1. Genetics, age, and diet influence gut bacterial communities and performance of black soldier fly larvae (Hermetia illucens).
- Author
-
Silvaraju, Shaktheeshwari, Zhang, Qi-hui, Kittelmann, Sandra, and Puniamoorthy, Nalini
- Subjects
HERMETIA illucens ,ORGANIC waste recycling ,AGRICULTURAL wastes ,GUT microbiome ,FOOD waste - Abstract
Background: The gut microbiota of black soldier fly larvae (BSFL, Hermetia illucens) play a crucial role in recycling various organic waste streams. This capability is linked to the presence of a potential common core microbiota in BSFL. However, subjective thresholds for defining core taxa and the difficulty of separating genetic and environmental influences have prevented a clear consensus in the literature. We analysed the gut bacterial communities of two genetically distinct BSF lines (wild type (WT) and lab-adapted line (LD)) raised on ten different diets based on common agricultural by-products and food waste in Southeast Asia. Results: High-throughput 16S rRNA gene sequencing revealed that gut bacterial communities were significantly influenced by genetics (p = 0.001), diet (plant/meat-dominated; p = 0.001), larval age (p = 0.001), and the interactions between all three (p = 0.002). This led us to investigate both common core taxa and lineage-specific core taxa. At a strict > 97% prevalence threshold, four core taxa were identified: Providencia_A_732258, an unclassified genus within the family Enterococcaceae, Morganella, and Enterococcus_H_360604. A relaxed threshold (> 80% prevalence) extended the core to include other potential common core taxa such as Klebsiella, Proteus, and Scrofimicrobium. Our data suggest that Proteus, Scrofimicrobium, Corynebacterium, Vagococcus_B, Lysinibacillus_304693 (all LD), and Paenibacillus_J_366884 (WT) are lineage-specific rather than members of a common core (> 90% prevalence in either LD or WT, with prevalence significantly different between lines (p ≤ 0.05)). Positive correlations were observed between several core genera and larval performance in LD, typical of a highly optimized lab-adapted line. Interestingly, only members of the genus Providencia appeared to play a crucial role in most aspects of larval performance in both genetic lineages. Conclusion: Our study demonstrates that the gut microbiota of BSFL is influenced by genetic factors, diet composition, larval age, and their interactions. We identified a distinct lineage-specific core microbiota, emphasizing genetic background's role. Future studies should apply a standardized high prevalence threshold of at least > 90% unless there is a valid reason for relaxation or sample exclusion. The consistent association of Providencia spp. with larval performance across both genetic lines highlights their crucial role in the BSFL gut ecosystem. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF