1. Optimization of Proportional Integral Derivative Controller for Omni Robot Wheel Drive by Using Integrator Wind-up Reduction Based on Arduino Nano.
- Author
-
Supriadi, Wajiansyah, Agusma, Zainuddin, Mohammad, and Putra, Arief Bramanto Wicaksono
- Subjects
OPTICAL shaft encoders ,MICROCONTROLLERS ,OSCILLATIONS ,ROTATIONAL motion ,ACTUATORS - Abstract
The experimental object used is a three-wheeled omni-robot frame, where the wheel axes have an angle difference of 120 degrees from each other. The Omni wheels have a diameter of 48 mm connected to the DC motor axis through a gearbox, which has a ratio of 80 to 1. Each wheel has been controlled using a proportional plus integral plus derivative (PID) controller embedded in a microcontroller, which is an Arduino nano board. The motor axis is equipped with a two-phase optical encoder that definitively generates four cycles per revolution for wheel speed acquisition as the controller input. The wheel speed control signal is distributed to the wheel through the H bridge as the controller output. The controller constants have been directly tuned to the robot frame's physical omni-wheel speed control system. The controller is tuned to minimize steady-state error, achieve fast settling times, and minimize overshoot. The best constants obtained are 1.5 (proportional), 0.012 (integral), and 10 (derivative). Using a tolerance band of +/- 2.5%, the system achieved a settling time of 1.1 seconds and a steady-state error of 0.3%. The control system is unstable when the actuator is saturated, which produces oscillations. Controller optimization has been successful by using integrator wind-up reduction. The steady-state average error was reduced to 9.95% without oscillation after optimization, compared to 46.37% with oscillations before optimization. The controller has been validated with speed-tracking tests on all velocity vector regions. The robot frame has been tested with basic maneuvers such as rotation, concerning, forward, and sideways. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF