1. The ecological response of natural phytoplankton population and related metabolic rates to future ocean acidification.
- Author
-
Liu, Haijiao, Zhao, Yuying, Wu, Chao, Xu, Wenzhe, Zhang, Xiaodong, Zhang, Guicheng, Thangaraj, Satheeswaran, and Sun, Jun
- Subjects
- *
PHYTOPLANKTON , *GLOBAL warming , *ACIDIFICATION , *MARINE ecology - Abstract
Ocean acidification (OA) and global warming-induced water column stratification can significantly alter phytoplankton-related biological activity in the marine ecosystem. Yet how these changes may play out in the tropical Indian Ocean remains unclear. This study investigated the ecological and metabolic responses of the different phytoplankton functional groups to elevated CO2 partial pressure and nitrate deficiency in two different environments of the eastern Indian Ocean (EIO). It is revealed that phytoplankton growth and metabolic rates are more sensitive to inorganic nutrients rather than CO2. The combined interactive effects of OA and N-limitation on phytoplankton populations are functional group-specific. In particular, the abundance and calcification rate of calcifying coccolithophores are expected to be enhanced in the future EIO. The underlying mechanisms for this enhancement may be ascribed to coccolithophore's lower carbon concentrating mechanisms (CCMs) efficiency and OA-induced [HCO3−] increase. In comparison, the abundance of non-calcifying microphytoplankton (e.g., diatoms and dinoflagellates) and primary productivity would be inhibited under those conditions. Different from previous laboratory experiments, interspecific competition for resources would be an important consideration in the natural phytoplankton populations. These combined factors would roughly determine calcifying coccolithophores as "winners" and non-calcifying microphytoplankton as "losers" in the future ocean scenario. Due to the large species-specific differences in phytoplankton sensitivity to OA, comprehensive investigations on oceanic phytoplankton communities are essential to precisely predict phytoplankton ecophysiological response to ocean acidification. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF