1. ERBB2/HOXB13 co-amplification with interstitial loss of BRCA1 defines a unique subset of breast cancers
- Author
-
Irene Rin Mitsiades, Maristela Onozato, A. John Iafrate, Daniel Hicks, Doğa C. Gülhan, Dennis C. Sgroi, and Esther Rheinbay
- Subjects
HOXB13 ,ERBB2 ,Co-amplification ,Breast cancer ,BRCA1 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers. Herein, we studied the expression of HOXB13 in large cohorts of HER2+ and ER- breast cancers. Methods We investigated gene expression, genomic copy number, mutational signatures, and clinical outcome data in the TGGA and METABRIC breast cancer cohorts. Genomic-based gene amplification data was validated with tri-colored fluorescence in situ hybridization. Results In the TCGA breast cancer cohort, HOXB13 gene expression was significantly higher in HER2+ versus HER2- breast cancers, and its expression was also significantly higher in the ER- versus ER+ breast cancers. HOXB13 is frequently co-gained or co-amplified with ERBB2. Joint copy gains of HOXB13 and ERBB2 occurred with low-level co-gains or high-level co-amplifications (co-amp), the latter of which is associated with an interstitial loss that includes the tumor suppressor BRCA1. ERBB2/HOXB13 co-amp tumors with interstitial BRCA1 loss exhibit a mutational signature associated with APOBEC deaminase activity and copy number signatures associated with chromothripsis and genomic instability. Among ERBB2-amplified tumors of different tissue origins, ERBB2/HOXB13 co-amp with a BRCA1 loss appeared to be enriched in breast cancer compared to other tumor types. Lastly, patients with ERBB2/HOXB13 co-amplified and BRCA1 lost tumors displayed a significantly shorter progression-free survival (PFS) than those with ERBB2-only amplifications. The difference in PFS was restricted to the ER- subset patients and this difference in PFS was not solely driven by HOXB13 gene expression. Conclusions HOXB13 is frequently co-gained with ERBB2 at both low-copy number level or as complex high-level amplification with relative BRCA1 loss. ERBB2/HOXB13 amplified, BRCA1-lost tumors are strongly enriched in breast cancer, and patients with such breast tumors experience a shortened PFS.
- Published
- 2024
- Full Text
- View/download PDF