Nathalie Sauvonnet, Laura Salavessa, Thibault Lagache, Philippe J. Sansonetti, Alexandre Grassart, Alexis Canette, Valérie Malardé, Jean-Christophe Olivo-Marin, Michaël Trichet, Pathogénie microbienne moléculaire, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Saclay, Analyse d'images biologiques - Biological Image Analysis (BIA), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur de Shanghai, Académie des Sciences de Chine - Chinese Academy of Sciences (IPS-CAS), Réseau International des Instituts Pasteur (RIIP), Microscopie Electronique [IBPS] (IBPS-ME), Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), We acknowledge the financial support of the Institut Pasteur (Paris), the France–BioImaging infrastructure network supported by French National Research Agency Grant ANR-10–INBS–04 (Investments for the future), and Région Ile-de-France Program Domaine d'Intérêt Majeur 'Maladies infectieuses, parasitaires et nosocomiales émergentes' (DIM-Malinf). L.S. is part of the Pasteur Paris University International PhD Program and has received funding from the European Union's Horizon 2020 Research and Innovation Program under Marie Sklodowska-Curie Grant 665807. L.S. was also supported by 'Fondation pour la Recherche Médicale' (FRM) Fellowship FDT201904007991., We thank the Photonic BioImaging (PBI) platform (Imagopole) of Institut Pasteur for microscope maintenance and technical help. We also thank Dr. E. Boucrot and Dr. D. Drubin for providing us EndoA-RFP and Dnm2-mCherry plasmids., ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), European Project: 665807,H2020,H2020-MSCA-COFUND-2014,PASTEURDOC(2015), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Collège de France - Chaire Microbiologie et Maladies infectieuses
International audience; The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2–induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2–dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.