ISI Document Delivery No.: 254MF Times Cited: 0 Cited Reference Count: 61 Cited References: Alory G, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2001JC001067 Ashok K, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003798 Ashok K, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2011GL050232 Barnier B, 2006, OCEAN DYNAM, V56, P543, DOI 10.1007/s10236-006-0082-1 BATTISTI DS, 1989, J ATMOS SCI, V46, P1687, DOI 10.1175/1520-0469(1989)0462.0.CO;2 Bosc C, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004613 Brown JN, 2010, J CLIMATE, V23, P221, DOI 10.1175/2009JCLI2347.1 Clarke A. J., 2008, INTRO DYNAMICS EL NI Clarke AJ, 2007, J PHYS OCEANOGR, V37, P1077, DOI 10.1175/JPO3035.1 Clement A, 2011, J CLIMATE, V24, P4056, DOI 10.1175/2011JCLI3973.1 Dewitte B, 2012, CLIM DYNAM, V38, P2275, DOI 10.1007/s00382-011-1215-x Dommenget D, 2010, GEOPHYS RES LETT, V37, DOI 10.1029/2010GL044888 Ducet N, 2000, J GEOPHYS RES-OCEANS, V105, P19477, DOI 10.1029/2000JC900063 Durand F, 2000, J PHYS OCEANOGR, V30, P3261, DOI 10.1175/1520-0485(2000)0302.0.CO;2 Hasegawa T, 2003, J PHYS OCEANOGR, V33, P407, DOI 10.1175/1520-0485(2003)0332.0.CO;2 Hasegawa T, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL024832 Hendon HH, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL040100 Horii T, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051740 Ishida A, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL034858 Jin FF, 1997, J ATMOS SCI, V54, P811, DOI 10.1175/1520-0469(1997)0542.0.CO;2 Kao HY, 2009, J CLIMATE, V22, P615, DOI 10.1175/2008JCLI2309.1 Kim HM, 2009, SCIENCE, V325, P77, DOI 10.1126/science.1174062 Kug JS, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2002JC001671 Kug JS, 2009, J CLIMATE, V22, P1499, DOI 10.1175/2008JCLI2624.1 Kug JS, 2010, J CLIMATE, V23, P1226, DOI 10.1175/2009JCLI3293.1 Larkin NK, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL022738 LATIF M, 1991, J GEOPHYS RES-OCEANS, V96, P2661, DOI 10.1029/90JC02468 Lee T, 2010, GEOPHYS RES LETT, V37, DOI 10.1029/2010GL044007 Lengaigne M, 2012, CLIM DYNAM, V38, P1031, DOI 10.1007/s00382-011-1051-z McPhaden MJ, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051826 McPhaden MJ, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2003GL016872 McPhaden MJ, 2006, SCIENCE, V314, P1740, DOI 10.1126/science.1132588 Mechoso CR, 2003, J ATMOS SCI, V60, P305, DOI 10.1175/1520-0469(2003)0602.0.CO;2 Meinen CS, 2005, J PHYS OCEANOGR, V35, P323, DOI 10.1175/JPO-2694.1 Meinen CS, 2001, J PHYS OCEANOGR, V31, P1324, DOI 10.1175/1520-0485(2001)0312.0.CO;2 Meinen CS, 2000, J CLIMATE, V13, P3551, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Mosquera-Vasquez K, 2013, J GEOPHYS RES-OCEANS, V118, P346, DOI 10.1029/2012JC008551 Philander S., 1990, NINO NINA SO OSCILLA Picaut J, 1996, SCIENCE, V274, P1486, DOI 10.1126/science.274.5292.1486 Picaut J, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2001JC000850 Picaut J, 1997, SCIENCE, V277, P663, DOI 10.1126/science.277.5326.663 Radenac MH, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007841 RASMUSSON EM, 1982, MON WEATHER REV, V110, P354, DOI 10.1175/1520-0493(1982)1102.0.CO;2 Rayner NA, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002670 Ren HL, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2010GL046031 Singh A., 2012, THESIS U TOULOUSE P Singh A., 2011, J GEOPHYS RES, V116, DOI DOI 10.1029/20101C006862 SUAREZ MJ, 1988, J ATMOS SCI, V45, P3283, DOI 10.1175/1520-0469(1988)0452.0.CO;2 van Oldenborgh GJ, 2005, OCEAN SCI, V1, P81 Vincent EM, 2011, CLIM DYNAM, V36, P1881, DOI 10.1007/s00382-009-0716-3 Wang CZ, 2004, GEOPH MONOG SERIES, V147, P21 Wang CZ, 2001, J CLIMATE, V14, P98, DOI 10.1175/1520-0442(2001)0142.0.CO;2 WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967 Weisberg RH, 1997, GEOPHYS RES LETT, V24, P779, DOI 10.1029/97GL00689 Weng HY, 2007, CLIM DYNAM, V29, P113, DOI 10.1007/s00382-007-0234-0 WYRTKI K, 1981, J PHYS OCEANOGR, V11, P1205, DOI 10.1175/1520-0485(1981)0112.0.CO;2 WYRTKI K, 1984, J PHYS OCEANOGR, V14, P242, DOI 10.1175/1520-0485(1984)0142.0.CO;2 WYRTKI K, 1985, J GEOPHYS RES-OCEANS, V90, P7129, DOI 10.1029/JC090iC04p07129 Xiang BQ, 2013, CLIM DYNAM, V41, P327, DOI 10.1007/s00382-012-1427-8 Yeh SW, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2010GL045886 Yeh SW, 2009, NATURE, V461, P511, DOI 10.1038/nature08316 Singh, Awnesh Delcroix, Thierry French ANR; French Institut de Recherche pour le Developpement (IRD) This work is a contribution to the Solwara proposal supported by the French ANR. We benefited from freely available datasets, including SLA from Aviso (http://www.aviso.oceanobs.com/en/data/products/sea-surface-height-produ cts/global/msla), WWV from PMEL (http://www.pmel.noaa.gov/tao/elNino/wwv/), gridded Hadley Centre Sea Ice and Sea Surface Temperature dataset (http://www.metoffice.gov.uk/hadobs/hadisst/), and the El Nino Modoki Index (http://www.jamstec.go.jp/frcgc/research/d1/iod/DATA/emi.monthly.txt). We do thank B. Barnier and J.-M. Molines from LEGI, Grenoble, for making available the latest DRAKKAR model output. Comments from S. Cravatte and from four anonymous and tenacious though overall constructive reviewers were appreciated. One of us (A.S.) benefited from a Ph.D. grant from the French Institut de Recherche pour le Developpement (IRD) while staying at the LEGOS laboratory in Toulouse, France from 2009-2012. 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD DEEP-SEA RES PT I; One of the leading theories to explain the oscillatory nature of the El Nino Southern Oscillation is the recharge-discharge oscillator paradigm, which roots on warm waters exchanged between the equatorial and off-equatorial regions. This study tests the relevance of this theory to account for the Eastern and recently mediated Central Pacific El Nino events. The recharge-discharge of the equatorial Pacific, measured here as changes in Warm (> 20 degrees C) Water Volume (WWV), is analysed using monthly 1993-2010 sea level anomaly (a proxy for WWV) obtained from altimetry, and a validated 1958-2007 DRAKKAR simulation. An Agglomerative Hierarchical Clustering (ARC) technique performed on the observed and modelled WWV tendency shows the existence of five distinct clusters, which characterise the Eastern Pacific (EP) and Central Pacific (CP) El Nino, La Nina, after EP El Nino and neutral conditions. The AHC results, complemented with an analysis of lagged-regression analysis, and 3-month averages of typical EP and CP El Nino events, indicate that the equatorial band WWV discharge during CP is not as pronounced as during EP El Nino. To understand the differences, we analysed the balance of horizontal mass transports accounting for changes in WWV tendency. The analysis indicates an overall poleward transport during EP El Nino, which is not the case during CP El Nino. Instead, a compensating effect with a poleward (equatorward) transport occurring in the western (eastern) Pacific is evident, in line with changes in the zonal thermocline slopes occurring in the western (eastern) half of the basin. The WWV changes are discussed with respect to the conceptual phases of the recharge-discharge oscillator paradigm. (C) 2013 Elsevier Ltd. All rights reserved.