reduces by at least half operating room disruptions such as delays or cancellation of surgical procedures. Material and methods A tool was developed to manage instrumentation flow based on a retrospective analysis of data from 2015. This tool consisted of: (1) a list of instrumentation needed for each surgical procedure from an analysis of the surgical schedule and verification of traceability labels of the instrumentation actually used, (2) a list of reasons for supply shortage identified from an analysis of non-conformities occurring in the sterilization process of instrumentation kits. These analyses resulted in the development of checklists for instrument sets for each procedure, while identifying those with a high risk of shortage. In 2017, a working group focused on instrumentation was set up with personnel from the sterilization unit and the orthopedic surgery unit. Based on the check-lists and the schedule 24 hours before the surgery, the sterilization unit alerted the surgery unit by email of the risk of material shortage; the surgery ward replied with potential changes to the material or the surgery planning. This approach (instrumentation management tool and working group) was named just-in-time (JIT). The main outcome was the number of notifications of potential supply shortage with and without JIT over a 10-week period. The secondary outcomes were the number of notifications resolved in time and the occurrence of operating room disruptions (delay > 30 min or postponement of surgery) related to unavailable instrumentation. Results Nine reasons for potential supply shortage were identified such as instrumentation kits used for several types of procedures, those with fast rotation and low stock, or in double pathways (on loan and on deposit). The working group reported 163 potential shortages with JIT versus 41 without (p Conclusion Our JIT approach (instrumentation management tool and working group) is effective at preventing instrumentation supply shortages. Level of evidence III, prospective comparative study.
- Published
- 2019
- Full Text
- View/download PDF
6. Normal to abnormal behavior of PbSiO3 glass: A vibrational spectroscopy investigation under high-pressure
- Author
-
R.B. Pena, T. Deschamps, A. Amato, S. Le Floch, P.S. Pizani, and C. Martinet
- Subjects
Materials Chemistry ,Ceramics and Composites ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
7. Spectroscopie Raman appliquée à la mécanique des verres
- Author
-
Thierry Deschamps, Dominique de Ligny, Etienne Barthel, C. Martinet, Guillaume Kermouche, A Kassir-Bodon, and Bernard Champagnon
- Published
- 2020
- Full Text
- View/download PDF
8. Spectroscopie Brillouin: introduction et exemples
- Author
-
Didier Rouxel, Jérémie Margueritat, C. Martinet, Brice Vincent, ROUXEL, Didier, Institut Jean Lamour (IJL), and Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] - Abstract
À l’image de la spectroscopie Raman, la spectroscopie Brillouin est basée sur la diffusion inélastique de la lumière induite par des variations de polarisabilité, et en ce sens ces deux techniques sont très comparables. Dans ce chapitre, nous commencerons par exposer les différences entre spectroscopies Raman et Brillouin, puis nous décrirons rapidement les bases de la diffusion Brillouin, ainsi que les instrumentations disponibles à l’heure actuelle. Pour finir, nous présenterons succinctement plusieurs études impliquant la spectroscopie Brillouin et qui montrent la diversité des questions qu’elle permet d’aborder et plus particulièrement son ouverture récente vers les matériaux biologiques.
- Published
- 2020
9. Evidence of polyamorphic transitions during densified SiO2 glass annealing
- Author
-
Valérie Martinez, C. Martinet, Dominique de Ligny, Antoine Cornet, Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- Subjects
Diffraction ,[PHYS]Physics [physics] ,Range (particle radiation) ,Materials science ,010304 chemical physics ,Condensed matter physics ,Scattering ,General Physics and Astronomy ,Energy landscape ,010402 general chemistry ,01 natural sciences ,Condensed Matter::Disordered Systems and Neural Networks ,0104 chemical sciences ,Annealing (glass) ,Amorphous solid ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,symbols ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Raman spectroscopy ,Coherence (physics) - Abstract
International audience; In situ X-ray scattering monitoring is carried out during temperature annealing on different densified SiO2 glasses. Density fluctuations and intermediate range coherence from X-ray scattering (small-angle X-ray scattering) and diffraction (wide angle X-ray scattering) evidence a maximum in their evolution at the same relaxation time. These extrema confirm the existence of an intermediate transitory disordered state between the two more ordered high and low density amorphous states. We propose that the existence of this transitory state confirms the existence of two mega basins in the energy landscape and therefore an amorphous-amorphous transition. Including older Raman results, we show that this intermediate disorder state implies similar mechanisms at all length scales from a few angstroms to 5 nm.
- Published
- 2019
- Full Text
- View/download PDF
10. Structure—longitudinal sound velocity relationships in glassy anorthite (CaAl2Si2O8) up to 20 GPa: An in situ Raman and Brillouin spectroscopy study
- Author
-
Camille Sonneville, Valérie Martinez, Benjamin J.A. Moulton, Grant S. Henderson, C. Martinet, Dominique de Ligny, University of Toronto, Federal University of São Carlos (UFSCar), Spectroscopies optiques des matériaux verres, amorphes et à nanoparticules (SOPRANO), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,engineering.material ,010502 geochemistry & geophysics ,Anorthite ,01 natural sciences ,Anorthite glass CaAl2Si2O8 ,Albite ,symbols.namesake ,Brillouin and Raman spectroscopy ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,0105 earth and related environmental sciences ,Diopside ,Brillouin Spectroscopy ,Condensed matter physics ,Densification mechanisms ,Aluminosilicate structure ,Brillouin zone ,High pressure ,visual_art ,engineering ,visual_art.visual_art_medium ,Enstatite ,symbols ,Raman spectroscopy ,Refractive index ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; Silicate glasses show widely varying changes in their longitudinal sound velocities below 10 GPa. These changes are often attributed to structural changes in the glass (or liquid) network. This study reports both sound velocities and structural analysis of CaAl2Si2O8 (anorthite) glass in situ up to 20 GPa, based on Brillouin and Raman spectroscopy results. In situ high-pressure Brillouin spectra of CaAl2Si2O8 glass were taken during two compression-decompression cycles. The second compression-decompression cycle up to 12 GPa displayed a perfectly elastic behavior indicating that 8% faster sound velocity arose from permanent densification during the first cycle. The longitudinal sound velocity was calculated from previously reported refractive index data and displayed distinct changes in behavior at 2 and 5 GPa. Anorthite (CaAl2Si2O8) glass displays an anomalous decrease in the longitudinal sound velocity up to ∼2 GPa. Above this pressure its longitudinal sound velocity is insensitive to pressure until 5 GPa and thereafter it displays a positive pressure dependence. The longitudinal sound velocity of CaAl2Si2O8 glass is quite distinct from both polymerized (e.g. silica, albite) and depolymerized (e.g. diopside) silicate glasses.Raman spectroscopy reveals that below 2 GPa there is a rapid decrease in the inter-tetrahedral angle within the aluminosilicate network. In fact, the sigma parameter, indicative of the overall intertetrahedral angle, displays three distinct pressure regimes comparable to the longitudinal sound velocity. The lowest pressure regime, In contrast to known polymerized (e.g. silica, albite) and depolymerized (e.g. diopside, enstatite) silicate glasses, CaAl2Si2O8 glass displays a weak negative pressure dependence, as found in polymerized compositions, but a high overall longitudinal sound velocity, as found in depolymerized systems. These structure-property relationships suggest that fragility is a better measure of the high-pressure behavior of silicate glasses.
- Published
- 2019
- Full Text
- View/download PDF
11. Is E-FAST possible and useful on the battlefield? A feasibility study during medical courses in hostile environment (MEDICHOS): preliminary results
- Author
-
C Martinet, Stéphane Travers, Guillaume Gasperini, Nicolas Cazes, E Combes, Cyril Carfantan, Patrick Benner, A Faivre, C Kelway, Aurélien Renard, and Pierre-Julien Cungi
- Subjects
medicine.medical_specialty ,business.industry ,Ultrasound ,General Medicine ,Armed Conflicts ,Models, Theoretical ,Triage ,Military medicine ,Time-to-Treatment ,Management strategy ,Military Personnel ,Transportation of Patients ,Battlefield ,Golden hour (medicine) ,medicine ,Focused assessment with sonography for trauma ,Feasibility Studies ,Humans ,Medical physics ,business ,Military Medicine ,Focused Assessment with Sonography for Trauma - Abstract
IntroductionThe extent of the French forces’ territory in the Sahel band generates long medical evacuations. In case of many victims, to respect the golden hour rule, first-line sorting is essential. Through simulation situations, the aim of our study was to assess whether the use of ultrasound was useful to military doctors.MethodsIn combat-like exercise conditions, we provided trainees with a pocket-size ultrasound. Every patient for whom the trainees chose to perform ultrasound in role 1 was included. An extended focused assessment with sonography for trauma (E-FAST) was performed with six basic sonographic views. We evaluated whether these reference views were obtained or not. Once obtained by the trainees, pathological views corresponding to the scenario were shown to assess whether the trainees modified their therapeutic management strategy and their priorities.Results168 patients were treated by 15 different trainee doctors. Of these 168 patients, ultrasound (E-FAST or point-of-care ultrasound) was performed on 44 (26%) of them. In 51% (n=20/39) of the situations, the practitioners considered that the realisation of ultrasound had a significant impact in terms of therapeutic and evacuation priorities. More specifically, it changed therapeutic decisions in 67% of time (n=26/39) and evacuation priorities in 72% of time (n=28/39).ConclusionThis original work showed that ultrasound on the battlefield was possible and useful. To confirm these results, ultrasound needs to be democratised and assessed in a real operational environment.
- Published
- 2018
12. Correlated evolution of structure and mechanical loss of a sputtered silica film
- Author
-
Benoit Sassolas, L. Pinard, Vincent Dolique, Gianpietro Cagnoli, Valérie Martinez, Alain Mermet, Elodie Coillet, Maurizio Canepa, M. Granata, Anthony A. Amato, C. Martinet, Jérémie Margueritat, Christophe Michel, Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Population ,FOS: Physical sciences ,02 engineering and technology ,Thermal treatment ,engineering.material ,01 natural sciences ,Molecular physics ,symbols.namesake ,Coating ,Metastability ,0103 physical sciences ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,education ,Characteristic energy ,Condensed Matter - Materials Science ,education.field_of_study ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Amorphous solid ,symbols ,engineering ,Density of states ,0210 nano-technology ,Raman scattering - Abstract
Energy dissipation in amorphous coatings severely affects high-precision optical and quantum transducers. In order to isolate the source of coating loss, we performed an extensive study of Raman scattering and mechanical loss of a thermally-treated sputtered silica coating. Our results show that loss is correlated with the population of three-membered rings of Si-O$_4$ tetrahedral units, and support the evidence that thermal treatment reduces the density of metastable states separated by a characteristic energy of about 0.5 eV, in favour of an increase of the states separated by smaller activation energies. Finally, we conclude that three-fold rings are involved in the relaxation mechanisms only if they belong to more complex chain-like structures of 10 to 100 tetrahedra., Comment: 5 pages, 3 figures
- Published
- 2018
- Full Text
- View/download PDF
13. Impact of glass density on the green emission and NBOHC formation in silica glass: A combined high pressure and 2.5 MeV electron irradiation
- Author
-
K. Piven, C. Martinet, Daniel R. Neuville, Valérie Martinez, Matthieu Lancry, Nadège Ollier, T. Billotte, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Materials science ,Silica glass ,Analytical chemistry ,Mineralogy ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Crystallographic defect ,Electronic, Optical and Magnetic Materials ,Full width at half maximum ,[SPI]Engineering Sciences [physics] ,High pressure ,0103 physical sciences ,Materials Chemistry ,Ceramics and Composites ,Electron beam processing ,[CHIM]Chemical Sciences ,Irradiation ,0210 nano-technology ,Luminescence ,ComputingMilieux_MISCELLANEOUS - Abstract
Macroscopic Suprasil F300 type silica glasses densified under high pressure and high temperature were irradiated with 2.5 MeV electrons. This paper focuses on the point defects generation in those densified silica glasses. We demonstrated that the unattributed 540 nm emission band was clearly enhanced when the irradiated glasses exhibit a higher density either initially generated by high pressure cycle or by irradiation at high dose (> 3 GGy). The spectral shape of the emission band related to Non Bridging Oxygen Hole Center (NBOHC) is also modified with a broader FWHM due to an additional contribution near 610 nm indicating a larger distribution of NBOHC species in these densified glasses.
- Published
- 2017
- Full Text
- View/download PDF
14. Cluster randomized trial to evaluate the impact of team training on surgical outcomes
- Author
-
A Duclos, J L Peix, V Piriou, P Occelli, A Denis, S Bourdy, M J Carty, A A Gawande, F Debouck, C Vacca, J C Lifante, C Colin, P Aegerter, A Aouifi, D Arickx, F Aubart, D Baudrin, W R Berry, C Beuvry, F Bonnet, L Bouveret, P Cabarrot, E Cames, J Caton, M-C Chenitz, F Clergues, J-M Coudray, M Damiens, C Dauzac, B Debono, B De Germay, A-C Deleforterie, J-F Desrousseaux, M-P Didelot, B Doat, N Y Domingo-Saidji, P Durieux, M Fessy, P Hardy, P Cariven, N Fontas, P Ganansia, F Giraud, G Gostiaux, S Habi, S Haga, A Houlgatte, M Jaffe, J Jourdan, N Kaczmarek, S Lamblin, C Level, E Liaras, J-C Lifante, S R Lipsitz, C Majchrzak, B Malavaud, T Mariaux Serres, X Martin, C Martinet, B Maupetit, P Michel, A Movondo, B Naamani, R Nacry, S Olousouzian, P Papin, J-C Paquet, A Parfaite, F Pattou, C Paugam, E Pavy, J-L Peix, H Petit, S Pierre, S Poupon Bourdy, B Pradere, M Quesne, Y Radola, A Raould, F Rongieras, I Rouquette, V Sanders, F Sanz, F Sens, S Surmont, C Sicre, D Tabur, P Targosz, D Thery, N Toppan, G Usandizaga, I Verheyde, and F Zadegan
- Subjects
Male ,medicine.medical_specialty ,Operating Rooms ,Inservice Training ,Crew resource management ,Context (language use) ,030230 surgery ,Disease cluster ,Hospitals, Private ,Specialties, Surgical ,03 medical and health sciences ,0302 clinical medicine ,Postoperative Complications ,Intervention (counseling) ,Medicine ,Cluster Analysis ,Humans ,030212 general & internal medicine ,Cluster randomised controlled trial ,Prospective Studies ,Adverse effect ,Intraoperative Complications ,Patient Care Team ,business.industry ,Hospitals, Public ,Odds ratio ,Middle Aged ,Checklist ,Emergency medicine ,Surgery ,Female ,business - Abstract
Background The application of safety principles from the aviation industry to the operating room has offered hope in reducing surgical complications. This study aimed to assess the impact on major surgical complications of adding an aviation-based team training programme after checklist implementation. Methods A prospective parallel-group cluster trial was undertaken between September 2011 and March 2013. Operating room teams from 31 hospitals were assigned randomly to participate in a team training programme focused on major concepts of crew resource management and checklist utilization. The primary outcome measure was the occurrence of any major adverse event, including death, during the hospital stay within the first 30 days after surgery. Using a difference-in-difference approach, the ratio of the odds ratios (ROR) was estimated to compare changes in surgical outcomes between intervention and control hospitals. Results Some 22 779 patients were enrolled, including 5934 before and 16 845 after team training implementation. The risk of major adverse events fell from 8·8 to 5·5 per cent in 16 intervention hospitals (adjusted odds ratio 0·57, 95 per cent c.i. 0·48 to 0·68; P < 0·001) and from 7·9 to 5·4 per cent in 15 control hospitals (odds ratio 0·64, 0·50 to 0·81; P < 0·001), resulting in the absence of difference between arms (ROR 0·90, 95 per cent c.i. 0·67 to 1·21; P = 0·474). Outcome trends revealed significant improvements among ten institutions, equally distributed across intervention and control hospitals. Conclusion Surgical outcomes improved substantially, with no difference between trial arms. Successful implementation of an aviation-based team training programme appears to require modification and adaptation of its principles in the context of the the surgical milieu. Registration number: NCT01384474 (http://www.clinicaltrials.gov).
- Published
- 2016
15. A-thermal elastic behavior of silicate glasses
- Author
-
C. Martinet, Mohammed Kamel Rabia, Simon Degioanni, Bernard Champagnon, Jacques Le Brusq, Dominique Vouagner, Laboratoire de Physique des Rayonnements, Université Badji Mokhtar, 23000 Annaba, Algeria (Université Badji Mokhtar), Université Badji Mokhtar - Laboratoire de Physique des Rayonnements, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Oxide minerals ,Materials science ,010304 chemical physics ,Anharmonicity ,Analytical chemistry ,Mineralogy ,02 engineering and technology ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Alkali metal ,Condensed Matter::Disordered Systems and Neural Networks ,01 natural sciences ,Cristobalite ,Condensed Matter::Soft Condensed Matter ,[SPI]Engineering Sciences [physics] ,Albite ,Silicate minerals ,0103 physical sciences ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,Elastic modulus - Abstract
International audience; Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm−1 in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si4+ ions by Al3+ and Na+ ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.
- Published
- 2016
- Full Text
- View/download PDF
16. Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356
- Author
-
Klionsky, D.J. Abdelmohsen, K. Abe, A. Abedin, M.J. Abeliovich, H. Arozena, A.A. Adachi, H. Adams, C.M. Adams, P.D. Adeli, K. Adhihetty, P.J. Adler, S.G. Agam, G. Agarwal, R. Aghi, M.K. Agnello, M. Agostinis, P. Aguilar, P.V. Aguirre-Ghiso, J. Airoldi, E.M. Ait-Si-Ali, S. Akematsu, T. Akporiaye, E.T. Al-Rubeai, M. Albaiceta, G.M. Albanese, C. Albani, D. Albert, M.L. Aldudo, J. Algül, H. Alirezaei, M. Alloza, I. Almasan, A. Almonte-Beceril, M. Alnemri, E.S. Alonso, C. Altan-Bonnet, N. Altieri, D.C. Alvarez, S. Alvarez-Erviti, L. Alves, S. Amadoro, G. Amano, A. Amantini, C. Ambrosio, S. Amelio, I. Amer, A.O. Amessou, M. Amon, A. An, Z. Anania, F.A. Andersen, S.U. Andley, U.P. Andreadi, C.K. Andrieu-Abadie, N. Anel, A. Ann, D.K. Anoopkumar-Dukie, S. Antonioli, M. Aoki, H. Apostolova, N. Aquila, S. Aquilano, K. Araki, K. Arama, E. Aranda, A. Araya, J. Arcaro, A. Arias, E. Arimoto, H. Ariosa, A.R. Armstrong, J.L. Arnould, T. Arsov, I. Asanuma, K. Askanas, V. Asselin, E. Atarashi, R. Atherton, S.S. Atkin, J.D. Attardi, L.D. Auberger, P. Auburger, G. Aurelian, L. Autelli, R. Avagliano, L. Avantaggiati, M.L. Avrahami, L. Azad, N. Awale, S. Bachetti, T. Backer, J.M. Bae, D.-H. Bae, J.-S. Bae, O.-N. Bae, S.H. Baehrecke, E.H. Baek, S.-H. Baghdiguian, S. Bagniewska-Zadworna, A. Bai, H. Bai, J. Bai, X.-Y. Bailly, Y. Balaji, K.N. Balduini, W. Ballabio, A. Balzan, R. Banerjee, R. Bánhegyi, G. Bao, H. Barbeau, B. Barrachina, M.D. Barreiro, E. Bartel, B. Bartolomé, A. Bassham, D.C. Bassi, M.T. Bast, R.C., Jr. Basu, A. Batista, M.T. Batoko, H. Battino, M. Bauckman, K. Baumgarner, B.L. Bayer, K.U. Beale, R. Beaulieu, J.-F. Beck, G.R., Jr. Becker, C. Beckham, J.D. Bédard, P.-A. Bednarski, P.J. Begley, T.J. Behl, C. Behrends, C. Behrens, G.M.N. Behrns, K.E. Bejarano, E. Belaid, A. Belleudi, F. Bénard, G. Berchem, G. Bergamaschi, D. Bergami, M. Berkhout, B. Berliocchi, L. Bernard, A. Bernard, M. Bernassola, F. Bertolotti, A. Bess, A.S. Besteiro, S. Bettuzzi, S. Bhalla, S. Bhattacharyya, S. Bhutia, S.K. Biagosch, C. Bianchi, M.W. Biard-Piechaczyk, M. Billes, V. Bincoletto, C. Bingol, B. Bird, S.W. Bitoun, M. Bjedov, I. Blackstone, C. Blanc, L. Blanco, G.A. Blomhoff, H.K. Boada-Romero, E. Böckler, S. Boes, M. Boesze-Battaglia, K. Boise, L.H. Bolino, A. Boman, A. Bonaldo, P. Bordi, M. Bosch, J. Botana, L.M. Botti, J. Bou, G. Bouché, M. Bouchecareilh, M. Boucher, M.-J. Boulton, M.E. Bouret, S.G. Boya, P. Boyer-Guittaut, M. Bozhkov, P.V. Brady, N. Braga, V.M.M. Brancolini, C. Braus, G.H. Bravo-San-Pedro, J.M. Brennan, L.A. Bresnick, E.H. Brest, P. Bridges, D. Bringer, M.-A. Brini, M. Brito, G.C. Brodin, B. Brookes, P.S. Brown, E.J. Brown, K. Broxmeyer, H.E. Bruhat, A. Brum, P.C. Brumell, J.H. Brunetti-Pierri, N. Bryson-Richardson, R.J. Buch, S. Buchan, A.M. Budak, H. Bulavin, D.V. Bultman, S.J. Bultynck, G. Bumbasirevic, V. Burelle, Y. Burke, R.E. Burmeister, M. Bütikofer, P. Caberlotto, L. Cadwell, K. Cahova, M. Cai, D. Cai, J. Cai, Q. Calatayud, S. Camougrand, N. Campanella, M. Campbell, G.R. Campbell, M. Campello, S. Candau, R. Caniggia, I. Cantoni, L. Cao, L. Caplan, A.B. Caraglia, M. Cardinali, C. Cardoso, S.M. Carew, J.S. Carleton, L.A. Carlin, C.R. Carloni, S. Carlsson, S.R. Carmona-Gutierrez, D. Carneiro, L.A.M. Carnevali, O. Carra, S. Carrier, A. Carroll, B. Casas, C. Casas, J. Cassinelli, G. Castets, P. Castro-Obregon, S. Cavallini, G. Ceccherini, I. Cecconi, F. Cederbaum, A.I. Ceña, V. Cenci, S. Cerella, C. Cervia, D. Cetrullo, S. Chaachouay, H. Chae, H.-J. Chagin, A.S. Chai, C.-Y. Chakrabarti, G. Chamilos, G. Chan, E.Y.W. Chan, M.T.V. Chandra, D. Chandra, P. Chang, C.-P. Chang, R.C.-C. Chang, T.Y. Chatham, J.C. Chatterjee, S. Chauhan, S. Che, Y. Cheetham, M.E. Cheluvappa, R. Chen, C.-J. Chen, G. Chen, G.-C. Chen, G. Chen, H. Chen, J.W. Chen, J.-K. Chen, M. Chen, M. Chen, P. Chen, Q. Chen, Q. Chen, S.-D. Chen, S. Chen, S.S.-L. Chen, W. Chen, W.-J. Chen, W.Q. Chen, W. Chen, X. Chen, Y.-H. Chen, Y.-G. Chen, Y. Chen, Y. Chen, Y. Chen, Y.-J. Chen, Y.-Q. Chen, Y. Chen, Z. Chen, Z. Cheng, A. Cheng, C.H.K. Cheng, H. Cheong, H. Cherry, S. Chesney, J. Cheung, C.H.A. Chevet, E. Chi, H.C. Chi, S.-G. Chiacchiera, F. Chiang, H.-L. Chiarelli, R. Chiariello, M. Chieppa, M. Chin, L.-S. Chiong, M. Chiu, G.N.C. Cho, D.-H. Cho, S.-G. Cho, W.C. Cho, Y.-Y. Cho, Y.-S. Choi, A.M.K. Choi, E.-J. Choi, E.-K. Choi, J. Choi, M.E. Choi, S.-I. Chou, T.-F. Chouaib, S. Choubey, D. Choubey, V. Chow, K.-C. Chowdhury, K. Chu, C.T. Chuang, T.-H. Chun, T. Chung, H. Chung, T. Chung, Y.-L. Chwae, Y.-J. Cianfanelli, V. Ciarcia, R. Ciechomska, I.A. Ciriolo, M.R. Cirone, M. Claerhout, S. Clague, M.J. Cl� ria, J. Clarke, P.G.H. Clarke, R. Clementi, E. Cleyrat, C. Cnop, M. Coccia, E.M. Cocco, T. Codogno, P. Coers, J. Cohen, E.E.W. Colecchia, D. Coletto, L. Coll, N.S. Colucci-Guyon, E. Comincini, S. Condello, M. Cook, K.L. Coombs, G.H. Cooper, C.D. Cooper, J.M. Coppens, I. Corasaniti, M.T. Corazzari, M. Corbalan, R. Corcelle-Termeau, E. Cordero, M.D. Corral-Ramos, C. Corti, O. Cossarizza, A. Costelli, P. Costes, S. Cotman, S.L. Coto-Montes, A. Cottet, S. Couve, E. Covey, L.R. Cowart, L.A. Cox, J.S. Coxon, F.P. Coyne, C.B. Cragg, M.S. Craven, R.J. Crepaldi, T. Crespo, J.L. Criollo, A. Crippa, V. Cruz, M.T. Cuervo, A.M. Cuezva, J.M. Cui, T. Cutillas, P.R. Czaja, M.J. Czyzyk-Krzeska, M.F. Dagda, R.K. Dahmen, U. Dai, C. Dai, W. Dai, Y. Dalby, K.N. Valle, L.D. Dalmasso, G. D'amelio, M. Damme, M. Darfeuille-Michaud, A. Dargemont, C. Darley-Usmar, V.M. Dasarathy, S. Dasgupta, B. Dash, S. Dass, C.R. Davey, H.M. Davids, L.M. Dávila, D. Davis, R.J. Dawson, T.M. Dawson, V.L. Daza, P. de Belleroche, J. de Figueiredo, P. de Figueiredo, R.C.B.Q. de la Fuente, J. De Martino, L. De Matteis, A. De Meyer, G.R.Y. De Milito, A. De Santi, M. de Souza, W. De Tata, V. De Zio, D. Debnath, J. Dechant, R. Decuypere, J.-P. Deegan, S. Dehay, B. Del Bello, B. Del Re, D.P. Delage-Mourroux, R. Delbridge, L.M.D. Deldicque, L. Delorme-Axford, E. Deng, Y. Dengjel, J. Denizot, M. Dent, P. Der, C.J. Deretic, V. Derrien, B. Deutsch, E. Devarenne, T.P. Devenish, R.J. Di Bartolomeo, S. Di Daniele, N. Di Domenico, F. Di Nardo, A. Di Paola, S. Di Pietro, A. Di Renzo, L. Di Antonio, A. Díaz-Araya, G. Díaz-Laviada, I. Diaz-Meco, M.T. Diaz-Nido, J. Dickey, C.A. Dickson, R.C. Diederich, M. Digard, P. Dikic, I. Dinesh-Kumar, S.P. Ding, C. Ding, W.-X. Ding, Z. Dini, L. Distler, J.H.W. Diwan, A. Djavaheri-Mergny, M. Dmytruk, K. Dobson, R.C.J. Doetsch, V. Dokladny, K. Dokudovskaya, S. Donadelli, M. Dong, X.C. Dong, X. Dong, Z. Donohue, T.M., Jr. Donohue-Jr, T.M. Doran, K.S. D'orazi, G. Dorn, G.W., II Dosenko, V. Dridi, S. Drucker, L. Du, J. Du, L.-L. Du, L. du Toit, A. Dua, P. Duan, L. Duann, P. Dubey, V.K. Duchen, M.R. Duchosal, M.A. Duez, H. Dugail, I. Dumit, V.I. Duncan, M.C. Dunlop, E.A. Dunn, W.A., Jr. Dupont, N. Dupuis, L. Durán, R.V. Durcan, T.M. Duvezin-Caubet, S. Duvvuri, U. Eapen, V. Ebrahimi-Fakhari, D. Echard, A. Eckhart, L. Edelstein, C.L. Edinger, A.L. Eichinger, L. Eisenberg, T. Eisenberg-Lerner, A. Eissa, N.T. El-Deiry, W.S. El-Khoury, V. Elazar, Z. Eldar-Finkelman, H. Elliott, C.J.H. Emanuele, E. Emmenegger, U. Engedal, N. Engelbrecht, A.-M. Engelender, S. Enserink, J.M. Erdmann, R. Erenpreisa, J. Eri, R. Eriksen, J.L. Erman, A. Escalante, R. Eskelinen, E.-L. Espert, L. Esteban-Martínez, L. Evans, T.J. Fabri, M. Fabrias, G. Fabrizi, C. Facchiano, A. Færgeman, N.J. Faggioni, A. Fairlie, W.D. Fan, C. Fan, D. Fan, J. Fang, S. Fanto, M. Fanzani, A. Farkas, T. Faure, M. Favier, F.B. Fearnhead, H. Federici, M. Fei, E. Felizardo, T.C. Feng, H. Feng, Y. Feng, Y. Ferguson, T.A. Fernández, Á.F. Fernandez-Barrena, M.G. Fernandez-Checa, J.C. Fernández-López, A. Fernandez-Zapico, M.E. Feron, O. Ferraro, E. Ferreira-Halder, C.V. Fesus, L. Feuer, R. Fiesel, F.C. Filippi-Chiela, E.C. Filomeni, G. Fimia, G.M. Fingert, J.H. Finkbeiner, S. Finkel, T. Fiorito, F. Fisher, P.B. Flajolet, M. Flamigni, F. Florey, O. Florio, S. Floto, R.A. Folini, M. Follo, C. Fon, E.A. Fornai, F. Fortunato, F. Fraldi, A. Franco, R. Francois, A. François, A. Frankel, L.B. Fraser, I.D.C. Frey, N. Freyssenet, D.G. Frezza, C. Friedman, S.L. Frigo, D.E. Fu, D. Fuentes, J.M. Fueyo, J. Fujitani, Y. Fujiwara, Y. Fujiya, M. Fukuda, M. Fulda, S. Fusco, C. Gabryel, B. Gaestel, M. Gailly, P. Gajewska, M. Galadari, S. Galili, G. Galindo, I. Galindo, M.F. Galliciotti, G. Galluzzi, L. Galluzzi, L. Galy, V. Gammoh, N. Gandy, S. Ganesan, A.K. Ganesan, S. Ganley, I.G. Gannagé, M. Gao, F.-B. Gao, F. Gao, J.-X. Nannig, L.G. Véscovi, E.G. Garcia-Macía, M. Garcia-Ruiz, C. Garg, A.D. Garg, P.K. Gargini, R. Gassen, N.C. Gatica, D. Gatti, E. Gavard, J. Gavathiotis, E. Ge, L. Ge, P. Ge, S. Gean, P.-W. Gelmetti, V. Genazzani, A.A. Geng, J. Genschik, P. Gerner, L. Gestwicki, J.E. Gewirtz, D.A. Ghavami, S. Ghigo, E. Ghosh, D. Giammarioli, A.M. Giampieri, F. Giampietri, C. Giatromanolaki, A. Gibbings, D.J. Gibellini, L. Gibson, S.B. Ginet, V. Giordano, A. Giorgini, F. Giovannetti, E. Girardin, S.E. Gispert, S. Giuliano, S. Gladson, C.L. Glavic, A. Gleave, M. Godefroy, N. Gogal, R.M., Jr. Gokulan, K. Goldman, G.H. Goletti, D. Goligorsky, M.S. Gomes, A.V. Gomes, L.C. Gomez, H. Gomez-Manzano, C. Gómez-Sánchez, R. Gonçalves, D.A.P. Goncu, E. Gong, Q. Gongora, C. Gonzalez, C.B. Gonzalez-Alegre, P. Gonzalez-Cabo, P. González-Polo, R.A. Goping, I.S. Gorbea, C. Gorbunov, N.V. Goring, D.R. Gorman, A.M. Gorski, S.M. Goruppi, S. Goto-Yamada, S. Gotor, C. Gottlieb, R.A. Gozes, I. Gozuacik, D. Graba, Y. Graef, M. Granato, G.E. Grant, G.D. Grant, S. Gravina, G.L. Green, D.R. Greenhough, A. Greenwood, M.T. Grimaldi, B. Gros, F. Grose, C. Groulx, J.-F. Gruber, F. Grumati, P. Grune, T. Guan, J.-L. Guan, K.-L. Guerra, B. Guillen, C. Gulshan, K. Gunst, J. Guo, C. Guo, L. Guo, M. Guo, W. Guo, X.-G. Gust, A.A. Gustafsson, Å.B. Gutierrez, E. Gutierrez, M.G. Gwak, H.-S. Haas, A. Haber, J.E. Hadano, S. Hagedorn, M. Hahn, D.R. Halayko, A.J. Hamacher-Brady, A. Hamada, K. Hamai, A. Hamann, A. Hamasaki, M. Hamer, I. Hamid, Q. Hammond, E.M. Han, F. Han, W. Handa, J.T. Hanover, J.A. Hansen, M. Harada, M. Harhaji-Trajkovic, L. Harper, J.W. Harrath, A.H. Harris, A.L. Harris, J. Hasler, U. Hasselblatt, P. Hasui, K. Hawley, R.G. Hawley, T.S. He, C. He, C.Y. He, F. He, G. He, R.-R. He, X.-H. He, Y.-W. He, Y.-Y. Heath, J.K. Hébert, M.-J. Heinzen, R.A. Helgason, G.V. Hensel, M. Henske, E.P. Her, C. Herman, P.K. Hernández, A. Hernandez, C. Hernández-Tiedra, S. Hetz, C. Hiesinger, P.R. Higaki, K. Hilfiker, S. Hill, B.G. Hill, J.A. Hill, W.D. Hino, K. Hofius, D. Hofman, P. Höglinger, G.U. Höhfeld, J. Holz, M.K. Hong, Y. Hood, D.A. Hoozemans, J.J.M. Hoppe, T. Hsu, C. Hsu, C.-Y. Hsu, L.-C. Hu, D. Hu, G. Hu, H.-M. Hu, H. Hu, M.C. Hu, Y.-C. Hu, Z.-W. Hua, F. Hua, Y. Huang, C. Huang, H.-L. Huang, K.-H. Huang, K.-Y. Huang, S. Huang, S. Huang, W.-P. Huang, Y.-R. Huang, Y. Huang, Y. Huber, T.B. Huebbe, P. Huh, W.-K. Hulmi, J.J. Hur, G.M. Hurley, J.H. Husak, Z. Hussain, S.N.A. Hussain, S. Hwang, J.J. Hwang, S. Hwang, T.I.S. Ichihara, A. Imai, Y. Imbriano, C. Inomata, M. Into, T. Iovane, V. Iovanna, J.L. Iozzo, R.V. Ip, N.Y. Irazoqui, J.E. Iribarren, P. Isaka, Y. Isakovic, A.J. Ischiropoulos, H. Isenberg, J.S. Ishaq, M. Ishida, H. Ishii, I. Ishmael, J.E. Isidoro, C. Isobe, K.-I. Isono, E. Issazadeh-Navikas, S. Itahana, K. Itakura, E. Ivanov, A.I. Iyer, A.K.V. Izquierdo, J.M. Izumi, Y. Izzo, V. Jäättelä, M. Jaber, N. Jackson, D.J. Jackson, W.T. Jacob, T.G. Jacques, T.S. Jagannath, C. Jain, A. Jana, N.R. Jang, B.K. Jani, A. Janji, B. Jannig, P.R. Jansson, P.J. Jean, S. Jendrach, M. Jeon, J.-H. Jessen, N. Jeung, E.-B. Jia, K. Jia, L. Jiang, H. Jiang, H. Jiang, L. Jiang, T. Jiang, X. Jiang, X. Jiang, Y. Jiang, Y. Jiménez, A. Jin, C. Jin, H. Jin, L. Jin, M. Jin, S. Jinwal, U.K. Jo, E.-K. Johansen, T. Johnson, D.E. Johnson, G.V.W. Johnson, J.D. Jonasch, E. Jones, C. Joosten, L.A.B. Jordan, J. Joseph, A.-M. Joseph, B. Joubert, A.M. Ju, D. Ju, J. Juan, H.-F. Juenemann, K. Juhász, G. Jung, H.S. Jung, J.U. Jung, Y.-K. Jungbluth, H. Justice, M.J. Jutten, B. Kaakoush, N.O. Kaarniranta, K. Kaasik, A. Kabuta, T. Kaeffer, B. Kågedal, K. Kahana, A. Kajimura, S. Kakhlon, O. Kalia, M. Kalvakolanu, D.V. Kamada, Y. Kambas, K. Kaminskyy, V.O. Kampinga, H.H. Kandouz, M. Kang, C. Kang, R. Kang, T.-C. Kanki, T. Kanneganti, T.-D. Kanno, H. Kanthasamy, A.G. Kantorow, M. Kaparakis-Liaskos, M. Kapuy, O. Karantza, V. Karim, M.R. Karmakar, P. Kaser, A. Kaushik, S. Kawula, T. Kaynar, A.M. Ke, P.-Y. Ke, Z.-J. Kehrl, J.H. Keller, K.E. Kemper, J.K. Kenworthy, A.K. Kepp, O. Kern, A. Kesari, S. Kessel, D. Ketteler, R. Kettelhut, I.C. Khambu, B. Khan, M.M. Khandelwal, V.K.M. Khare, S. Kiang, J.G. Kiger, A.A. Kihara, A. Kim, A.L. Kim, C.H. Kim, D.R. Kim, D.-H. Kim, E.K. Kim, H.Y. Kim, H.-R. Kim, J.-S. Kim, J.H. Kim, J.C. Kim, J.H. Kim, K.W. Kim, M.D. Kim, M.-M. Kim, P.K. Kim, S.W. Kim, S.-Y. Kim, Y.-S. Kim, Y. Kimchi, A. Kimmelman, A.C. Kimura, T. King, J.S. Kirkegaard, K. Kirkin, V. Kirshenbaum, L.A. Kishi, S. Kitajima, Y. Kitamoto, K. Kitaoka, Y. Kitazato, K. Kley, R.A. Klimecki, W.T. Klinkenberg, M. Klucken, J. Knævelsrud, H. Knecht, E. Knuppertz, L. Ko, J.-L. Kobayashi, S. Koch, J.C. Koechlin-Ramonatxo, C. Koenig, U. Koh, Y.H. Köhler, K. Kohlwein, S.D. Koike, M. Komatsu, M. Kominami, E. Kong, D. Kong, H.J. Konstantakou, E.G. Kopp, B.T. Korcsmaros, T. Korhonen, L. Korolchuk, V.I. Koshkina, N.V. Kou, Y. Koukourakis, M.I. Koumenis, C. Kovács, A.L. Kovács, T. Kovacs, W.J. Koya, D. Kraft, C. Krainc, D. Kramer, H. Kravic-Stevovic, T. Krek, W. Kretz-Remy, C. Krick, R. Krishnamurthy, M. Kriston-Vizi, J. Kroemer, G. Kruer, M.C. Kruger, R. Ktistakis, N.T. Kuchitsu, K. Kuhn, C. Kumar, A.P. Kumar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, R. Kumar, S. Kundu, M. Kung, H.-J. Kuno, A. Kuo, S.-H. Kuret, J. Kurz, T. Kwok, T. Kwon, T.K. Kwon, Y.T. Kyrmizi, I. La Spada, A.R. Lafont, F. Lahm, T. Lakkaraju, A. Lam, T. Lamark, T. Lancel, S. Landowski, T.H. Lane, D.J.R. Lane, J.D. Lanzi, C. Lapaquette, P. Lapierre, L.R. Laporte, J. Laukkarinen, J. Laurie, G.W. Lavandero, S. Lavie, L. Lavoie, M.J. Law, B.Y.K. Law, H.K.-W. Law, K.B. Layfield, R. Lazo, P.A. Le Cam, L. Le Roch, K.G. Le Stunff, H. Leardkamolkarn, V. Lecuit, M. Lee, B.-H. Lee, C.-H. Lee, E.F. Lee, G.M. Lee, H.-J. Lee, H. Lee, J.K. Lee, J. Lee, J.-H. Lee, J.H. Lee, M. Lee, M.-S. Lee, P.J. Lee, S.W. Lee, S.-J. Lee, S.-J. Lee, S.Y. Lee, S.H. Lee, S.S. Lee, S.-J. Lee, S. Lee, Y.-R. Lee, Y.J. Lee, Y.H. Leeuwenburgh, C. Lefort, S. Legouis, R. Lei, J. Lei, Q.-Y. Leib, D.A. Leibowitz, G. Lekli, I. Lemaire, S.D. Lemasters, J.J. Lemberg, M.K. Lemoine, A. Leng, S. Lenz, G. Lenzi, P. Lerman, L.O. Barbato, D.L. Leu, J.I.J. Leung, H.Y. Levine, B. Lewis, P.A. Lezoualch, F. Li, C. Li, F. Li, F.-J. Li, J. Li, K. Li, L. Li, M. Li, Q. Li, R. Li, S. Li, W. Li, X. Li, Y. Lian, J. Liang, C. Liang, Q. Liao, Y. Liberal, J. Liberski, P.P. Lie, P. Lieberman, A.P. Lim, H.J. Lim, K.-L. Lim, K. Lima, R.T. Lin, C.-S. Lin, C.-F. Lin, F. Lin, F. Lin, F.-C. Lin, K. Lin, K.-H. Lin, P.-H. Lin, T. Lin, W.-W. Lin, Y.-S. Lin, Y. Linden, R. Lindholm, D. Lindqvist, L.M. Lingor, P. Linkermann, A. Liotta, L.A. Lipinski, M.M. Lira, V.A. Lisanti, M.P. Liton, P.B. Liu, B. Liu, C. Liu, C.-F. Liu, F. Liu, H.-J. Liu, J. Liu, J.-J. Liu, J.-L. Liu, K. Liu, L. Liu, L. Liu, Q. Liu, R.-Y. Liu, S. Liu, S. Liu, W. Liu, X.-D. Liu, X. Liu, X.-H. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liuzzi, J.P. Lizard, G. Ljujic, M. Lodhi, I.J. Logue, S.E. Lokeshwar, B.L. Long, Y.C. Lonial, S. Loos, B. López-Otín, C. López-Vicario, C. Lorente, M. Lorenzi, P.L. Lõrincz, P. Los, M. Lotze, M.T. Lovat, P.E. Lu, B. Lu, B. Lu, J. Lu, Q. Lu, S.-M. Lu, S. Lu, Y. Luciano, F. Luckhart, S. Lucocq, J.M. Ludovico, P. Lugea, A. Lukacs, N.W. Lum, J.J. Lund, A.H. Luo, H. Luo, J. Luo, S. Luparello, C. Lyons, T. Ma, J. Ma, Y. Ma, Y. Ma, Z. Machado, J. Machado-Santelli, G.M. Macian, F. MacIntosh, G.C. MacKeigan, J.P. Macleod, K.F. MacMicking, J.D. MacMillan-Crow, L.A. Madeo, F. Madesh, M. Madrigal-Matute, J. Maeda, A. Maeda, T. Maegawa, G. Maellaro, E. Maes, H. Magariños, M. Maiese, K. Maiti, T.K. Maiuri, L. Maiuri, M.C. Maki, C.G. Malli, R. Malorni, W. Maloyan, A. Mami-Chouaib, F. Man, N. Mancias, J.D. Mandelkow, E.-M. Mandell, M.A. Manfredi, A.A. Manié, S.N. Manzoni, C. Mao, K. Mao, Z. Mao, Z.-W. Marambaud, P. Marconi, A.M. Marelja, Z. Marfe, G. Margeta, M. Margittai, E. Mari, M. Mariani, F.V. Marin, C. Marinelli, S. Mariño, G. Markovic, I. Marquez, R. Martelli, A.M. Martens, S. Martin, K.R. Martin, S.J. Martin, S. Martin-Acebes, M.A. Martín-Sanz, P. Martinand-Mari, C. Martinet, W. Martinez, J. Martinez-Lopez, N. Martinez-Outschoorn, U. Martínez-Velázquez, M. Martinez-Vicente, M. Martins, W.K. Mashima, H. Mastrianni, J.A. Matarese, G. Matarrese, P. Mateo, R. Matoba, S. Matsumoto, N. Matsushita, T. Matsuura, A. Matsuzawa, T. Mattson, M.P. Matus, S. Maugeri, N. Mauvezin, C. Mayer, A. Maysinger, D. Mazzolini, G.D. McBrayer, M.K. McCall, K. McCormick, C. McInerney, G.M. McIver, S.C. McKenna, S. McMahon, J.J. McNeish, I.A. Mechta-Grigoriou, F. Medema, J.P. Medina, D.L. Megyeri, K. Mehrpour, M. Mehta, J.L. Mei, Y. Meier, U.-C. Meijer, A.J. Meléndez, A. Melino, G. Melino, S. de Melo, E.J.T. Mena, M.A. Meneghini, M.D. Menendez, J.A. Menezes, R. Meng, L. Meng, L.-H. Meng, S. Menghini, R. Menko, A.S. Menna-Barreto, R.F.S. Menon, M.B. Meraz-Ríos, M.A. Merla, G. Merlini, L. Merlot, A.M. Meryk, A. Meschini, S. Meyer, J.N. Mi, M.-T. Miao, C.-Y. Micale, L. Michaeli, S. Michiels, C. Migliaccio, A.R. Mihailidou, A.S. Mijaljica, D. Mikoshiba, K. Milan, E. Miller-Fleming, L. Mills, G.B. Mills, I.G. Minakaki, G. Minassian, B.A. Ming, X.-F. Minibayeva, F. Minina, E.A. Mintern, J.D. Minucci, S. Miranda-Vizuete, A. Mitchell, C.H. Miyamoto, S. Miyazawa, K. Mizushima, N. Mnich, K. Mograbi, B. Mohseni, S. Moita, L.F. Molinari, M. Molinari, M. Møller, A.B. Mollereau, B. Mollinedo, F. Mongillo, M. Monick, M.M. Montagnaro, S. Montell, C. Moore, D.J. Moore, M.N. Mora-Rodriguez, R. Moreira, P.I. Morel, E. Morelli, M.B. Moreno, S. Morgan, M.J. Moris, A. Moriyasu, Y. Morrison, J.L. Morrison, L.A. Morselli, E. Moscat, J. Moseley, P.L. Mostowy, S. Motori, E. Mottet, D. Mottram, J.C. Moussa, C.E.-H. Mpakou, V.E. Mukhtar, H. Levy, J.M.M. Muller, S. Muñoz-Moreno, R. Muñoz-Pinedo, C. Münz, C. Murphy, M.E. Murray, J.T. Murthy, A. Mysorekar, I.U. Nabi, I.R. Nabissi, M. Nader, G.A. Nagahara, Y. Nagai, Y. Nagata, K. Nagelkerke, A. Nagy, P. Naidu, S.R. Nair, S. Nakano, H. Nakatogawa, H. Nanjundan, M. Napolitano, G. Naqvi, N.I. Nardacci, R. Narendra, D.P. Narita, M. Nascimbeni, A.C. Natarajan, R. Navegantes, L.C. Nawrocki, S.T. Nazarko, T.Y. Nazarko, V.Y. Neill, T. Neri, L.M. Netea, M.G. Netea-Maier, R.T. Neves, B.M. Ney, P.A. Nezis, I.P. Nguyen, H.T.T. Nguyen, H.P. Nicot, A.-S. Nilsen, H. Nilsson, P. Nishimura, M. Nishino, I. Niso-Santano, M. Niu, H. Nixon, R.A. Njar, V.C.O. Noda, T. Noegel, A.A. Nolte, E.M. Norberg, E. Norga, K.K. Noureini, S.K. Notomi, S. Notterpek, L. Nowikovsky, K. Nukina, N. Nürnberger, T. O'donnell, V.B. O'donovan, T. O'dwyer, P.J. Oehme, I. Oeste, C.L. Ogawa, M. Ogretmen, B. Ogura, Y. Oh, Y.J. Ohmuraya, M. Ohshima, T. Ojha, R. Okamoto, K. Okazaki, T. Oliver, F.J. Ollinger, K. Olsson, S. Orban, D.P. Ordonez, P. Orhon, I. Orosz, L. O'rourke, E.J. Orozco, H. Ortega, A.L. Ortona, E. Osellame, L.D. Oshima, J. Oshima, S. Osiewacz, H.D. Otomo, T. Otsu, K. Ou, J.-H.J. Outeiro, T.F. Ouyang, D.-Y. Ouyang, H. Overholtzer, M. Ozbun, M.A. Ozdinler, P.H. Ozpolat, B. Pacelli, C. Paganetti, P. Page, G. Pages, G. Pagnini, U. Pajak, B. Pak, S.C. Pakos-Zebrucka, K. Pakpour, N. Palková, Z. Palladino, F. Pallauf, K. Pallet, N. Palmieri, M. Paludan, S.R. Palumbo, C. Palumbo, S. Pampliega, O. Pan, H. Pan, W. Panaretakis, T. Pandey, A. Pantazopoulou, A. Papackova, Z. Papademetrio, D.L. Papassideri, I. Papini, A. Parajuli, N. Pardo, J. Parekh, V.V. Parenti, G. Park, J.-I. Park, J. Park, O.K. Parker, R. Parlato, R. Parys, J.B. Parzych, K.R. Pasquet, J.-M. Pasquier, B. Pasumarthi, K.B.S. Patterson, C. Pattingre, S. Pattison, S. Pause, A. Pavenstädt, H. Pavone, F. Pedrozo, Z. Peña, F.J. Peñalva, M.A. Pende, M. Peng, J. Penna, F. Penninger, J.M. Pensalfini, A. Pepe, S. Pereira, G.J.S. Pereira, P.C. de la Cruz, V.P. Pérez-Pérez, M.E. Pérez-Rodríguez, D. Pérez-Sala, D. Perier, C. Perl, A. Perlmutter, D.H. Perrotta, I. Pervaiz, S. Pesonen, M. Pessin, J.E. Peters, G.J. Petersen, M. Petrache, I. Petrof, B.J. Petrovski, G. Phang, J.M. Piacentini, M. Pierdominici, M. Pierre, P. Pierrefite-Carle, V. Pietrocola, F. Pimentel-Muiños, F.X. Pinar, M. Pineda, B. Pinkas-Kramarski, R. Pinti, M. Pinton, P. Piperdi, B. Piret, J.M. Platanias, L.C. Platta, H.W. Plowey, E.D. Pöggeler, S. Poirot, M. Polčic, P. Poletti, A. Poon, A.H. Popelka, H. Popova, B. Poprawa, I. Poulose, S.M. Poulton, J. Powers, S.K. Powers, T. Pozuelo-Rubio, M. Prak, K. Prange, R. Prescott, M. Priault, M. Prince, S. Proia, R.L. Proikas-Cezanne, T. Prokisch, H. Promponas, V.J. Przyklenk, K. Puertollano, R. Pugazhenthi, S. Puglielli, L. Pujol, A. Puyal, J. Pyeon, D. Qi, X. Qian, W.-B. Qin, Z.-H. Qiu, Y. Qu, Z. Quadrilatero, J. Quinn, F. Raben, N. Rabinowich, H. Radogna, F. Ragusa, M.J. Rahmani, M. Raina, K. Ramanadham, S. Ramesh, R. Rami, A. Randall-Demllo, S. Randow, F. Rao, H. Rao, V.A. Rasmussen, B.B. Rasse, T.M. Ratovitski, E.A. Rautou, P.-E. Ray, S.K. Razani, B. Reed, B.H. Reggiori, F. Rehm, M. Reichert, A.S. Rein, T. Reiner, D.J. Reits, E. Ren, J. Ren, X. Renna, M. Reusch, J.E.B. Revuelta, J.L. Reyes, L. Rezaie, A.R. Richards, R.I. Richardson, R. Richetta, C. Riehle, M.A. Rihn, B.H. Rikihisa, Y. Riley, B.E. Rimbach, G. Rippo, M.R. Ritis, K. Rizzi, F. Rizzo, E. Roach, P.J. Robbins, J. Roberge, M. Roca, G. Roccheri, M.C. Rocha, S. Rodrigues, C.M.P. Rodríguez, C.I. de Cordoba, S.R. Rodriguez-Muela, N. Roelofs, J. Rogov, V.V. Rohn, T.T. Rohrer, B. Romanelli, D. Romani, L. Romano, P.S. Roncero, M.I.G. Rosa, J.L. Rosello, A. Rosen, K.V. Rosenstiel, P. Rost-Roszkowska, M. Roth, K.A. Roué, G. Rouis, M. Rouschop, K.M. Ruan, D.T. Ruano, D. Rubinsztein, D.C. Rucker, E.B., III Rudich, A. Rudolf, E. Rudolf, R. Ruegg, M.A. Ruiz-Roldan, C. Ruparelia, A.A. Rusmini, P. Russ, D.W. Russo, G.L. Russo, G. Russo, R. Rusten, T.E. Ryabovol, V. Ryan, K.M. Ryter, S.W. Sabatini, D.M. Sacher, M. Sachse, C. Sack, M.N. Sadoshima, J. Saftig, P. Sagi-Eisenberg, R. Sahni, S. Saikumar, P. Saito, T. Saitoh, T. Sakakura, K. Sakoh-Nakatogawa, M. Sakuraba, Y. Salazar-Roa, M. Salomoni, P. Saluja, A.K. Salvaterra, P.M. Salvioli, R. Samali, A. Sanchez, A.M.J. Sánchez-Alcázar, J.A. Sanchez-Prieto, R. Sandri, M. Sanjuan, M.A. Santaguida, S. Santambrogio, L. Santoni, G. Dos Santos, C.N. Saran, S. Sardiello, M. Sargent, G. Sarkar, P. Sarkar, S. Sarrias, M.R. Sarwal, M.M. Sasakawa, C. Sasaki, M. Sass, M. Sato, K. Sato, M. Satriano, J. Savaraj, N. Saveljeva, S. Schaefer, L. Schaible, U.E. Scharl, M. Schatzl, H.M. Schekman, R. Scheper, W. Schiavi, A. Schipper, H.M. Schmeisser, H. Schmidt, J. Schmitz, I. Schneider, B.E. Schneider, E.M. Schneider, J.L. Schon, E.A. Schönenberger, M.J. Schönthal, A.H. Schorderet, D.F. Schröder, B. Schuck, S. Schulze, R.J. Schwarten, M. Schwarz, T.L. Sciarretta, S. Scotto, K. Scovassi, A.I. Screaton, R.A. Screen, M. Seca, H. Sedej, S. Segatori, L. Segev, N. Seglen, P.O. Seguí-Simarro, J.M. Segura-Aguilar, J. Seiliez, I. Seki, E. Sell, C. Semenkovich, C.F. Semenza, G.L. Sen, U. Serra, A.L. Serrano-Puebla, A. Sesaki, H. Setoguchi, T. Settembre, C. Shacka, J.J. Shajahan-Haq, A.N. Shapiro, I.M. Sharma, S. She, H. Shen, C.-K.J. Shen, C.-C. Shen, H.-M. Shen, S. Shen, W. Sheng, R. Sheng, X. Sheng, Z.-H. Shepherd, T.G. Shi, J. Shi, Q. Shi, Q. Shi, Y. Shibutani, S. Shibuya, K. Shidoji, Y. Shieh, J.-J. Shih, C.-M. Shimada, Y. Shimizu, S. Shin, D.W. Shinohara, M.L. Shintani, M. Shintani, T. Shioi, T. Shirabe, K. Shiri-Sverdlov, R. Shirihai, O. Shore, G.C. Shu, C.-W. Shukla, D. Sibirny, A.A. Sica, V. Sigurdson, C.J. Sigurdsson, E.M. Sijwali, P.S. Sikorska, B. Silveira, W.A. Silvente-Poirot, S. Silverman, G.A. Simak, J. Simmet, T. Simon, A.K. Simon, H.-U. Simone, C. Simons, M. Simonsen, A. Singh, R. Singh, S.V. Singh, S.K. Sinha, D. Sinha, S. Sinicrope, F.A. Sirko, A. Sirohi, K. Sishi, B.J.N. Sittler, A. Siu, P.M. Sivridis, E. Skwarska, A. Slack, R. Slaninová, I. Slavov, N. Smaili, S.S. Smalley, K.S.M. Smith, D.R. Soenen, S.J. Soleimanpour, S.A. Solhaug, A. Somasundaram, K. Son, J.H. Sonawane, A. Song, C. Song, F. Song, H.K. Song, J.-X. Song, W. Soo, K.Y. Sood, A.K. Soong, T.W. Soontornniyomkij, V. Sorice, M. Sotgia, F. Soto-Pantoja, D.R. Sotthibundhu, A. Sousa, M.J. Spaink, H.P. Span, P.N. Spang, A. Sparks, J.D. Speck, P.G. Spector, S.A. Spies, C.D. Springer, W. Clair, D.S. Stacchiotti, A. Staels, B. Stang, M.T. Starczynowski, D.T. Starokadomskyy, P. Steegborn, C. Steele, J.W. Stefanis, L. Steffan, J. Stellrecht, C.M. Stenmark, H. Stepkowski, T.M. Stern, S.T. Stevens, C. Stockwell, B.R. Stoka, V. Storchova, Z. Stork, B. Stratoulias, V. Stravopodis, D.J. Strnad, P. Strohecker, A.M. Ström, A.-L. Stromhaug, P. Stulik, J. Su, Y.-X. Su, Z. Subauste, C.S. Subramaniam, S. Sue, C.M. Suh, S.W. Sui, X. Sukseree, S. Sulzer, D. Sun, F.-L. Sun, J. Sun, J. Sun, S.-Y. Sun, Y. Sun, Y. Sun, Y. Sundaramoorthy, V. Sung, J. Suzuki, H. Suzuki, K. Suzuki, N. Suzuki, T. Suzuki, Y.J. Swanson, M.S. Swanton, C. Swärd, K. Swarup, G. Sweeney, S.T. Sylvester, P.W. Szatmari, Z. Szegezdi, E. Szlosarek, P.W. Taegtmeyer, H. Tafani, M. Taillebourg, E. Tait, S.W.G. Takacs-Vellai, K. Takahashi, Y. Takáts, S. Takemura, G. Takigawa, N. Talbot, N.J. Tamagno, E. Tamburini, J. Tan, C.-P. Tan, L. Tan, M.L. Tan, M. Tan, Y.-J. Tanaka, K. Tanaka, M. Tang, D. Tang, D. Tang, G. Tanida, I. Tanji, K. Tannous, B.A. Tapia, J.A. Tasset-Cuevas, I. Tatar, M. Tavassoly, I. Tavernarakis, N. Taylor, A. Taylor, G.S. Taylor, G.A. Taylor, J.P. Taylor, M.J. Tchetina, E.V. Tee, A.R. Teixeira-Clerc, F. Telang, S. Tencomnao, T. Teng, B.-B. Teng, R.-J. Terro, F. Tettamanti, G. Theiss, A.L. Theron, A.E. Thomas, K.J. Thomé, M.P. Thomes, P.G. Thorburn, A. Thorner, J. Thum, T. Thumm, M. Thurston, T.L.M. Tian, L. Till, A. Ting, J.P.-Y. Ting, J.P.Y. Titorenko, V.I. Toker, L. Toldo, S. Tooze, S.A. Topisirovic, I. Torgersen, M.L. Torosantucci, L. Torriglia, A. Torrisi, M.R. Tournier, C. Towns, R. Trajkovic, V. Travassos, L.H. Triola, G. Tripathi, D.N. Trisciuoglio, D. Troncoso, R. Trougakos, I.P. Truttmann, A.C. Tsai, K.-J. Tschan, M.P. Tseng, Y.-H. Tsukuba, T. Tsung, A. Tsvetkov, A.S. Tu, S. Tuan, H.-Y. Tucci, M. Tumbarello, D.A. Turk, B. Turk, V. Turner, R.F.B. Tveita, A.A. Tyagi, S.C. Ubukata, M. Uchiyama, Y. Udelnow, A. Ueno, T. Umekawa, M. Umemiya-Shirafuji, R. Underwood, B.R. Ungermann, C. Ureshino, R.P. Ushioda, R. Uversky, V.N. Uzcátegui, N.L. Vaccari, T. Vaccaro, M.I. Váchová, L. Vakifahmetoglu-Norberg, H. Valdor, R. Valente, E.M. Vallette, F. Valverde, A.M. Van den Berghe, G. Van Den Bosch, L. van den Brink, G.R. van der Goot, F.G. van der Klei, I.J. van der Laan, L.J.W. van Doorn, W.G. van Egmond, M. van Golen, K.L. Van Kaer, L. Campagne, M.L. Vandenabeele, P. Vandenberghe, W. Vanhorebeek, I. Varela-Nieto, I. Vasconcelos, M.H. Vasko, R. Vavvas, D.G. Vega-Naredo, I. Velasco, G. Velentzas, A.D. Velentzas, P.D. Vellai, T. Vellenga, E. Vendelbo, M.H. Venkatachalam, K. Ventura, N. Ventura, S. Veras, P.S.T. Verdier, M. Vertessy, B.G. Viale, A. Vidal, M. Vieira, H.L.A. Vierstra, R.D. Vigneswaran, N. Vij, N. Vila, M. Villar, M. Villar, V.H. Villarroya, J. Vindis, C. Viola, G. Viscomi, M.T. Vitale, G. Vogl, D.T. Voitsekhovskaja, O.V. von Haefen, C. von Schwarzenberg, K. Voth, D.E. Vouret-Craviari, V. Vuori, K. Vyas, J.M. Waeber, C. Walker, C.L. Walker, M.J. Walter, J. Wan, L. Wan, X. Wang, B. Wang, C. Wang, C.-Y. Wang, C. Wang, C. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H.-J. Wang, H. Wang, H.-G. Wang, H. Wang, H.-D. Wang, J. Wang, J. Wang, M. Wang, M.-Q. Wang, P.-Y. Wang, P. Wang, R.C. Wang, S. Wang, T.-F. Wang, X. Wang, X.-J. Wang, X.-W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.-J. Wang, Y. Wang, Y. Wang, Y.T. Wang, Y. Wang, Z.-N. Wappner, P. Ward, C. Ward, D.M.V. Warnes, G. Watada, H. Watanabe, Y. Watase, K. Weaver, T.E. Weekes, C.D. Wei, J. Weide, T. Weihl, C.C. Weindl, G. Weis, S.N. Wen, L. Wen, X. Wen, Y. Westermann, B. Weyand, C.M. White, A.R. White, E. Whitton, J.L. Whitworth, A.J. Wiels, J. Wild, F. Wildenberg, M.E. Wileman, T. Wilkinson, D.S. Wilkinson, S. Willbold, D. Williams, C. Williams, K. Williamson, P.R. Winklhofer, K.F. Witkin, S.S. Wohlgemuth, S.E. Wollert, T. Wolvetang, E.J. Wong, E. Wong, G.W. Wong, R.W. Wong, V.K.W. Woodcock, E.A. Wright, K.L. Wu, C. Wu, D. Wu, G.S. Wu, J. Wu, J. Wu, M. Wu, M. Wu, S. Wu, W.K.K. Wu, Y. Wu, Z. Xavier, C.P.R. Xavier, R.J. Xia, G.-X. Xia, T. Xia, W. Xia, Y. Xiao, H. Xiao, J. Xiao, S. Xiao, W. Xie, C.-M. Xie, Z. Xie, Z. Xilouri, M. Xiong, Y. Xu, C. Xu, C. Xu, F. Xu, H. Xu, H. Xu, J. Xu, J. Xu, J. Xu, L. Xu, X. Xu, Y. Xu, Y. Xu, Z.-X. Xu, Z. Xue, Y. Yamada, T. Yamamoto, A. Yamanaka, K. Yamashina, S. Yamashiro, S. Yan, B. Yan, B. Yan, X. Yan, Z. Yanagi, Y. Yang, D.-S. Yang, J.-M. Yang, L. Yang, M. Yang, P.-M. Yang, P. Yang, Q. Yang, W. Yang, W.Y. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, Z. Yao, M.-C. Yao, P.J. Yao, X. Yao, Z. Yao, Z. Yasui, L.S. Ye, M. Yedvobnick, B. Yeganeh, B. Yeh, E.S. Yeyati, P.L. Yi, F. Yi, L. Yin, X.-M. Yip, C.K. Yoo, Y.-M. Yoo, Y.H. Yoon, S.-Y. Yoshida, K.-I. Yoshimori, T. Young, K.H. Yu, H. Yu, J.J. Yu, J.-T. Yu, J. Yu, L. Yu, W.H. Yu, X.-F. Yu, Z. Yuan, J. Yuan, Z.-M. Yue, B.Y.J.T. Yue, J. Yue, Z. Zacks, D.N. Zacksenhaus, E. Zaffaroni, N. Zaglia, T. Zakeri, Z. Zecchini, V. Zeng, J. Zeng, M. Zeng, Q. Zervos, A.S. Zhang, D.D. Zhang, F. Zhang, G. Zhang, G.-C. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, J.-P. Zhang, L. Zhang, L. Zhang, L. Zhang, M.-Y. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhao, M. Zhao, W.-L. Zhao, X. Zhao, Y.G. Zhao, Y. Zhao, Y. Zhao, Y.-X. Zhao, Z. Zhao, Z.J. Zheng, D. Zheng, X.-L. Zheng, X. Zhivotovsky, B. Zhong, Q. Zhou, G.-Z. Zhou, G. Zhou, H. Zhou, S.-F. Zhou, X.-J. Zhu, H. Zhu, H. Zhu, W.-G. Zhu, W. Zhu, X.-F. Zhu, Y. Zhuang, S.-M. Zhuang, X. Ziparo, E. Zois, C.E. Zoladek, T. Zong, W.-X. Zorzano, A. Zughaier, S.M.
- Published
- 2016
17. On the induction of homogeneous bulk crystallization in Eu-doped calcium aluminosilicate glass by applying simultaneous high pressure and temperature
- Author
-
S. Le Floch, A.N. Medina, M. Sandrini, Yannick Guyot, Jurandir H. Rohling, Mauro Luciano Baesso, C. Martinet, R. F. Muniz, L.H.C. Andrade, Sandro Marcio Lima, Dominique de Ligny, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Universidade Estadual de Maringà (UEM), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), and Universidade Estadual de Mato Grosso do Sul
- Subjects
Materials science ,Analytical chemistry ,General Physics and Astronomy ,Mineralogy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,law ,[CHIM]Chemical Sciences ,Ceramic ,Crystallization ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Diopside ,Calcium aluminosilicate ,Nanoindentation ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,visual_art ,X-ray crystallography ,visual_art.visual_art_medium ,symbols ,0210 nano-technology ,Raman spectroscopy - Abstract
From initial calcium aluminosilicate glass, transparent glass-ceramics have been successfully synthesized under simultaneous high pressure and temperature (SHPT). Possible homogeneous volumetric crystallization of this glassy system, which was not achieved previously by means of conventional heat treatment, has been put in evidence with a SHPT procedure. Structural, mechanical, and optical properties of glass and glass-ceramic obtained were investigated. Raman spectroscopy and X-ray diffraction allowed to identify two main crystalline phases: merwinite [Ca3Mg(SiO4)2] and diopside [CaMgSi2O6]. A Raman scanning profile showed that the formation of merwinite is quite homogeneous over the bulk sample. However, the sample surface also contains significant diopside crystals. Instrumented Berkovich nanoindentation was applied to determine the effect of SHPT on hardness from glass to glass-ceramic. For Eu-doped samples, the broadband emission due to 4f65d1 → 4f7 transition of Eu2+ was studied in both host systems. Additionally, the 5D0 → 7FJ transition of Eu3+ was used as an environment probe in the pristine glass and the glass-ceramic.
- Published
- 2016
- Full Text
- View/download PDF
18. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
- Author
-
Klionsky, D.J. Abdelmohsen, K. Abe, A. Abedin, M.J. Abeliovich, H. Arozena, A.A. Adachi, H. Adams, C.M. Adams, P.D. Adeli, K. Adhihetty, P.J. Adler, S.G. Agam, G. Agarwal, R. Aghi, M.K. Agnello, M. Agostinis, P. Aguilar, P.V. Aguirre-Ghiso, J. Airoldi, E.M. Ait-Si-Ali, S. Akematsu, T. Akporiaye, E.T. Al-Rubeai, M. Albaiceta, G.M. Albanese, C. Albani, D. Albert, M.L. Aldudo, J. Algül, H. Alirezaei, M. Alloza, I. Almasan, A. Almonte-Beceril, M. Alnemri, E.S. Alonso, C. Altan-Bonnet, N. Altieri, D.C. Alvarez, S. Alvarez-Erviti, L. Alves, S. Amadoro, G. Amano, A. Amantini, C. Ambrosio, S. Amelio, I. Amer, A.O. Amessou, M. Amon, A. An, Z. Anania, F.A. Andersen, S.U. Andley, U.P. Andreadi, C.K. Andrieu-Abadie, N. Anel, A. Ann, D.K. Anoopkumar-Dukie, S. Antonioli, M. Aoki, H. Apostolova, N. Aquila, S. Aquilano, K. Araki, K. Arama, E. Aranda, A. Araya, J. Arcaro, A. Arias, E. Arimoto, H. Ariosa, A.R. Armstrong, J.L. Arnould, T. Arsov, I. Asanuma, K. Askanas, V. Asselin, E. Atarashi, R. Atherton, S.S. Atkin, J.D. Attardi, L.D. Auberger, P. Auburger, G. Aurelian, L. Autelli, R. Avagliano, L. Avantaggiati, M.L. Avrahami, L. Azad, N. Awale, S. Bachetti, T. Backer, J.M. Bae, D.-H. Bae, J.-S. Bae, O.-N. Bae, S.H. Baehrecke, E.H. Baek, S.-H. Baghdiguian, S. Bagniewska-Zadworna, A. Bai, H. Bai, J. Bai, X.-Y. Bailly, Y. Balaji, K.N. Balduini, W. Ballabio, A. Balzan, R. Banerjee, R. Bánhegyi, G. Bao, H. Barbeau, B. Barrachina, M.D. Barreiro, E. Bartel, B. Bartolomé, A. Bassham, D.C. Bassi, M.T. Bast, R.C., Jr. Basu, A. Batista, M.T. Batoko, H. Battino, M. Bauckman, K. Baumgarner, B.L. Bayer, K.U. Beale, R. Beaulieu, J.-F. Beck, G.R., Jr. Becker, C. Beckham, J.D. Bédard, P.-A. Bednarski, P.J. Begley, T.J. Behl, C. Behrends, C. Behrens, G.M.N. Behrns, K.E. Bejarano, E. Belaid, A. Belleudi, F. Bénard, G. Berchem, G. Bergamaschi, D. Bergami, M. Berkhout, B. Berliocchi, L. Bernard, A. Bernard, M. Bernassola, F. Bertolotti, A. Bess, A.S. Besteiro, S. Bettuzzi, S. Bhalla, S. Bhattacharyya, S. Bhutia, S.K. Biagosch, C. Bianchi, M.W. Biard-Piechaczyk, M. Billes, V. Bincoletto, C. Bingol, B. Bird, S.W. Bitoun, M. Bjedov, I. Blackstone, C. Blanc, L. Blanco, G.A. Blomhoff, H.K. Boada-Romero, E. Böckler, S. Boes, M. Boesze-Battaglia, K. Boise, L.H. Bolino, A. Boman, A. Bonaldo, P. Bordi, M. Bosch, J. Botana, L.M. Botti, J. Bou, G. Bouché, M. Bouchecareilh, M. Boucher, M.-J. Boulton, M.E. Bouret, S.G. Boya, P. Boyer-Guittaut, M. Bozhkov, P.V. Brady, N. Braga, V.M.M. Brancolini, C. Braus, G.H. Bravo-San-Pedro, J.M. Brennan, L.A. Bresnick, E.H. Brest, P. Bridges, D. Bringer, M.-A. Brini, M. Brito, G.C. Brodin, B. Brookes, P.S. Brown, E.J. Brown, K. Broxmeyer, H.E. Bruhat, A. Brum, P.C. Brumell, J.H. Brunetti-Pierri, N. Bryson-Richardson, R.J. Buch, S. Buchan, A.M. Budak, H. Bulavin, D.V. Bultman, S.J. Bultynck, G. Bumbasirevic, V. Burelle, Y. Burke, R.E. Burmeister, M. Bütikofer, P. Caberlotto, L. Cadwell, K. Cahova, M. Cai, D. Cai, J. Cai, Q. Calatayud, S. Camougrand, N. Campanella, M. Campbell, G.R. Campbell, M. Campello, S. Candau, R. Caniggia, I. Cantoni, L. Cao, L. Caplan, A.B. Caraglia, M. Cardinali, C. Cardoso, S.M. Carew, J.S. Carleton, L.A. Carlin, C.R. Carloni, S. Carlsson, S.R. Carmona-Gutierrez, D. Carneiro, L.A.M. Carnevali, O. Carra, S. Carrier, A. Carroll, B. Casas, C. Casas, J. Cassinelli, G. Castets, P. Castro-Obregon, S. Cavallini, G. Ceccherini, I. Cecconi, F. Cederbaum, A.I. Ceña, V. Cenci, S. Cerella, C. Cervia, D. Cetrullo, S. Chaachouay, H. Chae, H.-J. Chagin, A.S. Chai, C.-Y. Chakrabarti, G. Chamilos, G. Chan, E.Y.W. Chan, M.T.V. Chandra, D. Chandra, P. Chang, C.-P. Chang, R.C.-C. Chang, T.Y. Chatham, J.C. Chatterjee, S. Chauhan, S. Che, Y. Cheetham, M.E. Cheluvappa, R. Chen, C.-J. Chen, G. Chen, G.-C. Chen, G. Chen, H. Chen, J.W. Chen, J.-K. Chen, M. Chen, M. Chen, P. Chen, Q. Chen, Q. Chen, S.-D. Chen, S. Chen, S.S.-L. Chen, W. Chen, W.-J. Chen, W.Q. Chen, W. Chen, X. Chen, Y.-H. Chen, Y.-G. Chen, Y. Chen, Y. Chen, Y. Chen, Y.-J. Chen, Y.-Q. Chen, Y. Chen, Z. Chen, Z. Cheng, A. Cheng, C.H.K. Cheng, H. Cheong, H. Cherry, S. Chesney, J. Cheung, C.H.A. Chevet, E. Chi, H.C. Chi, S.-G. Chiacchiera, F. Chiang, H.-L. Chiarelli, R. Chiariello, M. Chieppa, M. Chin, L.-S. Chiong, M. Chiu, G.N.C. Cho, D.-H. Cho, S.-G. Cho, W.C. Cho, Y.-Y. Cho, Y.-S. Choi, A.M.K. Choi, E.-J. Choi, E.-K. Choi, J. Choi, M.E. Choi, S.-I. Chou, T.-F. Chouaib, S. Choubey, D. Choubey, V. Chow, K.-C. Chowdhury, K. Chu, C.T. Chuang, T.-H. Chun, T. Chung, H. Chung, T. Chung, Y.-L. Chwae, Y.-J. Cianfanelli, V. Ciarcia, R. Ciechomska, I.A. Ciriolo, M.R. Cirone, M. Claerhout, S. Clague, M.J. Clària, J. Clarke, P.G.H. Clarke, R. Clementi, E. Cleyrat, C. Cnop, M. Coccia, E.M. Cocco, T. Codogno, P. Coers, J. Cohen, E.E.W. Colecchia, D. Coletto, L. Coll, N.S. Colucci-Guyon, E. Comincini, S. Condello, M. Cook, K.L. Coombs, G.H. Cooper, C.D. Cooper, J.M. Coppens, I. Corasaniti, M.T. Corazzari, M. Corbalan, R. Corcelle-Termeau, E. Cordero, M.D. Corral-Ramos, C. Corti, O. Cossarizza, A. Costelli, P. Costes, S. Cotman, S.L. Coto-Montes, A. Cottet, S. Couve, E. Covey, L.R. Cowart, L.A. Cox, J.S. Coxon, F.P. Coyne, C.B. Cragg, M.S. Craven, R.J. Crepaldi, T. Crespo, J.L. Criollo, A. Crippa, V. Cruz, M.T. Cuervo, A.M. Cuezva, J.M. Cui, T. Cutillas, P.R. Czaja, M.J. Czyzyk-Krzeska, M.F. Dagda, R.K. Dahmen, U. Dai, C. Dai, W. Dai, Y. Dalby, K.N. Valle, L.D. Dalmasso, G. D'amelio, M. Damme, M. Darfeuille-Michaud, A. Dargemont, C. Darley-Usmar, V.M. Dasarathy, S. Dasgupta, B. Dash, S. Dass, C.R. Davey, H.M. Davids, L.M. Dávila, D. Davis, R.J. Dawson, T.M. Dawson, V.L. Daza, P. de Belleroche, J. de Figueiredo, P. de Figueiredo, R.C.B.Q. de la Fuente, J. De Martino, L. De Matteis, A. De Meyer, G.R.Y. De Milito, A. De Santi, M. de Souza, W. De Tata, V. De Zio, D. Debnath, J. Dechant, R. Decuypere, J.-P. Deegan, S. Dehay, B. Del Bello, B. Del Re, D.P. Delage-Mourroux, R. Delbridge, L.M.D. Deldicque, L. Delorme-Axford, E. Deng, Y. Dengjel, J. Denizot, M. Dent, P. Der, C.J. Deretic, V. Derrien, B. Deutsch, E. Devarenne, T.P. Devenish, R.J. Di Bartolomeo, S. Di Daniele, N. Di Domenico, F. Di Nardo, A. Di Paola, S. Di Pietro, A. Di Renzo, L. Di Antonio, A. Díaz-Araya, G. Díaz-Laviada, I. Diaz-Meco, M.T. Diaz-Nido, J. Dickey, C.A. Dickson, R.C. Diederich, M. Digard, P. Dikic, I. Dinesh-Kumar, S.P. Ding, C. Ding, W.-X. Ding, Z. Dini, L. Distler, J.H.W. Diwan, A. Djavaheri-Mergny, M. Dmytruk, K. Dobson, R.C.J. Doetsch, V. Dokladny, K. Dokudovskaya, S. Donadelli, M. Dong, X.C. Dong, X. Dong, Z. Donohue, T.M., Jr. Donohue-Jr, T.M. Doran, K.S. D'orazi, G. Dorn, G.W., II Dosenko, V. Dridi, S. Drucker, L. Du, J. Du, L.-L. Du, L. du Toit, A. Dua, P. Duan, L. Duann, P. Dubey, V.K. Duchen, M.R. Duchosal, M.A. Duez, H. Dugail, I. Dumit, V.I. Duncan, M.C. Dunlop, E.A. Dunn, W.A., Jr. Dupont, N. Dupuis, L. Durán, R.V. Durcan, T.M. Duvezin-Caubet, S. Duvvuri, U. Eapen, V. Ebrahimi-Fakhari, D. Echard, A. Eckhart, L. Edelstein, C.L. Edinger, A.L. Eichinger, L. Eisenberg, T. Eisenberg-Lerner, A. Eissa, N.T. El-Deiry, W.S. El-Khoury, V. Elazar, Z. Eldar-Finkelman, H. Elliott, C.J.H. Emanuele, E. Emmenegger, U. Engedal, N. Engelbrecht, A.-M. Engelender, S. Enserink, J.M. Erdmann, R. Erenpreisa, J. Eri, R. Eriksen, J.L. Erman, A. Escalante, R. Eskelinen, E.-L. Espert, L. Esteban-Martínez, L. Evans, T.J. Fabri, M. Fabrias, G. Fabrizi, C. Facchiano, A. Færgeman, N.J. Faggioni, A. Fairlie, W.D. Fan, C. Fan, D. Fan, J. Fang, S. Fanto, M. Fanzani, A. Farkas, T. Faure, M. Favier, F.B. Fearnhead, H. Federici, M. Fei, E. Felizardo, T.C. Feng, H. Feng, Y. Feng, Y. Ferguson, T.A. Fernández, Á.F. Fernandez-Barrena, M.G. Fernandez-Checa, J.C. Fernández-López, A. Fernandez-Zapico, M.E. Feron, O. Ferraro, E. Ferreira-Halder, C.V. Fesus, L. Feuer, R. Fiesel, F.C. Filippi-Chiela, E.C. Filomeni, G. Fimia, G.M. Fingert, J.H. Finkbeiner, S. Finkel, T. Fiorito, F. Fisher, P.B. Flajolet, M. Flamigni, F. Florey, O. Florio, S. Floto, R.A. Folini, M. Follo, C. Fon, E.A. Fornai, F. Fortunato, F. Fraldi, A. Franco, R. Francois, A. François, A. Frankel, L.B. Fraser, I.D.C. Frey, N. Freyssenet, D.G. Frezza, C. Friedman, S.L. Frigo, D.E. Fu, D. Fuentes, J.M. Fueyo, J. Fujitani, Y. Fujiwara, Y. Fujiya, M. Fukuda, M. Fulda, S. Fusco, C. Gabryel, B. Gaestel, M. Gailly, P. Gajewska, M. Galadari, S. Galili, G. Galindo, I. Galindo, M.F. Galliciotti, G. Galluzzi, L. Galluzzi, L. Galy, V. Gammoh, N. Gandy, S. Ganesan, A.K. Ganesan, S. Ganley, I.G. Gannagé, M. Gao, F.-B. Gao, F. Gao, J.-X. Nannig, L.G. Véscovi, E.G. Garcia-Macía, M. Garcia-Ruiz, C. Garg, A.D. Garg, P.K. Gargini, R. Gassen, N.C. Gatica, D. Gatti, E. Gavard, J. Gavathiotis, E. Ge, L. Ge, P. Ge, S. Gean, P.-W. Gelmetti, V. Genazzani, A.A. Geng, J. Genschik, P. Gerner, L. Gestwicki, J.E. Gewirtz, D.A. Ghavami, S. Ghigo, E. Ghosh, D. Giammarioli, A.M. Giampieri, F. Giampietri, C. Giatromanolaki, A. Gibbings, D.J. Gibellini, L. Gibson, S.B. Ginet, V. Giordano, A. Giorgini, F. Giovannetti, E. Girardin, S.E. Gispert, S. Giuliano, S. Gladson, C.L. Glavic, A. Gleave, M. Godefroy, N. Gogal, R.M., Jr. Gokulan, K. Goldman, G.H. Goletti, D. Goligorsky, M.S. Gomes, A.V. Gomes, L.C. Gomez, H. Gomez-Manzano, C. Gómez-Sánchez, R. Gonçalves, D.A.P. Goncu, E. Gong, Q. Gongora, C. Gonzalez, C.B. Gonzalez-Alegre, P. Gonzalez-Cabo, P. González-Polo, R.A. Goping, I.S. Gorbea, C. Gorbunov, N.V. Goring, D.R. Gorman, A.M. Gorski, S.M. Goruppi, S. Goto-Yamada, S. Gotor, C. Gottlieb, R.A. Gozes, I. Gozuacik, D. Graba, Y. Graef, M. Granato, G.E. Grant, G.D. Grant, S. Gravina, G.L. Green, D.R. Greenhough, A. Greenwood, M.T. Grimaldi, B. Gros, F. Grose, C. Groulx, J.-F. Gruber, F. Grumati, P. Grune, T. Guan, J.-L. Guan, K.-L. Guerra, B. Guillen, C. Gulshan, K. Gunst, J. Guo, C. Guo, L. Guo, M. Guo, W. Guo, X.-G. Gust, A.A. Gustafsson, Å.B. Gutierrez, E. Gutierrez, M.G. Gwak, H.-S. Haas, A. Haber, J.E. Hadano, S. Hagedorn, M. Hahn, D.R. Halayko, A.J. Hamacher-Brady, A. Hamada, K. Hamai, A. Hamann, A. Hamasaki, M. Hamer, I. Hamid, Q. Hammond, E.M. Han, F. Han, W. Handa, J.T. Hanover, J.A. Hansen, M. Harada, M. Harhaji-Trajkovic, L. Harper, J.W. Harrath, A.H. Harris, A.L. Harris, J. Hasler, U. Hasselblatt, P. Hasui, K. Hawley, R.G. Hawley, T.S. He, C. He, C.Y. He, F. He, G. He, R.-R. He, X.-H. He, Y.-W. He, Y.-Y. Heath, J.K. Hébert, M.-J. Heinzen, R.A. Helgason, G.V. Hensel, M. Henske, E.P. Her, C. Herman, P.K. Hernández, A. Hernandez, C. Hernández-Tiedra, S. Hetz, C. Hiesinger, P.R. Higaki, K. Hilfiker, S. Hill, B.G. Hill, J.A. Hill, W.D. Hino, K. Hofius, D. Hofman, P. Höglinger, G.U. Höhfeld, J. Holz, M.K. Hong, Y. Hood, D.A. Hoozemans, J.J.M. Hoppe, T. Hsu, C. Hsu, C.-Y. Hsu, L.-C. Hu, D. Hu, G. Hu, H.-M. Hu, H. Hu, M.C. Hu, Y.-C. Hu, Z.-W. Hua, F. Hua, Y. Huang, C. Huang, H.-L. Huang, K.-H. Huang, K.-Y. Huang, S. Huang, S. Huang, W.-P. Huang, Y.-R. Huang, Y. Huang, Y. Huber, T.B. Huebbe, P. Huh, W.-K. Hulmi, J.J. Hur, G.M. Hurley, J.H. Husak, Z. Hussain, S.N.A. Hussain, S. Hwang, J.J. Hwang, S. Hwang, T.I.S. Ichihara, A. Imai, Y. Imbriano, C. Inomata, M. Into, T. Iovane, V. Iovanna, J.L. Iozzo, R.V. Ip, N.Y. Irazoqui, J.E. Iribarren, P. Isaka, Y. Isakovic, A.J. Ischiropoulos, H. Isenberg, J.S. Ishaq, M. Ishida, H. Ishii, I. Ishmael, J.E. Isidoro, C. Isobe, K.-I. Isono, E. Issazadeh-Navikas, S. Itahana, K. Itakura, E. Ivanov, A.I. Iyer, A.K.V. Izquierdo, J.M. Izumi, Y. Izzo, V. Jäättelä, M. Jaber, N. Jackson, D.J. Jackson, W.T. Jacob, T.G. Jacques, T.S. Jagannath, C. Jain, A. Jana, N.R. Jang, B.K. Jani, A. Janji, B. Jannig, P.R. Jansson, P.J. Jean, S. Jendrach, M. Jeon, J.-H. Jessen, N. Jeung, E.-B. Jia, K. Jia, L. Jiang, H. Jiang, H. Jiang, L. Jiang, T. Jiang, X. Jiang, X. Jiang, Y. Jiang, Y. Jiménez, A. Jin, C. Jin, H. Jin, L. Jin, M. Jin, S. Jinwal, U.K. Jo, E.-K. Johansen, T. Johnson, D.E. Johnson, G.V.W. Johnson, J.D. Jonasch, E. Jones, C. Joosten, L.A.B. Jordan, J. Joseph, A.-M. Joseph, B. Joubert, A.M. Ju, D. Ju, J. Juan, H.-F. Juenemann, K. Juhász, G. Jung, H.S. Jung, J.U. Jung, Y.-K. Jungbluth, H. Justice, M.J. Jutten, B. Kaakoush, N.O. Kaarniranta, K. Kaasik, A. Kabuta, T. Kaeffer, B. Kågedal, K. Kahana, A. Kajimura, S. Kakhlon, O. Kalia, M. Kalvakolanu, D.V. Kamada, Y. Kambas, K. Kaminskyy, V.O. Kampinga, H.H. Kandouz, M. Kang, C. Kang, R. Kang, T.-C. Kanki, T. Kanneganti, T.-D. Kanno, H. Kanthasamy, A.G. Kantorow, M. Kaparakis-Liaskos, M. Kapuy, O. Karantza, V. Karim, M.R. Karmakar, P. Kaser, A. Kaushik, S. Kawula, T. Kaynar, A.M. Ke, P.-Y. Ke, Z.-J. Kehrl, J.H. Keller, K.E. Kemper, J.K. Kenworthy, A.K. Kepp, O. Kern, A. Kesari, S. Kessel, D. Ketteler, R. Kettelhut, I.C. Khambu, B. Khan, M.M. Khandelwal, V.K.M. Khare, S. Kiang, J.G. Kiger, A.A. Kihara, A. Kim, A.L. Kim, C.H. Kim, D.R. Kim, D.-H. Kim, E.K. Kim, H.Y. Kim, H.-R. Kim, J.-S. Kim, J.H. Kim, J.C. Kim, J.H. Kim, K.W. Kim, M.D. Kim, M.-M. Kim, P.K. Kim, S.W. Kim, S.-Y. Kim, Y.-S. Kim, Y. Kimchi, A. Kimmelman, A.C. Kimura, T. King, J.S. Kirkegaard, K. Kirkin, V. Kirshenbaum, L.A. Kishi, S. Kitajima, Y. Kitamoto, K. Kitaoka, Y. Kitazato, K. Kley, R.A. Klimecki, W.T. Klinkenberg, M. Klucken, J. Knævelsrud, H. Knecht, E. Knuppertz, L. Ko, J.-L. Kobayashi, S. Koch, J.C. Koechlin-Ramonatxo, C. Koenig, U. Koh, Y.H. Köhler, K. Kohlwein, S.D. Koike, M. Komatsu, M. Kominami, E. Kong, D. Kong, H.J. Konstantakou, E.G. Kopp, B.T. Korcsmaros, T. Korhonen, L. Korolchuk, V.I. Koshkina, N.V. Kou, Y. Koukourakis, M.I. Koumenis, C. Kovács, A.L. Kovács, T. Kovacs, W.J. Koya, D. Kraft, C. Krainc, D. Kramer, H. Kravic-Stevovic, T. Krek, W. Kretz-Remy, C. Krick, R. Krishnamurthy, M. Kriston-Vizi, J. Kroemer, G. Kruer, M.C. Kruger, R. Ktistakis, N.T. Kuchitsu, K. Kuhn, C. Kumar, A.P. Kumar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, R. Kumar, S. Kundu, M. Kung, H.-J. Kuno, A. Kuo, S.-H. Kuret, J. Kurz, T. Kwok, T. Kwon, T.K. Kwon, Y.T. Kyrmizi, I. La Spada, A.R. Lafont, F. Lahm, T. Lakkaraju, A. Lam, T. Lamark, T. Lancel, S. Landowski, T.H. Lane, D.J.R. Lane, J.D. Lanzi, C. Lapaquette, P. Lapierre, L.R. Laporte, J. Laukkarinen, J. Laurie, G.W. Lavandero, S. Lavie, L. Lavoie, M.J. Law, B.Y.K. Law, H.K.-W. Law, K.B. Layfield, R. Lazo, P.A. Le Cam, L. Le Roch, K.G. Le Stunff, H. Leardkamolkarn, V. Lecuit, M. Lee, B.-H. Lee, C.-H. Lee, E.F. Lee, G.M. Lee, H.-J. Lee, H. Lee, J.K. Lee, J. Lee, J.-H. Lee, J.H. Lee, M. Lee, M.-S. Lee, P.J. Lee, S.W. Lee, S.-J. Lee, S.-J. Lee, S.Y. Lee, S.H. Lee, S.S. Lee, S.-J. Lee, S. Lee, Y.-R. Lee, Y.J. Lee, Y.H. Leeuwenburgh, C. Lefort, S. Legouis, R. Lei, J. Lei, Q.-Y. Leib, D.A. Leibowitz, G. Lekli, I. Lemaire, S.D. Lemasters, J.J. Lemberg, M.K. Lemoine, A. Leng, S. Lenz, G. Lenzi, P. Lerman, L.O. Barbato, D.L. Leu, J.I.J. Leung, H.Y. Levine, B. Lewis, P.A. Lezoualch, F. Li, C. Li, F. Li, F.-J. Li, J. Li, K. Li, L. Li, M. Li, Q. Li, R. Li, S. Li, W. Li, X. Li, Y. Lian, J. Liang, C. Liang, Q. Liao, Y. Liberal, J. Liberski, P.P. Lie, P. Lieberman, A.P. Lim, H.J. Lim, K.-L. Lim, K. Lima, R.T. Lin, C.-S. Lin, C.-F. Lin, F. Lin, F. Lin, F.-C. Lin, K. Lin, K.-H. Lin, P.-H. Lin, T. Lin, W.-W. Lin, Y.-S. Lin, Y. Linden, R. Lindholm, D. Lindqvist, L.M. Lingor, P. Linkermann, A. Liotta, L.A. Lipinski, M.M. Lira, V.A. Lisanti, M.P. Liton, P.B. Liu, B. Liu, C. Liu, C.-F. Liu, F. Liu, H.-J. Liu, J. Liu, J.-J. Liu, J.-L. Liu, K. Liu, L. Liu, L. Liu, Q. Liu, R.-Y. Liu, S. Liu, S. Liu, W. Liu, X.-D. Liu, X. Liu, X.-H. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liuzzi, J.P. Lizard, G. Ljujic, M. Lodhi, I.J. Logue, S.E. Lokeshwar, B.L. Long, Y.C. Lonial, S. Loos, B. López-Otín, C. López-Vicario, C. Lorente, M. Lorenzi, P.L. Lõrincz, P. Los, M. Lotze, M.T. Lovat, P.E. Lu, B. Lu, B. Lu, J. Lu, Q. Lu, S.-M. Lu, S. Lu, Y. Luciano, F. Luckhart, S. Lucocq, J.M. Ludovico, P. Lugea, A. Lukacs, N.W. Lum, J.J. Lund, A.H. Luo, H. Luo, J. Luo, S. Luparello, C. Lyons, T. Ma, J. Ma, Y. Ma, Y. Ma, Z. Machado, J. Machado-Santelli, G.M. Macian, F. MacIntosh, G.C. MacKeigan, J.P. Macleod, K.F. MacMicking, J.D. MacMillan-Crow, L.A. Madeo, F. Madesh, M. Madrigal-Matute, J. Maeda, A. Maeda, T. Maegawa, G. Maellaro, E. Maes, H. Magariños, M. Maiese, K. Maiti, T.K. Maiuri, L. Maiuri, M.C. Maki, C.G. Malli, R. Malorni, W. Maloyan, A. Mami-Chouaib, F. Man, N. Mancias, J.D. Mandelkow, E.-M. Mandell, M.A. Manfredi, A.A. Manié, S.N. Manzoni, C. Mao, K. Mao, Z. Mao, Z.-W. Marambaud, P. Marconi, A.M. Marelja, Z. Marfe, G. Margeta, M. Margittai, E. Mari, M. Mariani, F.V. Marin, C. Marinelli, S. Mariño, G. Markovic, I. Marquez, R. Martelli, A.M. Martens, S. Martin, K.R. Martin, S.J. Martin, S. Martin-Acebes, M.A. Martín-Sanz, P. Martinand-Mari, C. Martinet, W. Martinez, J. Martinez-Lopez, N. Martinez-Outschoorn, U. Martínez-Velázquez, M. Martinez-Vicente, M. Martins, W.K. Mashima, H. Mastrianni, J.A. Matarese, G. Matarrese, P. Mateo, R. Matoba, S. Matsumoto, N. Matsushita, T. Matsuura, A. Matsuzawa, T. Mattson, M.P. Matus, S. Maugeri, N. Mauvezin, C. Mayer, A. Maysinger, D. Mazzolini, G.D. McBrayer, M.K. McCall, K. McCormick, C. McInerney, G.M. McIver, S.C. McKenna, S. McMahon, J.J. McNeish, I.A. Mechta-Grigoriou, F. Medema, J.P. Medina, D.L. Megyeri, K. Mehrpour, M. Mehta, J.L. Mei, Y. Meier, U.-C. Meijer, A.J. Meléndez, A. Melino, G. Melino, S. de Melo, E.J.T. Mena, M.A. Meneghini, M.D. Menendez, J.A. Menezes, R. Meng, L. Meng, L.-H. Meng, S. Menghini, R. Menko, A.S. Menna-Barreto, R.F.S. Menon, M.B. Meraz-Ríos, M.A. Merla, G. Merlini, L. Merlot, A.M. Meryk, A. Meschini, S. Meyer, J.N. Mi, M.-T. Miao, C.-Y. Micale, L. Michaeli, S. Michiels, C. Migliaccio, A.R. Mihailidou, A.S. Mijaljica, D. Mikoshiba, K. Milan, E. Miller-Fleming, L. Mills, G.B. Mills, I.G. Minakaki, G. Minassian, B.A. Ming, X.-F. Minibayeva, F. Minina, E.A. Mintern, J.D. Minucci, S. Miranda-Vizuete, A. Mitchell, C.H. Miyamoto, S. Miyazawa, K. Mizushima, N. Mnich, K. Mograbi, B. Mohseni, S. Moita, L.F. Molinari, M. Molinari, M. Møller, A.B. Mollereau, B. Mollinedo, F. Mongillo, M. Monick, M.M. Montagnaro, S. Montell, C. Moore, D.J. Moore, M.N. Mora-Rodriguez, R. Moreira, P.I. Morel, E. Morelli, M.B. Moreno, S. Morgan, M.J. Moris, A. Moriyasu, Y. Morrison, J.L. Morrison, L.A. Morselli, E. Moscat, J. Moseley, P.L. Mostowy, S. Motori, E. Mottet, D. Mottram, J.C. Moussa, C.E.-H. Mpakou, V.E. Mukhtar, H. Levy, J.M.M. Muller, S. Muñoz-Moreno, R. Muñoz-Pinedo, C. Münz, C. Murphy, M.E. Murray, J.T. Murthy, A. Mysorekar, I.U. Nabi, I.R. Nabissi, M. Nader, G.A. Nagahara, Y. Nagai, Y. Nagata, K. Nagelkerke, A. Nagy, P. Naidu, S.R. Nair, S. Nakano, H. Nakatogawa, H. Nanjundan, M. Napolitano, G. Naqvi, N.I. Nardacci, R. Narendra, D.P. Narita, M. Nascimbeni, A.C. Natarajan, R. Navegantes, L.C. Nawrocki, S.T. Nazarko, T.Y. Nazarko, V.Y. Neill, T. Neri, L.M. Netea, M.G. Netea-Maier, R.T. Neves, B.M. Ney, P.A. Nezis, I.P. Nguyen, H.T.T. Nguyen, H.P. Nicot, A.-S. Nilsen, H. Nilsson, P. Nishimura, M. Nishino, I. Niso-Santano, M. Niu, H. Nixon, R.A. Njar, V.C.O. Noda, T. Noegel, A.A. Nolte, E.M. Norberg, E. Norga, K.K. Noureini, S.K. Notomi, S. Notterpek, L. Nowikovsky, K. Nukina, N. Nürnberger, T. O'donnell, V.B. O'donovan, T. O'dwyer, P.J. Oehme, I. Oeste, C.L. Ogawa, M. Ogretmen, B. Ogura, Y. Oh, Y.J. Ohmuraya, M. Ohshima, T. Ojha, R. Okamoto, K. Okazaki, T. Oliver, F.J. Ollinger, K. Olsson, S. Orban, D.P. Ordonez, P. Orhon, I. Orosz, L. O'rourke, E.J. Orozco, H. Ortega, A.L. Ortona, E. Osellame, L.D. Oshima, J. Oshima, S. Osiewacz, H.D. Otomo, T. Otsu, K. Ou, J.-H.J. Outeiro, T.F. Ouyang, D.-Y. Ouyang, H. Overholtzer, M. Ozbun, M.A. Ozdinler, P.H. Ozpolat, B. Pacelli, C. Paganetti, P. Page, G. Pages, G. Pagnini, U. Pajak, B. Pak, S.C. Pakos-Zebrucka, K. Pakpour, N. Palková, Z. Palladino, F. Pallauf, K. Pallet, N. Palmieri, M. Paludan, S.R. Palumbo, C. Palumbo, S. Pampliega, O. Pan, H. Pan, W. Panaretakis, T. Pandey, A. Pantazopoulou, A. Papackova, Z. Papademetrio, D.L. Papassideri, I. Papini, A. Parajuli, N. Pardo, J. Parekh, V.V. Parenti, G. Park, J.-I. Park, J. Park, O.K. Parker, R. Parlato, R. Parys, J.B. Parzych, K.R. Pasquet, J.-M. Pasquier, B. Pasumarthi, K.B.S. Patterson, C. Pattingre, S. Pattison, S. Pause, A. Pavenstädt, H. Pavone, F. Pedrozo, Z. Peña, F.J. Peñalva, M.A. Pende, M. Peng, J. Penna, F. Penninger, J.M. Pensalfini, A. Pepe, S. Pereira, G.J.S. Pereira, P.C. de la Cruz, V.P. Pérez-Pérez, M.E. Pérez-Rodríguez, D. Pérez-Sala, D. Perier, C. Perl, A. Perlmutter, D.H. Perrotta, I. Pervaiz, S. Pesonen, M. Pessin, J.E. Peters, G.J. Petersen, M. Petrache, I. Petrof, B.J. Petrovski, G. Phang, J.M. Piacentini, M. Pierdominici, M. Pierre, P. Pierrefite-Carle, V. Pietrocola, F. Pimentel-Muiños, F.X. Pinar, M. Pineda, B. Pinkas-Kramarski, R. Pinti, M. Pinton, P. Piperdi, B. Piret, J.M. Platanias, L.C. Platta, H.W. Plowey, E.D. Pöggeler, S. Poirot, M. Polčic, P. Poletti, A. Poon, A.H. Popelka, H. Popova, B. Poprawa, I. Poulose, S.M. Poulton, J. Powers, S.K. Powers, T. Pozuelo-Rubio, M. Prak, K. Prange, R. Prescott, M. Priault, M. Prince, S. Proia, R.L. Proikas-Cezanne, T. Prokisch, H. Promponas, V.J. Przyklenk, K. Puertollano, R. Pugazhenthi, S. Puglielli, L. Pujol, A. Puyal, J. Pyeon, D. Qi, X. Qian, W.-B. Qin, Z.-H. Qiu, Y. Qu, Z. Quadrilatero, J. Quinn, F. Raben, N. Rabinowich, H. Radogna, F. Ragusa, M.J. Rahmani, M. Raina, K. Ramanadham, S. Ramesh, R. Rami, A. Randall-Demllo, S. Randow, F. Rao, H. Rao, V.A. Rasmussen, B.B. Rasse, T.M. Ratovitski, E.A. Rautou, P.-E. Ray, S.K. Razani, B. Reed, B.H. Reggiori, F. Rehm, M. Reichert, A.S. Rein, T. Reiner, D.J. Reits, E. Ren, J. Ren, X. Renna, M. Reusch, J.E.B. Revuelta, J.L. Reyes, L. Rezaie, A.R. Richards, R.I. Richardson, R. Richetta, C. Riehle, M.A. Rihn, B.H. Rikihisa, Y. Riley, B.E. Rimbach, G. Rippo, M.R. Ritis, K. Rizzi, F. Rizzo, E. Roach, P.J. Robbins, J. Roberge, M. Roca, G. Roccheri, M.C. Rocha, S. Rodrigues, C.M.P. Rodríguez, C.I. de Cordoba, S.R. Rodriguez-Muela, N. Roelofs, J. Rogov, V.V. Rohn, T.T. Rohrer, B. Romanelli, D. Romani, L. Romano, P.S. Roncero, M.I.G. Rosa, J.L. Rosello, A. Rosen, K.V. Rosenstiel, P. Rost-Roszkowska, M. Roth, K.A. Roué, G. Rouis, M. Rouschop, K.M. Ruan, D.T. Ruano, D. Rubinsztein, D.C. Rucker, E.B., III Rudich, A. Rudolf, E. Rudolf, R. Ruegg, M.A. Ruiz-Roldan, C. Ruparelia, A.A. Rusmini, P. Russ, D.W. Russo, G.L. Russo, G. Russo, R. Rusten, T.E. Ryabovol, V. Ryan, K.M. Ryter, S.W. Sabatini, D.M. Sacher, M. Sachse, C. Sack, M.N. Sadoshima, J. Saftig, P. Sagi-Eisenberg, R. Sahni, S. Saikumar, P. Saito, T. Saitoh, T. Sakakura, K. Sakoh-Nakatogawa, M. Sakuraba, Y. Salazar-Roa, M. Salomoni, P. Saluja, A.K. Salvaterra, P.M. Salvioli, R. Samali, A. Sanchez, A.M.J. Sánchez-Alcázar, J.A. Sanchez-Prieto, R. Sandri, M. Sanjuan, M.A. Santaguida, S. Santambrogio, L. Santoni, G. Dos Santos, C.N. Saran, S. Sardiello, M. Sargent, G. Sarkar, P. Sarkar, S. Sarrias, M.R. Sarwal, M.M. Sasakawa, C. Sasaki, M. Sass, M. Sato, K. Sato, M. Satriano, J. Savaraj, N. Saveljeva, S. Schaefer, L. Schaible, U.E. Scharl, M. Schatzl, H.M. Schekman, R. Scheper, W. Schiavi, A. Schipper, H.M. Schmeisser, H. Schmidt, J. Schmitz, I. Schneider, B.E. Schneider, E.M. Schneider, J.L. Schon, E.A. Schönenberger, M.J. Schönthal, A.H. Schorderet, D.F. Schröder, B. Schuck, S. Schulze, R.J. Schwarten, M. Schwarz, T.L. Sciarretta, S. Scotto, K. Scovassi, A.I. Screaton, R.A. Screen, M. Seca, H. Sedej, S. Segatori, L. Segev, N. Seglen, P.O. Seguí-Simarro, J.M. Segura-Aguilar, J. Seiliez, I. Seki, E. Sell, C. Semenkovich, C.F. Semenza, G.L. Sen, U. Serra, A.L. Serrano-Puebla, A. Sesaki, H. Setoguchi, T. Settembre, C. Shacka, J.J. Shajahan-Haq, A.N. Shapiro, I.M. Sharma, S. She, H. Shen, C.-K.J. Shen, C.-C. Shen, H.-M. Shen, S. Shen, W. Sheng, R. Sheng, X. Sheng, Z.-H. Shepherd, T.G. Shi, J. Shi, Q. Shi, Q. Shi, Y. Shibutani, S. Shibuya, K. Shidoji, Y. Shieh, J.-J. Shih, C.-M. Shimada, Y. Shimizu, S. Shin, D.W. Shinohara, M.L. Shintani, M. Shintani, T. Shioi, T. Shirabe, K. Shiri-Sverdlov, R. Shirihai, O. Shore, G.C. Shu, C.-W. Shukla, D. Sibirny, A.A. Sica, V. Sigurdson, C.J. Sigurdsson, E.M. Sijwali, P.S. Sikorska, B. Silveira, W.A. Silvente-Poirot, S. Silverman, G.A. Simak, J. Simmet, T. Simon, A.K. Simon, H.-U. Simone, C. Simons, M. Simonsen, A. Singh, R. Singh, S.V. Singh, S.K. Sinha, D. Sinha, S. Sinicrope, F.A. Sirko, A. Sirohi, K. Sishi, B.J.N. Sittler, A. Siu, P.M. Sivridis, E. Skwarska, A. Slack, R. Slaninová, I. Slavov, N. Smaili, S.S. Smalley, K.S.M. Smith, D.R. Soenen, S.J. Soleimanpour, S.A. Solhaug, A. Somasundaram, K. Son, J.H. Sonawane, A. Song, C. Song, F. Song, H.K. Song, J.-X. Song, W. Soo, K.Y. Sood, A.K. Soong, T.W. Soontornniyomkij, V. Sorice, M. Sotgia, F. Soto-Pantoja, D.R. Sotthibundhu, A. Sousa, M.J. Spaink, H.P. Span, P.N. Spang, A. Sparks, J.D. Speck, P.G. Spector, S.A. Spies, C.D. Springer, W. Clair, D.S. Stacchiotti, A. Staels, B. Stang, M.T. Starczynowski, D.T. Starokadomskyy, P. Steegborn, C. Steele, J.W. Stefanis, L. Steffan, J. Stellrecht, C.M. Stenmark, H. Stepkowski, T.M. Stern, S.T. Stevens, C. Stockwell, B.R. Stoka, V. Storchova, Z. Stork, B. Stratoulias, V. Stravopodis, D.J. Strnad, P. Strohecker, A.M. Ström, A.-L. Stromhaug, P. Stulik, J. Su, Y.-X. Su, Z. Subauste, C.S. Subramaniam, S. Sue, C.M. Suh, S.W. Sui, X. Sukseree, S. Sulzer, D. Sun, F.-L. Sun, J. Sun, J. Sun, S.-Y. Sun, Y. Sun, Y. Sun, Y. Sundaramoorthy, V. Sung, J. Suzuki, H. Suzuki, K. Suzuki, N. Suzuki, T. Suzuki, Y.J. Swanson, M.S. Swanton, C. Swärd, K. Swarup, G. Sweeney, S.T. Sylvester, P.W. Szatmari, Z. Szegezdi, E. Szlosarek, P.W. Taegtmeyer, H. Tafani, M. Taillebourg, E. Tait, S.W.G. Takacs-Vellai, K. Takahashi, Y. Takáts, S. Takemura, G. Takigawa, N. Talbot, N.J. Tamagno, E. Tamburini, J. Tan, C.-P. Tan, L. Tan, M.L. Tan, M. Tan, Y.-J. Tanaka, K. Tanaka, M. Tang, D. Tang, D. Tang, G. Tanida, I. Tanji, K. Tannous, B.A. Tapia, J.A. Tasset-Cuevas, I. Tatar, M. Tavassoly, I. Tavernarakis, N. Taylor, A. Taylor, G.S. Taylor, G.A. Taylor, J.P. Taylor, M.J. Tchetina, E.V. Tee, A.R. Teixeira-Clerc, F. Telang, S. Tencomnao, T. Teng, B.-B. Teng, R.-J. Terro, F. Tettamanti, G. Theiss, A.L. Theron, A.E. Thomas, K.J. Thomé, M.P. Thomes, P.G. Thorburn, A. Thorner, J. Thum, T. Thumm, M. Thurston, T.L.M. Tian, L. Till, A. Ting, J.P.-Y. Ting, J.P.Y. Titorenko, V.I. Toker, L. Toldo, S. Tooze, S.A. Topisirovic, I. Torgersen, M.L. Torosantucci, L. Torriglia, A. Torrisi, M.R. Tournier, C. Towns, R. Trajkovic, V. Travassos, L.H. Triola, G. Tripathi, D.N. Trisciuoglio, D. Troncoso, R. Trougakos, I.P. Truttmann, A.C. Tsai, K.-J. Tschan, M.P. Tseng, Y.-H. Tsukuba, T. Tsung, A. Tsvetkov, A.S. Tu, S. Tuan, H.-Y. Tucci, M. Tumbarello, D.A. Turk, B. Turk, V. Turner, R.F.B. Tveita, A.A. Tyagi, S.C. Ubukata, M. Uchiyama, Y. Udelnow, A. Ueno, T. Umekawa, M. Umemiya-Shirafuji, R. Underwood, B.R. Ungermann, C. Ureshino, R.P. Ushioda, R. Uversky, V.N. Uzcátegui, N.L. Vaccari, T. Vaccaro, M.I. Váchová, L. Vakifahmetoglu-Norberg, H. Valdor, R. Valente, E.M. Vallette, F. Valverde, A.M. Van den Berghe, G. Van Den Bosch, L. van den Brink, G.R. van der Goot, F.G. van der Klei, I.J. van der Laan, L.J.W. van Doorn, W.G. van Egmond, M. van Golen, K.L. Van Kaer, L. Campagne, M.L. Vandenabeele, P. Vandenberghe, W. Vanhorebeek, I. Varela-Nieto, I. Vasconcelos, M.H. Vasko, R. Vavvas, D.G. Vega-Naredo, I. Velasco, G. Velentzas, A.D. Velentzas, P.D. Vellai, T. Vellenga, E. Vendelbo, M.H. Venkatachalam, K. Ventura, N. Ventura, S. Veras, P.S.T. Verdier, M. Vertessy, B.G. Viale, A. Vidal, M. Vieira, H.L.A. Vierstra, R.D. Vigneswaran, N. Vij, N. Vila, M. Villar, M. Villar, V.H. Villarroya, J. Vindis, C. Viola, G. Viscomi, M.T. Vitale, G. Vogl, D.T. Voitsekhovskaja, O.V. von Haefen, C. von Schwarzenberg, K. Voth, D.E. Vouret-Craviari, V. Vuori, K. Vyas, J.M. Waeber, C. Walker, C.L. Walker, M.J. Walter, J. Wan, L. Wan, X. Wang, B. Wang, C. Wang, C.-Y. Wang, C. Wang, C. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H.-J. Wang, H. Wang, H.-G. Wang, H. Wang, H.-D. Wang, J. Wang, J. Wang, M. Wang, M.-Q. Wang, P.-Y. Wang, P. Wang, R.C. Wang, S. Wang, T.-F. Wang, X. Wang, X.-J. Wang, X.-W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.-J. Wang, Y. Wang, Y. Wang, Y.T. Wang, Y. Wang, Z.-N. Wappner, P. Ward, C. Ward, D.M.V. Warnes, G. Watada, H. Watanabe, Y. Watase, K. Weaver, T.E. Weekes, C.D. Wei, J. Weide, T. Weihl, C.C. Weindl, G. Weis, S.N. Wen, L. Wen, X. Wen, Y. Westermann, B. Weyand, C.M. White, A.R. White, E. Whitton, J.L. Whitworth, A.J. Wiels, J. Wild, F. Wildenberg, M.E. Wileman, T. Wilkinson, D.S. Wilkinson, S. Willbold, D. Williams, C. Williams, K. Williamson, P.R. Winklhofer, K.F. Witkin, S.S. Wohlgemuth, S.E. Wollert, T. Wolvetang, E.J. Wong, E. Wong, G.W. Wong, R.W. Wong, V.K.W. Woodcock, E.A. Wright, K.L. Wu, C. Wu, D. Wu, G.S. Wu, J. Wu, J. Wu, M. Wu, M. Wu, S. Wu, W.K.K. Wu, Y. Wu, Z. Xavier, C.P.R. Xavier, R.J. Xia, G.-X. Xia, T. Xia, W. Xia, Y. Xiao, H. Xiao, J. Xiao, S. Xiao, W. Xie, C.-M. Xie, Z. Xie, Z. Xilouri, M. Xiong, Y. Xu, C. Xu, C. Xu, F. Xu, H. Xu, H. Xu, J. Xu, J. Xu, J. Xu, L. Xu, X. Xu, Y. Xu, Y. Xu, Z.-X. Xu, Z. Xue, Y. Yamada, T. Yamamoto, A. Yamanaka, K. Yamashina, S. Yamashiro, S. Yan, B. Yan, B. Yan, X. Yan, Z. Yanagi, Y. Yang, D.-S. Yang, J.-M. Yang, L. Yang, M. Yang, P.-M. Yang, P. Yang, Q. Yang, W. Yang, W.Y. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, Z. Yao, M.-C. Yao, P.J. Yao, X. Yao, Z. Yao, Z. Yasui, L.S. Ye, M. Yedvobnick, B. Yeganeh, B. Yeh, E.S. Yeyati, P.L. Yi, F. Yi, L. Yin, X.-M. Yip, C.K. Yoo, Y.-M. Yoo, Y.H. Yoon, S.-Y. Yoshida, K.-I. Yoshimori, T. Young, K.H. Yu, H. Yu, J.J. Yu, J.-T. Yu, J. Yu, L. Yu, W.H. Yu, X.-F. Yu, Z. Yuan, J. Yuan, Z.-M. Yue, B.Y.J.T. Yue, J. Yue, Z. Zacks, D.N. Zacksenhaus, E. Zaffaroni, N. Zaglia, T. Zakeri, Z. Zecchini, V. Zeng, J. Zeng, M. Zeng, Q. Zervos, A.S. Zhang, D.D. Zhang, F. Zhang, G. Zhang, G.-C. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, J.-P. Zhang, L. Zhang, L. Zhang, L. Zhang, M.-Y. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhao, M. Zhao, W.-L. Zhao, X. Zhao, Y.G. Zhao, Y. Zhao, Y. Zhao, Y.-X. Zhao, Z. Zhao, Z.J. Zheng, D. Zheng, X.-L. Zheng, X. Zhivotovsky, B. Zhong, Q. Zhou, G.-Z. Zhou, G. Zhou, H. Zhou, S.-F. Zhou, X.-J. Zhu, H. Zhu, H. Zhu, W.-G. Zhu, W. Zhu, X.-F. Zhu, Y. Zhuang, S.-M. Zhuang, X. Ziparo, E. Zois, C.E. Zoladek, T. Zong, W.-X. Zorzano, A. Zughaier, S.M.
- Published
- 2016
19. In situ structural analysis of calcium aluminosilicate glasses under high pressure
- Author
-
C. Martinet, Mauro Luciano Baesso, R. F. Muniz, L.H.C. Andrade, Sandro Marcio Lima, A.N. Medina, Yannick Guyot, Jurandir H. Rohling, Dominique de Ligny, M. Sandrini, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,In situ ,[PHYS]Physics [physics] ,Materials science ,Analytical chemistry ,Calcium aluminosilicate ,Mineralogy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Structural evolution ,Bridging oxygen ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,chemistry ,High pressure ,0103 physical sciences ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,Spectroscopy - Abstract
In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al + Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T = Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.
- Published
- 2016
- Full Text
- View/download PDF
20. Low-frequency Raman scattering under high pressure in diamond anvil cell: Experimental protocol and application to GeO2 and SiO2 boson peaks
- Author
-
Bernard Champagnon, J. L. Bruneel, C. Martinet, Dominique de Ligny, and Thierry Deschamps
- Subjects
Materials science ,Condensed matter physics ,Low frequency ,Condensed Matter Physics ,Compression (physics) ,Diamond anvil cell ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,symbols.namesake ,Quality (physics) ,Materials Chemistry ,Ceramics and Composites ,symbols ,Raman scattering ,Line (formation) ,Boson - Abstract
article i nfo Article history: Received 13 July 2012 Available online xxxx Low frequency vibrations, a universal feature of amorphous solids which is responsible for thermodynamical anomalies at low temperature, are complicated to record in high pressure device, notably because of the close- ness of the elastic line. We first present an experimental protocol allowing to record the in situ low-frequency Raman scattering of samples under high pressure in the diamond anvil cell apparatus with a high quality. This protocol is particularly adapted to study the evolution of the boson peak of glassy materials. The second part is dedicated to the study of the boson peak of a-GeO2, a typical strong glass. The results, which clearly show the non-Debye behaviour of this material at the beginning of the compression where an anomalous compression takes place, are compared to previous measurements on a-SiO2. Interpretation in terms of local structural transitions and discussions about the elastic nanoheterogeneities of the amorphous state are addressed.
- Published
- 2012
- Full Text
- View/download PDF
21. Permanent Ge Coordination Change Induced by Pressure in La2O3-B2O3-GeO2 Glass
- Author
-
Angela Trapananti, C. Martinet, Camille Coussa-Simon, B. Champagnon, Dominique de Ligny, and Thierry Deschamps
- Subjects
Crystallography ,Absorption spectroscopy ,Polymorphism (materials science) ,Chemistry ,Materials Chemistry ,Ceramics and Composites ,A diamond ,chemistry.chemical_element ,Germanium ,Spectral line ,Ambient pressure - Abstract
In this study, we report the results of an in situ X-ray absorption spectroscopy investigation of the La2O3–B2O3–GeO2 (LBG) glass compressed in a diamond anvil cell until 17 GPa at ambient temperature. A pressure-induced coordination change of germanium from fourfold to sixfold is shown here. The analysis of Ge K-edge X-ray absorption near-edge structure spectra supports a model of mixing of fourfold and sixfold coordinated Ge sites during the compression/decompression cycle. This transformation proves to be irreversible: about 25% of sixfold coordinated Ge still exists at ambient pressure. This phenomenon underlines a polymorphism property of the LBG glass, whose origin lies in the complexity of composition.
- Published
- 2010
- Full Text
- View/download PDF
22. Elastic anomalous behavior of silica glass under high-pressure: In-situ Raman study
- Author
-
Bernard Champagnon, Dominique de Ligny, Thierry Deschamps, and C. Martinet
- Subjects
Bulk modulus ,Chemistry ,business.industry ,Thermodynamics ,Condensed Matter Physics ,Atomic units ,Electronic, Optical and Magnetic Materials ,Molecular dynamics ,symbols.namesake ,Molecular geometry ,Optics ,Molecular vibration ,Materials Chemistry ,Ceramics and Composites ,symbols ,Raman spectroscopy ,Spectroscopy ,business ,Raman scattering - Abstract
We study the changes in the Raman optical vibrations of pure silica glass under high-pressure up to 4.3 GPa and room temperature, namely in the elastic domain. Several mechanical anomalies, as the decrease of bulk modulus between 0 and 2 GPa, have been revealed many years ago (P.W. Bridgmann, Am. J. Sci 10 (1925) 359), but no physical experiments have explained what happens at the atomic scale. Our experiments show that gradual structural reversible rearrangement from 0 to 2 GPa leads to a more flexible material, in good agreement with molecular dynamics (MD) simulations (L. Huang, J. Kieffer, Phys. Rev. B 69 (2004) 224203). Above 2 GPa, a fast homogenization occurs.
- Published
- 2009
- Full Text
- View/download PDF
23. High pressure elastic and plastic deformations of silica: In situ diamond anvil cell Raman experiments
- Author
-
Dominique Vouagner, C. Martinet, Thierry Deschamps, Camille Coussa, L. Grosvalet, M. Boudeulle, and Bernard Champagnon
- Subjects
Materials science ,Hydrostatic pressure ,Mineralogy ,respiratory system ,Condensed Matter Physics ,Compression (physics) ,Diamond anvil cell ,Electronic, Optical and Magnetic Materials ,Molecular dynamics ,symbols.namesake ,Indentation ,Polyamorphism ,Materials Chemistry ,Ceramics and Composites ,symbols ,Composite material ,Raman spectroscopy ,Raman scattering - Abstract
Normal silica glass is usually referred to as low density amorphous silica as it can be converted to high density amorphous silica by a hydrostatic pressure (polyamorphic transition). In this work in situ Raman experiments are performed in a diamond anvil cell up to 18 GPa. The pressure effects on the structure of silica after successive compression decompression experiments are analyzed. The mode Gruneisen parameters corresponding to the elastic compression of high density amorphous silica are obtained and compared with those of normal silica. A reorganization of the high density amorphous silica below 3 GPa is evidenced.
- Published
- 2008
- Full Text
- View/download PDF
24. Polyamorphism: Path to new high density glasses at ambient conditions
- Author
-
C. Martinet, Camille Coussa, Thierry Deschamps, and Bernard Champagnon
- Subjects
Condensed matter physics ,Chemistry ,Thermodynamics ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Hysteresis ,symbols.namesake ,Ab initio quantum chemistry methods ,Phase (matter) ,Polyamorphism ,Materials Chemistry ,Ceramics and Composites ,symbols ,Germanate ,Raman spectroscopy ,Ambient pressure - Abstract
Polyamorphism is defined as the possibility for an amorphous material to exist with different structures. This has been demonstrated in solids for ice [O. Mishima, Y. Suzuki, Nature 419 (2002) 599], amorphous silicon [P.F. McMillan, M. Wilson, D. Daisenberger, D. Machon, Nature 4 (2005) 680], amorphous germanium and several oxide glasses [M. Grimsditch, Phys. Rev. 52 (1984) 2379, J.P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, H. Tolentino, Phys. Rev. 63 (1989) 398, C.H. Polsky, K.H. Smith, G.H. Wolf, J. Non-Cryst. Solids 248 (1999) 159, J. Nicholas, S Sinogeikin, J. Kieffer, J. Bass, Phys. Rev. Lett. 92 (2004) 215701, O. Majerus, L. Cormier, J.P. Itie, L Galoisy, D.R. Neuville, G. Calas, J. Non-Cryst. Solids 345&346 (2004) 34]: SiO2, GeO2, B2O3, SiO2–GeO2. Here we discuss the hysteresis curves corresponding to the evolution of the Raman bands as function of pressure for oxide glasses and compare it with ab-initio or molecular dynamics simulations [L. Huang, J. Kieffer, Phys. Rev. B 69 (2004) 224203, L. Huang, J. Kieffer, Phys. Rev. B 69 (2004) 244204, M. Durandurdu, Phys. Rev. B 73 (2006) 035209]. We show that these curves correspond for most of the glass studied to an irreversible change in the medium range order at ambient pressure. For a particular three component glass La2O3–B2O3–GeO2 (LBG) we demonstrate that this irreversibility occurs if the pressure is much higher than the in situ phase transformation pressure. It is predicted that this behaviour is general for glasses, leading to the possibility to recover new high density glass polymorphs in ambient conditions of temperature and pressure.
- Published
- 2007
- Full Text
- View/download PDF
25. Optical, structural and fluorescence properties of nanocrystalline cubic or monoclinic Eu:Lu2O3 films prepared by pulsed laser deposition
- Author
-
J. Lancok, C. Martinet, C. Garapon, and Anne Pillonnet
- Subjects
Materials science ,Biophysics ,Analytical chemistry ,Mineralogy ,General Chemistry ,Crystal structure ,Condensed Matter Physics ,Biochemistry ,Atomic and Molecular Physics, and Optics ,Nanocrystalline material ,Pulsed laser deposition ,Amorphous solid ,Surface coating ,Crystallite ,Thin film ,Monoclinic crystal system - Abstract
Eu 3+ -doped lutetium oxide (Eu:Lu 2 O 3 ) nanocrystalline films were grown on fused-silica substrates by pulsed laser deposition. Depending on deposition conditions (oxygen pressure, temperature and laser energy), the structure of the films changed from amorphous to crystalline and the cubic or monoclinic phases were obtained with varying preferential orientation and crystallite size. The monoclinic phase could be prepared for the first time at temperatures as low as 240 °C and in a narrow range of parameters. Although this phase has been previously reported for powder samples, it occurs only for high pressures and high temperatures preparation conditions. The refractive indices were measured by m-lines spectroscopy for both crystalline phases and their dispersion curve fitted by the Sellmeier expression. The specific Eu 3+ fluorescence properties of the different phases, monoclinic and cubic, were registered and show modifications due to the disorder induced by the nanometric size of the crystallites, emphasised in particular by quasi-selective excitation in the charge transfer band.
- Published
- 2007
- Full Text
- View/download PDF
26. Writing of birefringent lines in LBG glasses by UV pulsed laser irradiation
- Author
-
B. Champagnon, D. Vouagner, H. Hugueney, C. Coussa, Valeria Califano, C. Martinet, and Vladimir N. Sigaev
- Subjects
Birefringence ,Materials science ,business.industry ,Physics::Optics ,Nonlinear optics ,Optical polarization ,Nanosecond ,Condensed Matter Physics ,Laser ,Electronic, Optical and Magnetic Materials ,law.invention ,symbols.namesake ,Optics ,law ,Materials Chemistry ,Ceramics and Composites ,symbols ,Irradiation ,business ,Raman spectroscopy ,Raman scattering - Abstract
Glass isotropy could be broken by using the electric field of the 355 nm wavelength delivered by a nanosecond YAG: Nd 3+ laser. In this way, pulsed laser-induced birefringence was obtained in the La 2 O 3 –B 2 O 3 –GeO 2 (LBG) glassy system. Buried lines behaving like waveguides were written in glasses using this laser irradiation process. Micro Raman spectra performed in irradiated points of glasses revealed a rotation of the light polarization in agreement with previous results obtained on thermally-poled LBG glasses. However, no orientation effects of irradiated points related to the direction of the laser wave polarization (UV poling) could be clearly evidenced as suggested in our last paper. The interaction of the glass with the electromagnetic field of the UV laser beam can be more probably described by mechanisms based on a densification process.
- Published
- 2007
- Full Text
- View/download PDF
27. Permanently densified SiO2 glasses: a structural approach
- Author
-
A Cornet, S. Le Floch, Thierry Deschamps, C. Martinet, Valérie Martinez, Bernard Champagnon, A Kassir-Bodon, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Oxide minerals ,education.field_of_study ,Materials science ,Population ,Mineralogy ,Atmospheric temperature range ,Condensed Matter Physics ,law.invention ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,Central force ,law ,symbols ,[CHIM]Chemical Sciences ,General Materials Science ,Composite material ,Hydrostatic equilibrium ,Raman spectroscopy ,Spectroscopy ,education ,Structural approach ,ComputingMilieux_MISCELLANEOUS - Abstract
Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.
- Published
- 2015
- Full Text
- View/download PDF
28. Elastic Moduli of Permanently Densified Silica Glasses
- Author
-
Alain Mermet, Jérémie Margueritat, Bernard Champagnon, Thierry Deschamps, C. Martinet, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Multidisciplinary ,Materials science ,Silica glass ,02 engineering and technology ,Computer Science::Social and Information Networks ,021001 nanoscience & nanotechnology ,Compression (physics) ,01 natural sciences ,Condensed Matter::Disordered Systems and Neural Networks ,Diamond anvil cell ,Light scattering ,Article ,Brillouin zone ,0103 physical sciences ,Compressibility ,Anomaly (physics) ,Composite material ,010306 general physics ,0210 nano-technology ,Elastic modulus - Abstract
International audience; Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5% and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain.
- Published
- 2015
- Full Text
- View/download PDF
29. Enthalpy and mechanical relaxation of glassy gelatin films
- Author
-
C. Martinet, Imad A. Farhat, John R. Mitchell, and Fojan Badii
- Subjects
food.ingredient ,Materials science ,General Chemical Engineering ,Enthalpy ,Thermodynamics ,General Chemistry ,Dynamic mechanical analysis ,Gelatin ,Isothermal process ,food ,Differential scanning calorimetry ,Ageing ,Relaxation (physics) ,Thermal analysis ,Food Science - Abstract
The structural relaxation during the ageing of glassy gelatin films containing 8, 12 and 17% water at 25 °C was studied through (i) the extent of relaxation enthalpy (ΔH) associated with physical ageing using Differential Scanning Calorimetry (DSC) and (ii) the changes in storage modulus (E′) measured isothermally in the bending mode at different frequencies using Dynamic Mechanical Thermal Analysis (DMTA). The E′ increased with increasing ageing time (ta) and measurement frequency. For a given water content, the rates of ageing extracted through time–ageing time superposition of E′ data was in agreement with the rate of increase of ΔH. The rate and extent of ageing increased with the water content.
- Published
- 2006
- Full Text
- View/download PDF
30. Density and concentration fluctuations in a erbium-doped fiber amplifiers glass: Raman and small angle X-ray scattering study
- Author
-
Dominique Vouagner, C. Martinet, Valérie Martinez, Bernard Champagnon, and Anne-Marie Jurdyc
- Subjects
Chemistry ,Small-angle X-ray scattering ,Scattering ,Relaxation (NMR) ,Analytical chemistry ,Condensed Matter Physics ,Molecular physics ,Light scattering ,Electronic, Optical and Magnetic Materials ,symbols.namesake ,Dispersion (optics) ,Materials Chemistry ,Ceramics and Composites ,symbols ,Rayleigh scattering ,Raman spectroscopy ,Raman scattering - Abstract
Light scattering in glasses is due to inhomogeneities described as density fluctuations and concentration fluctuations. Both fluctuations are characterized by fictive and chemical fictive temperatures, Tf and T f ′ respectively. A SiO2–Al2O3–P2O5 fiber amplifier glass doped with Er3+ is studied. From Raman scattering the fictive temperature of a fiber is determined to be 130 °C higher than in a preform. In situ small angle X-rays scattering (SAXS) measurements on a sample with an initial fictive temperature of 1100 °C show a structural relaxation below Tg and no evidence of evolution of concentration fluctuations up to 1400 °C. These measurements demonstrate that in a strong glass such as that considered in this work, Tf and T f ′ can be monitored separately allowing a high T f ′ favouring the dispersion of the doping ions and a low Tf decreasing the Rayleigh scattering and increasing the transmission of the signal.
- Published
- 2005
- Full Text
- View/download PDF
31. Thin scintillating films of sesquioxides doped with Eu3+
- Author
-
Christophe Dujardin, Jacques Mugnier, C. Le Luyer, A.G. Murrillo, C. Pedrini, T. Martin, C. Martinet, and C. Garapon
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Doping ,Pulsed laser deposition ,Ion ,Surface coating ,Optics ,Optoelectronics ,Deposition (phase transition) ,lipids (amino acids, peptides, and proteins) ,Irradiation ,Thin film ,business ,Instrumentation ,Sol-gel - Abstract
We present here the progress on thin scintillating films of Lu2O3 and Gd2O3 doped with Eu3+ ions deposited on various substrates. Pulsed Laser Deposition (PLD) as well as sol–gel processes are used. Properties and performances of the different films are described in this contribution.
- Published
- 2005
- Full Text
- View/download PDF
32. Light scattering in SiO2–GeO2 glasses: quantitative comparison of Rayleigh, Brillouin and Raman effects
- Author
-
Bernard Champagnon, Valérie Martinez, C. Martinet, and R. Le Parc
- Subjects
Chemistry ,Scattering ,Analytical chemistry ,Condensed Matter Physics ,Molecular physics ,Light scattering ,Electronic, Optical and Magnetic Materials ,Brillouin zone ,symbols.namesake ,Cross section (physics) ,X-ray Raman scattering ,Brillouin scattering ,Materials Chemistry ,Ceramics and Composites ,symbols ,Rayleigh scattering ,Raman spectroscopy - Abstract
Elastic (Rayleigh) and inelastic (Brillouin and Raman) scatterings are altogether measured in the same experimental conditions for germanium doped silica glass (5wt% GeO2). Taking into account that density and concentration fluctuations are frozen-in respectively at the fictive temperature Tf and at the chemical fictive temperature T f ′ , a quantitative comparison of the different scattering processes demonstrates that the concentration fluctuations are the main reasons for the increase of the scattering. However the depolarized Rayleigh scattering is much stronger than in pure silica and also contributes to the increase of the total scattering whereas the increase of the Raman cross section due to the GeO2 introduction is much smaller.
- Published
- 2004
- Full Text
- View/download PDF
33. Structural studies of germanium doped silica glasses: the role of the fictive temperature
- Author
-
C. Martinet, Valérie Martinez, R. Le Parc, and B. Champagnon
- Subjects
Glass structure ,Silica glass ,business.industry ,Organic Chemistry ,Doping ,Analytical chemistry ,Infrared spectroscopy ,chemistry.chemical_element ,Germanium ,Atomic and Molecular Physics, and Optics ,Spectral line ,Electronic, Optical and Magnetic Materials ,Inorganic Chemistry ,symbols.namesake ,Optics ,chemistry ,Atom ,symbols ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,business ,Raman spectroscopy ,Spectroscopy - Abstract
We studied the influence of germanium atom introduction into the silica network and the influence of heat treatements on the glass structure by doing Raman and infra-red spectra of vitreous germanium doped silica (5% wt GeO 2 , 95% wt SiO 2 ). Germanium incorporates into the network by substituting Si atoms and consequently, we observed band shifts and broadening of defect peaks D 1 and D 2 . The peak positions are directly correlated with the structural state characterized by the glass fictive temperature T F of the different samples.
- Published
- 2003
- Full Text
- View/download PDF
34. Nonlinear microwave properties of YBaCuO thin films studied with the coplanar resonator technique
- Author
-
G Alquié, C Martinet, D. Seron, Hamid Kokabi, and F.R Ladan
- Subjects
Materials science ,business.industry ,Scanning electron microscope ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Microstructure ,Electronic, Optical and Magnetic Materials ,Nonlinear system ,Resonator ,Surface conductivity ,Optics ,Condensed Matter::Superconductivity ,Optoelectronics ,Electrical and Electronic Engineering ,Thin film ,business ,Microwave ,Sheet resistance - Abstract
An experimental study of the nonlinear effects in high temperature superconducting thin films, as a function of temperature and incident microwave power is performed. Three YBaCuO based coplanar resonators made by different techniques have been characterized. A parameter, defined as the relative variation of the unloaded quality factor between a low and a high microwave incident power, has been introduced to quantify the variation of the nonlinear effects with temperature. Results show a good correlation between measurements of the nonlinear surface resistance and the films morphology observed by scanning electron microscopy.
- Published
- 2002
- Full Text
- View/download PDF
35. Pressure-independent Brillouin Fiber Optic Sensors for temperature measurements
- Author
-
Bernard Champagnon, A. Braunn, Valérie Martinez, Anne-Marie Jurdyc, Dominique de Ligny, Camille Sonneville, C. Martinet, Simon Degioanni, L. Raffaelly, Dominique Vouagner, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Optical fiber ,Materials science ,Silica fiber ,Silicon dioxide ,business.industry ,Hydrostatic pressure ,Condensed Matter Physics ,Temperature measurement ,Electronic, Optical and Magnetic Materials ,law.invention ,Brillouin zone ,chemistry.chemical_compound ,Optics ,chemistry ,Brillouin scattering ,law ,Fiber optic sensor ,Materials Chemistry ,Ceramics and Composites ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,Composite material ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Fiber Optic Sensors (FOSs) based on Brillouin scattering are widely used in large infrastructures to detect modifications over large distances. In doped silica fibers the Brillouin Frequency Shift (BFS) is proportional both to temperature and strains. In this work we establish that the sensitivity of FOSs to hydrostatic pressure can be forecast from the behavior of the glass under hydrostatic compressions in a diamond anvil cell. It is shown that the BFS under a hydrostatic pressure is a manifestation of the elastic anomaly observed in silica glass. This anomaly vanishes in GeO 2 glass and accounts for the decrease of the sensor sensitivity when the GeO 2 doping concentration increases in a silica fiber. The progressive vanishing of the anomaly in sodium aluminosilicate glasses which contain the same amount of silicon dioxide (75%) but differ in the Na 2 O and Al 2 O 3 ratio allows to determine the composition of a glass with a BFS independent of the pressure. Such a glass composition will provide a pressure-independent temperature FOSs.
- Published
- 2014
- Full Text
- View/download PDF
36. Heart Rate as an Index of Thermal Stress
- Author
-
C. Martinet, J-P Meyer, and L. Payot
- Subjects
medicine.medical_specialty ,Materials science ,Pulse (signal processing) ,Oral temperature ,Beats per minute ,05 social sciences ,Thermal strain ,050105 experimental psychology ,Heat stress ,Surgery ,Medical Terminology ,Animal science ,Heart rate ,medicine ,0501 psychology and cognitive sciences ,050107 human factors ,Medical Assisting and Transcription - Abstract
Heat stress is difficult to quantify in actual work situations. The purpose of this study is to show that Cardiac Thermal Extra Pulse (CTEP) which is the mean heart rate (HR) of the 3rd, 4th and 5th minute of recovery minus rest HR before the exposure is a simple index of thermal strain. CTEP were recorded on 98 workers during 132 actual work periods. The relationship between the oral temperature increase from the beginning to the end of the heat exposure (dtor) and the corresponding CTEP is dtor = 0.05 + 0.29 CTEP (p
- Published
- 2000
- Full Text
- View/download PDF
37. Silica under hydrostatic pressure: A non continuous medium behavior
- Author
-
Dominique de Ligny, Thierry Deschamps, Daniel R. Neuville, C. Martinet, Bernard Champagnon, and C. Coussa-Simon
- Subjects
Condensed matter physics ,Phonon ,Chemistry ,Hydrostatic pressure ,Condensed Matter Physics ,Condensed Matter::Disordered Systems and Neural Networks ,Electronic, Optical and Magnetic Materials ,law.invention ,symbols.namesake ,law ,High pressure ,Materials Chemistry ,Ceramics and Composites ,symbols ,Nanometre ,Hydrostatic equilibrium ,Spectroscopy ,Raman spectroscopy ,Raman scattering - Abstract
The homogeneous/inhomogeneous structure of glasses is still a debated question. Hydrostatic high pressure experiments allow us to determine if a glass behaves as an elastic continuous random network or if a nanometer scale heterogeneity has to be taken into account. In order to get information on the homogeneous/inhomogeneous structure of glasses, in situ high pressure Raman experiments are performed on silica in the elastic domain up to 4.7 GPa. A strong decrease of the Boson peak intensity is observed between 1 bar and 3 GPa. We show that this decrease does not correspond quantitatively to the effect of pressure on a homogeneous elastic medium. From the interpretation of the narrowing of the main Raman band width under pressure as a narrowing of the θ inter-tetrahedral Si–O–Si angle distribution it is shown that the decrease of the Boson peak intensity is correlated to the decrease of the intrinsic inhomogeneity of the silica glass. These results confirm the occurrence of an intrinsic inhomogeneity at a nanometer scale even in a single component glass like SiO2 which is very important for the interpretation of the optical or mechanical properties of the glasses.
- Published
- 2009
- Full Text
- View/download PDF
38. [Untitled]
- Author
-
C. Martinet-Edelist
- Subjects
Steady state (electronics) ,viruses ,Applied Mathematics ,Acute infection ,macromolecular substances ,General Medicine ,Feedback loop ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Philosophy ,Control theory ,Attractor ,Identification (biology) ,General Agricultural and Biological Sciences ,Biological system ,General Environmental Science ,Positive feedback - Abstract
The molecular biology of viruses can be effectively described by kinetic logic as several feedback loops are implicated in all viral cycles and as viral proteins generally display several functions. We applied this method to the study of the rhabdovirus cycle. Formally, the dynamics of the model are explored on the basis of a discrete caricature (kinetic logic), with special emphasis on the role of the constitutive feedback loops to determine the essential dynamical behaviour of the viral cycle. From a biological point of view, our model accounts for several stable regimes or attractors: healthy cells, acute infection and different kinds of persistent infections, a multistationarity in good agreement with the existence of several positive feedback loops in our system.
- Published
- 1999
- Full Text
- View/download PDF
39. La transition assis-debout : effets de la durée d’assise
- Author
-
Patrice Rougier, C. Martinet, G. Gamache, A. Bouchereau, and J.-L. Honeine
- Subjects
Neurology ,Physiology (medical) ,Neurology (clinical) ,General Medicine - Abstract
Introduction Une deterioration temporaire de l’equilibre debout est generalement observee suite a une station assise prolongee. Le but de notre etude etait d’etudier les effets lies a la duree de la station assise. En particulier, un temps minimal d’assise est-il a meme d’entrainer des effets significatifs ? Materiel et methodes Dix sujets (âge moyen ± SD = 22 ± 1 ans) devaient rester assis durant 2, 6 et 10 min, puis se lever le plus vite possible. Une mesure des deplacements du centre des pressions resultants etait effectuee par une double plateforme de force. L’evolution de la frequence cardiaque des sujets a ete mesuree a l’aide d’un cardio-frequencemetre (Polar) afin d’objectiver le stress orthostatique. Des analyses temps-frequence ont ensuite permis d’objectiver le moment a partir duquel les adaptations cardiaques et posturales etaient realisees. Resultats Comme attendu, passer brutalement de la station assise a la station debout provoque une instabilite transitoire au niveau postural et une variation de la frequence cardiaque. Cependant, rester assis 2, 6 ou 10 minutes n’a aucune incidence sur ces memes variables. Enfin, aucune correlation lineaire n’a pu etre observee, suggerant une independance entre ces deux effets cardiaque et postural. Discussion–conclusion Un temps d’assise de deux minutes semble suffisant pour permettre l’observation d’adaptations cardiaques et posturales lors de la transition assis-debout.
- Published
- 2015
- Full Text
- View/download PDF
40. Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating
- Author
-
J. Joseph, Vincent Paillard, A. Gagnaire, and C. Martinet
- Subjects
Materials science ,Ion plating ,Analytical chemistry ,Combustion chemical vapor deposition ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,chemistry ,Plasma-enhanced chemical vapor deposition ,Materials Chemistry ,Ceramics and Composites ,Deposition (phase transition) ,Thin film ,Titanium isopropoxide ,Layer (electronics) ,Plasma processing - Abstract
Silicon dioxide and titanium dioxide films were deposited at low temperature by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD) using respectively O2 and tetraethoxysilane (TEOS) or titanium isopropoxide (TIPT) as precursors. To control the thickness and the refractive index during deposition, the plasma reactor was equipped with an in situ spectroscopic ellipsometer. Deposition kinetics and layer properties were investigated by spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS) and chemical etch rate. A double film antireflection coating was fabricated and reflectance was measured using a UV-visible near-infrared spectrometer. Results reported demonstrate that deposition of SiO2 and TiO2 films at low temperature by PECVD is a promising method to produce antireflection coatings for solar cells.
- Published
- 1997
- Full Text
- View/download PDF
41. Oxidation of crystalline Si in an O2 plasma: Growth kinetics and oxide characterization
- Author
-
C. Martinet, R. A. B. Devine, and M. Brunel
- Subjects
chemistry.chemical_compound ,Materials science ,chemistry ,Annealing (metallurgy) ,Infrared ,Electrical resistivity and conductivity ,Electric field ,Analytical chemistry ,Oxide ,General Physics and Astronomy ,Infrared spectroscopy ,Electrical measurements ,Plasma - Abstract
The growth of anodic oxides of crystalline Si in an O2 plasma has been studied. The kinetics are found to follow those expected when neutral O atoms in the plasma capture an electron at the substrate surface and diffuse through the growing oxide under the influence of an applied positive electric field. The oxides have been characterized using infrared spectroscopy, glancing incidence x-ray reflectometry, and electric capacitance/voltage measurements. Shifts to lower wave numbers of the transverse and longitudinal optic infrared modes associated with the asymmetric stretch of the bridging O’s with respect to thermally grown oxide values are observed. We conclude that these shifts result from structural modifications induced by ultraviolet photons present in the O plasma. A simple model suggests that the plasma grown oxides have a density ∼3.8% larger than thermal SiO2 and an average Si–O–Si bridging bond angle ∼1.6° smaller. The plasma grown oxides are inhomogeneous in the volume, the bond angle shift increasing to ∼−2.3°, and the density decreasing to +2% with respect to thermal oxide near the Si substrate/SiO2 interface. X-ray reflectivity data, which are consistent with film inhomogeneity, enable us to determine the film thickness and surface (air/SiO2) roughness. The latter is always ⩽1 nm. Electrical measurements suggest that the oxides contain fixed oxide charges and interface states which can be reduced by low temperature annealing. The leakage currents remain high, however.
- Published
- 1997
- Full Text
- View/download PDF
42. THE ASSOCIATION CARBAMAZEPINE-MIANSERIN IN OPIATE WITHDRAWAL: A DOUBLE BLIND PILOT STUDY VERSUS CLONIDINE
- Author
-
A. Velardi, Ch Bryois, Ph Budry, Guido Bondolfi, Dominique Baettig, D Dascal, Pierre Baumann, C Martinet, and Gilles Bertschy
- Subjects
Adult ,Male ,Visual analogue scale ,Treatment retention ,Pilot Projects ,Mianserin ,Clonidine ,Double blind ,Double-Blind Method ,medicine ,Humans ,Psychiatric Status Rating Scales ,Pharmacology ,Heroin Dependence ,business.industry ,Hemodynamics ,Carbamazepine ,Analgesics, Non-Narcotic ,Opiate withdrawal ,Substance Withdrawal Syndrome ,Drug Combinations ,Anesthesia ,Antidepressive Agents, Second-Generation ,Female ,Animal studies ,business ,medicine.drug - Abstract
Our clinic has fortuitously developed the therapeutic use of the association of mianserin (maximum daily dose 90 mg) and carbamazepine (maximum daily dose 400 mg) in opiate withdrawal management. If animal studies have suggested efficacy of mianserin in such indication, no human studies have been performed. To test the efficacy of such an association, a comparison was made to clonidine (maximum daily dose 0.600 mg) in a one week treatment period according to a double blind pilot study design. Thirty-two patients were included (16 in each treatment group). The two treatments did not differ in the intensity of the withdrawal, according to the rate of retention in treatment and symptoms, and the psychic distress which were auto-evaluated every other day with the Opiate Withdrawal Questionnaire and several Visual Analog Scales (VAS). The clonidine group, however, scored significantly higher (P0.05) on the VAS rating of the global feeling of satisfaction on the last day. The patients in the mianserin group fortuitously had a moderately lower number of daily heroin intakes but there was no significant correlation between this variable and the global OWQ scores on Days 1, 3, 5 and 7. Given the size of the groups, we cannot conclude that the association carbamazepine-mianserin is as effective as clonidine, but a real effectiveness is probable. A study versus placebo would be necessary to draw more definitive conclusions.
- Published
- 1997
- Full Text
- View/download PDF
43. Polyamorphic transitions in silica glass
- Author
-
Alain Mermet, Camille Sonneville, C. Martinet, Thierry Deschamps, Dominique de Ligny, Bernard Champagnon, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Analytical chemistry ,02 engineering and technology ,01 natural sciences ,Crystal ,symbols.namesake ,Polyamorphism ,Phase (matter) ,0103 physical sciences ,Materials Chemistry ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Cristobalite ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Brillouin zone ,Crystallography ,Ceramics and Composites ,symbols ,0210 nano-technology ,Raman spectroscopy ,Ambient pressure - Abstract
Polyamorphic transitions in silica are studied under pressure up to 26.2 GPa by Raman and Brillouin spectrocopies. The first reversible polyamorphic transition is characterized by an abrupt decrease of the Si–O–Si inter-tetrahedral angle θ at 2.5 GPa corresponding to the elastic anomaly of silica. This result is interpreted as a reversible transition between two Low Density Amorphous phases LDA β ↔ LDA α similar to the β–α transition of cristobalite crystal under pressure. The second polyamorphic transition is observed for silica glass samples compressed up at different maximum pressures P max between 12 GPa and 26.2 GPa and recovered at ambient pressure. It corresponds to an irreversible and progressive transformation from the LDA α phase to a High Density Amorphous (HDA) phase. This HDA phase is characterized by an increase of the statistic distribution of 4- and 3-membered rings of SiO 4 tetrahedra with a narrowing of inter-tetrahedral angle distribution. A vanishing of the elastic anomaly in the HDA phase is observed.
- Published
- 2013
- Full Text
- View/download PDF
44. Influence of the PLD parameters on the crystalline phases and fluorescence of Eu:Y2O3 planar waveguides
- Author
-
R. Brenier, J. Mugnier, C. Garapon, C. Martinet, and J. Lancok
- Subjects
Materials science ,Laser ablation ,technology, industry, and agriculture ,Analytical chemistry ,Physics::Optics ,chemistry.chemical_element ,General Chemistry ,Yttrium ,Crystal structure ,Pulsed laser deposition ,Condensed Matter::Materials Science ,symbols.namesake ,chemistry ,Condensed Matter::Superconductivity ,X-ray crystallography ,symbols ,General Materials Science ,sense organs ,Spectroscopy ,Raman spectroscopy ,Monoclinic crystal system - Abstract
Eu3+-doped yttrium oxide (Eu:Y2O3) films were grown on fused-silica substrates by laser ablation. Depending on oxygen pressure, substrate temperature and laser energy density, the crystalline structure of the films, determined by X-ray diffraction and Raman spectroscopy, changes from monoclinic to cubic. The crystalline structure of the films is confirmed by Eu3+ fluorescence spectra and refractive indices, measured by m-line spectroscopy. The cubic crystalline films show low-loss waveguiding properties.
- Published
- 2004
- Full Text
- View/download PDF
45. Structural modifications of GeO2 glass under high pressure and high temperature
- Author
-
Antoine Cornet, C. Martinet, Rémy Molherac, Bernard Champagnon, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Range (particle radiation) ,Materials science ,Analytical chemistry ,General Physics and Astronomy ,Mineralogy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Compression (physics) ,01 natural sciences ,Vitreous state ,Micro raman spectroscopy ,[SPI]Engineering Sciences [physics] ,symbols.namesake ,High pressure ,0103 physical sciences ,Thermal ,symbols ,[CHIM]Chemical Sciences ,010306 general physics ,0210 nano-technology ,Glass transition ,Raman spectroscopy - Abstract
Vitreous GeO2 has been compressed at high temperature to investigate the effect of thermal activation on the structural reorganization during compression. The measurements were performed in-situ using micro Raman spectroscopy under pressure up to 6 GPa and temperature up to 400 °C. The evolution of the Raman shift of the main band (400–500 cm−1) with temperature during compression evidences a pressure window around 3 GPa within which temperature has a remarkable influence on the structure, in particular, the intermediate range order. We find that this change is well correlated with previous ex-situ density measurements from high pressure-high temperature densifications. Moreover, coordination changes from tetrahedrally (GeO4) to octahedrally (GeO6) coordinated GeO2 are accelerated with the heating during the compression.
- Published
- 2016
- Full Text
- View/download PDF
46. Comparison of experimental and calculated TO and LO oxygen vibrational modes in thin SiO2 films
- Author
-
C. Martinet and R. A. B. Devine
- Subjects
business.industry ,Oxide ,chemistry.chemical_element ,Condensed Matter Physics ,Molecular physics ,Oxygen ,Electronic, Optical and Magnetic Materials ,Transverse mode ,Longitudinal mode ,chemistry.chemical_compound ,Transverse plane ,Molecular geometry ,Optics ,chemistry ,Molecular vibration ,Materials Chemistry ,Ceramics and Composites ,Absorption frequency ,business - Abstract
The oxide growth temperature and oxide film thickness dependence of the longitudinal and transverse vibrational mode frequencies for the oxygen-related asymmetric stretch in SiO2 have been measured. By comparison with calculations, a significant film thickness dependence of the transverse mode frequency is found due entirely to geometrical effects. The longitudinal mode is insensitive to the thickness, at least in the range 5–400 nm. The oxide growth temperature dependence is consistent with oxides produced at 800°C being 1.6–2% denser than those produced at 1050°C. Absorption frequency variations observed for film thicknesses less than 20 nm cannot be explained entirely in terms of geometrical effects and are tentatively attributed to densification or bridging bond angle reduction in the oxide close to the interface with the substrate.
- Published
- 1995
- Full Text
- View/download PDF
47. Analysis of the vibrational mode spectra of amorphous SiO2 films
- Author
-
R. A. B. Devine and C. Martinet
- Subjects
chemistry.chemical_compound ,Materials science ,Absorption spectroscopy ,chemistry ,Infrared ,Analytical chemistry ,Oxide ,General Physics and Astronomy ,Infrared spectroscopy ,Thin film ,Atmospheric temperature range ,Spectral line ,Amorphous solid - Abstract
The spectral line shapes and the absorption frequencies of the oxygen related infrared active vibrational modes in amorphous SiO2 are studied both experimentally and by simulation. Experimental data were obtained on oxides grown thermally in the temperature range from 800 to 1050 °C and on oxides deposited at 300 °C by plasma enhanced chemical deposition. The transverse optic (TO) mode centered around 1090 cm−1 is found to have a line shape and peak frequency which varies significantly with film thickness while the longitudinal optic (LO) mode at 1256 cm−1 is invariant. Data on both modes and on refractive index is used to demonstrate consistently that the 800 °C grown oxide is 1.6%–2.0% denser than that grown at 1050 °C. For thin oxides (
- Published
- 1995
- Full Text
- View/download PDF
48. Corrigendum: Permanently densified SiO2glasses: a structural approach (2015J. Phys.: Condens. Matter27325401)
- Author
-
Thierry Deschamps, S. Le Floch, Valérie Martinez, A Kassir-Bodon, A Cornet, Bernard Champagnon, and C. Martinet
- Subjects
Materials science ,010304 chemical physics ,Condensed matter physics ,0103 physical sciences ,General Materials Science ,010402 general chemistry ,Condensed Matter Physics ,01 natural sciences ,Structural approach ,0104 chemical sciences - Published
- 2016
- Full Text
- View/download PDF
49. Hysteretically reversible phase transition in a molecular glass
- Author
-
Sabyasachi Sen, Simon M. Clark, Bora Kalkan, Camille Sonneville, Bernard Champagnon, Bruce G. Aitken, and C. Martinet
- Subjects
Phase transition ,Materials science ,Scattering ,General Physics and Astronomy ,Soft modes ,Amorphous solid ,symbols.namesake ,Crystallography ,Chemical physics ,Phase (matter) ,symbols ,Physical and Theoretical Chemistry ,Absorption (chemistry) ,Glass transition ,Raman spectroscopy - Abstract
Pressure induced densification in a molecular arsenic sulfide glass is studied at ambient temperature using x-ray scattering, absorption and Raman spectroscopic techniques in situ in a diamond anvil cell. The relatively abrupt changes in the position of the first sharp diffraction peak, FSDP, and the pressure-volume equation of state near ∼2 GPa suggest a phase transition between low- and high-density amorphous phases characterized by different densification mechanisms and rates. Raman spectroscopic results provide clear evidence that the phase transition corresponds to a topological transformation between a low-density molecular structure and a high-density network structure via opening of the constituent As(4)S(3) cage molecules and bond switching. Pressure induced mode softening of the high density phase suggests a low dimensional nature of the network. The phase transformation is hysteretically reversible, and therefore, reminiscent of a first-order phase transition.
- Published
- 2012
50. Progressive transformations of silica glass upon densification
- Author
-
C. Martinet, Jérémie Margueritat, Alain Mermet, Bernard Champagnon, Thierry Deschamps, Camille Sonneville, Dominique de Ligny, Félix Balima, Laboratoire de Physico-Chimie des Matériaux Luminescents (LPCML), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique de la Matière Condensée et Nanostructures (LPMCN), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Silica glass ,General Physics and Astronomy ,Mineralogy ,High density ,02 engineering and technology ,Plasticity ,021001 nanoscience & nanotechnology ,01 natural sciences ,Brillouin zone ,symbols.namesake ,0103 physical sciences ,symbols ,Physical and Theoretical Chemistry ,Anomaly (physics) ,Composite material ,Elasticity (economics) ,010306 general physics ,0210 nano-technology ,Glass transition ,Raman spectroscopy - Abstract
International audience; The elastic and plastic behaviors of silica glasses densified at various maximum pressure reached (12 GPa, 15 GPa, 19 GPa, and 22 GPa), were analyzed using in situ Raman and Brillouin spectroscopies. The elastic anomaly was observed to progressively vanish up to a maximum pressure reached of 12 GPa, beyond which it is completely suppressed. Above the elastic anomaly the mechanical behavior of silica glass, as derived from Brillouin measurements, is interpreted in terms of pressure induced transformation of low density amorphous silica into high density amorphous silica.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.