1. Designing building blocks of covalent organic frameworks through on-the-fly batch-based Bayesian optimization.
- Author
-
Yao, Yuxuan and Oberhofer, Harald
- Subjects
- *
REORGANIZATION energy , *COORDINATION polymers , *SYMMETRIC spaces , *STANDARD hydrogen electrode , *COVALENT bonds - Abstract
In this work, we use a Bayesian optimization (BO) algorithm to sample the space of covalent organic framework (COF) components aimed at the design of COFs with a high hole conductivity. COFs are crystalline, often porous coordination polymers, where organic molecular units—called building blocks (BBs)—are connected by covalent bonds. Even though we limit ourselves here to a space of three-fold symmetric BBs forming two-dimensional COF sheets, their design space is still much too large to be sampled by traditional means through evaluating the properties of each element in this space from first principles. In order to ensure valid BBs, we use a molecular generation algorithm that, by construction, leads to rigid three-fold symmetric molecules. The BO approach then trains two distinct surrogate models for two conductivity properties, level alignment vs a reference electrode and reorganization free energy, which are combined in a fitness function as the objective that evaluates BBs' conductivities. These continuously improving surrogates allow the prediction of a material's properties at a low computational cost. It thus allows us to select promising candidates which, together with candidates that are very different from the molecules already sampled, form the updated training sets of the surrogate models. In the course of 20 such training steps, we find a number of promising candidates, some being only variations on already known motifs and others being completely novel. Finally, we subject the six best such candidates to a computational reverse synthesis analysis to gauge their real-world synthesizability. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF