1. The structure of inter-reaction times in reaction-diffusion processes and consequences for counting statistics
- Author
-
de Figueiredo, Benjamin Garcia, Calabrese, Justin M., Fagan, William F., and Martinez-Garcia, Ricardo
- Subjects
Condensed Matter - Statistical Mechanics ,Physics - Biological Physics - Abstract
Many natural phenomena are quantified by counts of observable events, from the annihilation of quasiparticles in a lattice to predator-prey encounters on a landscape to spikes in a neural network. These events are triggered at random intervals when an underlying dynamical system occupies a set of reactive states in its phase space. We derive a general expression for the distribution of times between events in such counting processes assuming the underlying triggering dynamics is a stochastic process that converges to a stationary distribution. Our results contribute to resolving a long-standing dichotomy in the study of reaction-diffusion processes, showing the inter-reaction point process interpolates between a reaction- and a diffusion-limited regime. At low reaction rates, the inter-reaction process is Poisson with a rate depending on stationary properties of the event-triggering stochastic process. At high reaction rates, inter-reaction times are dominated by the hitting times to the reactive states. To further illustrate the power of this approach we apply our framework to obtain the counting statistics of two counting processes appearing in several biophysical scenarios. First, we study the common situation of estimating an animal's activity level by how often it crosses a detector, showing that the mean number of crossing events can decrease monotonically with the hitting rate, a seemingly 'paradoxical' result that could possibly lead to misinterpretation of experimental count data. Second, we derive the ensemble statistics for the detection of many particles, recovering and generalizing known results in the biophysics of chemosensation. Overall, we develop a unifying theoretical framework to quantify inter-event time distributions in reaction-diffusion systems that clarifies existing debates in the literature and provide examples of application to real-world scenarios., Comment: 14 pages, 3 figures
- Published
- 2024