25,855 results on '"California Institute of Technology"'
Search Results
2. Quantifying New Heart Muscle Cells
- Author
-
National Heart, Lung, and Blood Institute (NHLBI) and California Institute of Technology
- Published
- 2024
3. Neuronal Mechanisms of Human Episodic Memory
- Author
-
Johns Hopkins University, University of Colorado, Denver, University Health Network, Toronto, Boston Children's Hospital, University of California, Santa Barbara, National Institute of Neurological Disorders and Stroke (NINDS), California Institute of Technology, and Adam Mamelak, MD, Professor of Neurosurgery
- Published
- 2024
4. Neural Computations of Goal-directed Decision-making
- Author
-
National Institute of Mental Health (NIMH), California Institute of Technology, and Adam Mamelak, MD, Staff Physician III
- Published
- 2024
5. Appetitive Conditioning in Anorexia Nervosa (ACAN)
- Author
-
University of Southern California, University of Toronto, California Institute of Technology, and Klarman Family Foundation
- Published
- 2024
6. Cognitive Function Evaluation and Rehabilitation by a Digital Game: MentalPlus® (MentalPlus®)
- Author
-
University of Copenhagen, Max Planck Institute for Human Development, Karolinska Institutet, The Cleveland Clinic, University of California, Los Angeles, UMC Utrecht, Harvard Medical School (HMS and HSDM), Keio University, California Institute of Technology, and Livia Stocco Sanches Valentin, Professor
- Published
- 2024
7. Processes and Circuitry Underlying Threat Sensitivity as a Treatment Target for Co-morbid Anxiety and Depression
- Author
-
National Institute of Mental Health (NIMH) and California Institute of Technology
- Published
- 2023
8. Brain Development Research Program
- Author
-
University of Washington and California Institute of Technology
- Published
- 2023
9. Targeting Diet-Microbiome Interactions in the Pathogenesis of Parkinson's Disease
- Author
-
California Institute of Technology, Purdue University, and Ali Keshavarzian, Director, Division of Digestive Diseases
- Published
- 2023
10. Study of Gene Modified Immune Cells in Patients With Advanced Melanoma (F5)
- Author
-
California Institute of Technology, University of Southern California, University of Connecticut, and National Cancer Institute (NCI)
- Published
- 2021
11. Invasive Approach to Model Human Cortex-Basal Ganglia Action-Regulating Networks
- Author
-
The Cleveland Clinic, University of California, San Francisco, University of California, San Diego, California Institute of Technology, and Cedars-Sinai Medical Center
- Published
- 2021
12. Establishing a Non-invasive Method to Measure Your Heart's Performance
- Author
-
University of Southern California, California Institute of Technology, and Marie Csete MD, PhD, Chief Scientific Officer
- Published
- 2019
13. Restoring Arm and Hand Function With Non-invasive Spinal Stimulation
- Author
-
University of California, Los Angeles and California Institute of Technology
- Published
- 2017
14. Transcutaneous Electrical Spinal Cord Stimulation for Lower Limbs
- Author
-
University of California, Los Angeles and California Institute of Technology
- Published
- 2017
15. Proof of Concept Study With an Endothelin Receptor B Inhibitor (BQ-788) for Human Melanoma
- Author
-
California Institute of Technology, University of Bern, and Universitaire Ziekenhuizen KU Leuven
- Published
- 2015
16. The Neural Correlates of Food Choice Decision-making in Obesity and Weight Loss (CHOICES)
- Author
-
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), California Institute of Technology, and Kathryn E. Demos, Assistant Professor (Research)
- Published
- 2013
17. Quantum knot invariants and the extension of $F_K$ to $SU(3)$
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, California Institute of Technology, Miranda Galcerán, Eva, Gruen, Angus, Gukov, Sergei, San Martín Suárez, Lara, Universitat Politècnica de Catalunya. Departament de Matemàtiques, California Institute of Technology, Miranda Galcerán, Eva, Gruen, Angus, Gukov, Sergei, and San Martín Suárez, Lara
- Abstract
Un dels problemes oberts més excitants en topologia quàntica es relaciona amb la categorificació de la teoria complexa de Chern-Simons. En aquest context, Gukov i Manolescu introdueixen una sèrie en dues variables $F_K(x,q)$ com la restricció dels invariants de 3-varietats $\hat{Z}$ a complements de nusos, la qual s'ha demostrat que té propietats sorprenents. En particular, aquesta sèrie es pot pensar com una continuació analítica del celebrat polinomi de Jones de teoria de nusos. Subjacent a aquesta construcció s'hi hagi l'elecció d'un grup de Lie $G=SU(2)$. Una pregunta natural concerneix l'estudi d'aquests invariants per a $SU(N)$ de major rang. Fins ara, han hagut intents de definir-los rigorosament, però una definició matemàtica de $F_K^{SU(N)}(x_1,\dots,x_{N-1},q)$ per a nusos no torals encara manca en l'escenari general. Ens centrem en el grup de Lie $SU(3)$. Per a poder estudiar el comportament de l'invariant de nusos associat $F_K^{SU(3)}$, proporcionem una construcció a partir de $R$ matrius dels invariants de nusos cuántidos de $\sl_3$ per a qualsevol nus i representació irreductible finit-dimensional. El resultat principal d'aquesta tesi dona una construcció explícita de $F_K^{SU(3)}(x,y,q)$, que estén la seva prèvia definició a la família de major grandària nus de trena positiva. En particular, es mostra que $F_K^{LA SEVA(3)}(x,y,q)$ recupera el $\mathfrak{sl}_3$ invariant quàntic mitjançant especialitzacions en les variables $x$ e $y$., Uno de los problemas abiertos más excitantes en topología cuántica se relaciona con la categorificación de la teoría compleja de Chern-Simons. En este contexto, Gukov y Manolescu introducen una serie en dos variables $F_K(x,q)$ como la restricción de los invariantes de 3-variedades $\hat{Z}$ a complementos de nudos, la cual se ha demostrado que tiene propiedades sorprendentes. En particular, esta serie se puede pensar como una continuación analítica del celebrado polinomio de Jones de teoría de nudos. Subyacente a esta construcción se haya la elección de un grupo de Lie $G=SU(2)$. Una pregunta natural concierne el estudio de estos invariantes para $SU(N)$ de mayor rango. Hasta ahora, han habido intentos de definirlos rigurosamente, pero una definición matemática de $F_K^{SU(N)}(x_1,\dots,x_{N-1},q)$ para nudos no torales todavía carece en el escenario general. Nos centramos en el grupo de Lie $SU(3)$. Para poder estudiar el comportamiento del invariante de nudos asociado $F_K^{SU(3)}$, proporcionamos una construcción a partir de $R$ matrices de los invariantes de nudos cuántidos de $\sl_3$ para cualquier nudo y representación irreducible finito-dimensional. El resultado principal de esta tesis da una construcción explícita de $F_K^{SU(3)}(x,y,q)$, que extiende su previa definición a la familia de mayor tamaño nudos de trenza positiva. En particular, se muestra que $F_K^{SU(3)}(x,y,q)$ recupera el $\mathfrak{sl}_3$ invariante cuántico mediante especializaciones en las variables $x$ e $y$., One of the most exciting open problems in quantum topology concerns the categorification of the complex Chern-Simons theory. In this context, Gukov and Manolescu introduce a two--variable series $F_K(x,q)$ as the restriction of the 3-manifold invariant $\hat{Z}$ to knot complements, which has been shown to exhibit surprising properties. In particular, this series can be thought as an analytical continuation of the celebrated colored Jones polynomial of knot theory. Underlying this construction there is the choice of a Lie group $G=SU(2)$. A natural question turns to the study of this invariants for higher rank $SU(N)$. So far, there have been attempts to define them rigorously, but a mathematical definition of $F_K^{SU(N)}(x_1,\dots,x_{N-1},q)$ for non-torus knots is still lacking in a general scenario. We focus on the Lie group $SU(3)$. In order to study the behaviour of the associated knot invariant $F_K^{SU(3)}$, we provide a construction via $R$-matrices of the $\mathfrak{sl}_3$ quantum knot invariants for any knot and finite-dimensional irreducible representation. The main result of this thesis gives an explicit construction of $F_K^{SU(3)}(x,y,q)$, which extends its former definition to the bigger family of positive braid knots. In particular, it is shown that $F_K^{SU(3)}(x,y,q)$ recovers the $\mathfrak{sl}_3$ quantum invariants via specializations on the $x$ and $y$ variables., Outgoing
- Published
- 2023
18. High angular resolution near-IR view of the Orion Bar revealed by Keck/NIRC2
- Author
-
W. M. Keck Foundation, California Institute of Technology, University of California, National Aeronautics and Space Administration (US), Ministerio de Ciencia, Innovación y Universidades (España), Habart, Emilie [0000-0001-9136-8043], Habart, Emilie, Le Gal, Romane, Alvarez,Carlos, Peeters, Els, Berné, Olivier, Wolfire,Mark G., Goicoechea, Javier R., Schirmer, Thiébaut, Bron, Emeric, Röllig, Markus, W. M. Keck Foundation, California Institute of Technology, University of California, National Aeronautics and Space Administration (US), Ministerio de Ciencia, Innovación y Universidades (España), Habart, Emilie [0000-0001-9136-8043], Habart, Emilie, Le Gal, Romane, Alvarez,Carlos, Peeters, Els, Berné, Olivier, Wolfire,Mark G., Goicoechea, Javier R., Schirmer, Thiébaut, Bron, Emeric, and Röllig, Markus
- Abstract
Nearby Photo-Dissociation Regions (PDRs), where the gas and dust are heated by the far UV-irradiation emitted from stars, are ideal templates to study the main stellar feedback processes. With this study we aim to probe the detailed structures at the interfaces between ionized, atomic, and molecular gas in the Orion Bar. This nearby prototypical strongly irradiated PDR will be among the first targets of the James Webb Space Telescope (JWST) within the framework of the PDRs4All Early Release Science program. We employed the sub-arcsec resolution accessible with Keck-II NIRC2 and its adaptive optics system to obtain the most detailed and complete images, ever performed, of the vibrationally excited line H$_2$ 1-0 S(1) at 2.12~$\mu$m, tracing the dissociation front, and the [FeII] and Br$\gamma$ lines, at 1.64 and 2.16~$\mu$m respectively, tracing the ionization front. We obtained narrow-band filter images in these key gas line diagnostic over $\sim 40''$ at spatial scales of $\sim$0.1$''$ ($\sim$0.0002~pc or $\sim$40~AU at 414~pc). The Keck/NIRC2 observations spatially resolve a plethora of irradiated sub-structures such as ridges, filaments, globules and proplyds. A remarkable spatial coincidence between the H$_2$ 1-0 S(1) vibrational and HCO$^+$ J=4-3 rotational emission previously obtained with ALMA is observed. This likely indicates the intimate link between these two molecular species and highlights that in high pressure PDR the H/H$_2$ and C$^+$/C/CO transitions zones come closer as compared to a typical layered structure of a constant density PDR. This is in agreement with several previous studies that claimed that the Orion Bar edge is composed of very small, dense, highly irradiated PDRs at high thermal pressure immersed in a more diffuse environment.
- Published
- 2023
19. Ejecta from the DART-produced active asteroid Dimorphos
- Author
-
California Institute of Technology, National Aeronautics and Space Administration (US), Istituto Nazionale di Astrofisica, European Commission, Swiss National Science Foundation, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Academy of Finland, Li, Jian-Yang, Moreno, Fernando, Herreros, Isabel, Ormö, Jens, Trigo-Rodríguez, Josep María, California Institute of Technology, National Aeronautics and Space Administration (US), Istituto Nazionale di Astrofisica, European Commission, Swiss National Science Foundation, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Academy of Finland, Li, Jian-Yang, Moreno, Fernando, Herreros, Isabel, Ormö, Jens, and Trigo-Rodríguez, Josep María
- Abstract
Some active asteroids have been proposed to be formed as a result of impact events. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA, in addition to having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact.
- Published
- 2023
20. The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars
- Author
-
Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Instituto Nacional de Técnica Aeroespacial (España), European Commission, National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Rodriguez-Manfredi, J. A. [0000-0003-0461-9815], Torre Juarez, Manuel de la [0000-0003-1393-5297], Sánchez-Lavega, A. [0000-0001-7234-7634], Hueso, R. [0000-0003-0169-123X], Martinez, G. [0000-0001-5885-236X], Lemmon, M. T. [0000-0002-4504-5136], Newman, C. E. [0000-0001-9990-8817], Munguira, A. [0000-0002-1677-6327], Jaakonaho, I. [0000-0001-7343-5556], Viudez-Moreiras, D. [0000-0001-8442-3788], Ramos, M. Ángeles [0000-0003-3648-6818], Saiz-Lopez, A. [0000-0002-0060-1581], Lepinette, A. [0000-0002-5213-3521], Sullivan, R. J. [0000-0003-4191-598X], Apestigue, V. [0000-0002-4349-8019], Río Gaztelurrutia, Teresa del [0000-0001-8552-226X], Murdoch, N. [0000-0002-9701-4075], Arruego, I. [0000-0001-9705-9743], Banfield, D. [0000-0003-2664-0164], Brown, A. J. [0000-0002-9352-6989], Ceballos, J. [0000-0002-6727-1062], Dominguez-Pumar, M. [0000-0001-5439-7953], Espejo, S. [0000-0003-2609-2663], Fischer, E. [0000-0002-2098-5295], Guzewich, S. D. [0000-0003-1149-7385], Makinen, T. [0000-0001-9489-8154], Martin, C. [0000-0002-8898-4061], Molina, A. [0000-0002-5038-2022], Mora-Sotomayor, L. [0000-0002-8209-1190], Navarro, S. [0000-0001-8606-7799], Perez-Grande, I. [0000-0002-7145-2835], Romero, C. [0000-0001-5442-2581], Rodríguez-Manfredi, José Antonio, Torre Juarez, Manuel de la, Sánchez-Lavega, A., Hueso, R., Martínez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Polkko, J., Toledo, D., Sebastian, E., Smith, M. D., Jaakonaho, I., Genzer, M., Vicente-Retortillo, A. de, Viúdez-Moreiras, Daniel, Ramos, M. Ángeles, Saiz-Lopez, A., Lepinette, A., Wolff, M., Sullivan, R. J., Gómez-Elvira, Javier, Apestigue, V., Conrad, P. G., Río Gaztelurrutia, Teresa del, Murdoch, N., Arruego, I., Banfield, D., Boland, J., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fairén, A. G., Ferrandiz, R., Fischer, E., García-Villadangos, Miriam, Gimenez, S., Gomez-Gomez, F., Guzewich, S. D., Harri, A. M., Jimenez, J. J., Jimenez, V., Makinen, T., Marin, M., Martín, C., Martin-Soler, J., Molina, A., Mora-Sotomayor, L., Navarro, S., Peinado, V., Pérez-Grande, I., Pla-Garcia, J., Postigo, M., Prieto-Ballesteros, Olga, Rafkin, Scot C. R., Richardson, M. I., Romeral, J., Romero, C., Savijärvi, H., Schofield, J. T., Torres, J., Urqui, R., Zurita, S., Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Instituto Nacional de Técnica Aeroespacial (España), European Commission, National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Rodriguez-Manfredi, J. A. [0000-0003-0461-9815], Torre Juarez, Manuel de la [0000-0003-1393-5297], Sánchez-Lavega, A. [0000-0001-7234-7634], Hueso, R. [0000-0003-0169-123X], Martinez, G. [0000-0001-5885-236X], Lemmon, M. T. [0000-0002-4504-5136], Newman, C. E. [0000-0001-9990-8817], Munguira, A. [0000-0002-1677-6327], Jaakonaho, I. [0000-0001-7343-5556], Viudez-Moreiras, D. [0000-0001-8442-3788], Ramos, M. Ángeles [0000-0003-3648-6818], Saiz-Lopez, A. [0000-0002-0060-1581], Lepinette, A. [0000-0002-5213-3521], Sullivan, R. J. [0000-0003-4191-598X], Apestigue, V. [0000-0002-4349-8019], Río Gaztelurrutia, Teresa del [0000-0001-8552-226X], Murdoch, N. [0000-0002-9701-4075], Arruego, I. [0000-0001-9705-9743], Banfield, D. [0000-0003-2664-0164], Brown, A. J. [0000-0002-9352-6989], Ceballos, J. [0000-0002-6727-1062], Dominguez-Pumar, M. [0000-0001-5439-7953], Espejo, S. [0000-0003-2609-2663], Fischer, E. [0000-0002-2098-5295], Guzewich, S. D. [0000-0003-1149-7385], Makinen, T. [0000-0001-9489-8154], Martin, C. [0000-0002-8898-4061], Molina, A. [0000-0002-5038-2022], Mora-Sotomayor, L. [0000-0002-8209-1190], Navarro, S. [0000-0001-8606-7799], Perez-Grande, I. [0000-0002-7145-2835], Romero, C. [0000-0001-5442-2581], Rodríguez-Manfredi, José Antonio, Torre Juarez, Manuel de la, Sánchez-Lavega, A., Hueso, R., Martínez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Hieta, M., Tamppari, L. K., Polkko, J., Toledo, D., Sebastian, E., Smith, M. D., Jaakonaho, I., Genzer, M., Vicente-Retortillo, A. de, Viúdez-Moreiras, Daniel, Ramos, M. Ángeles, Saiz-Lopez, A., Lepinette, A., Wolff, M., Sullivan, R. J., Gómez-Elvira, Javier, Apestigue, V., Conrad, P. G., Río Gaztelurrutia, Teresa del, Murdoch, N., Arruego, I., Banfield, D., Boland, J., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fairén, A. G., Ferrandiz, R., Fischer, E., García-Villadangos, Miriam, Gimenez, S., Gomez-Gomez, F., Guzewich, S. D., Harri, A. M., Jimenez, J. J., Jimenez, V., Makinen, T., Marin, M., Martín, C., Martin-Soler, J., Molina, A., Mora-Sotomayor, L., Navarro, S., Peinado, V., Pérez-Grande, I., Pla-Garcia, J., Postigo, M., Prieto-Ballesteros, Olga, Rafkin, Scot C. R., Richardson, M. I., Romeral, J., Romero, C., Savijärvi, H., Schofield, J. T., Torres, J., Urqui, R., and Zurita, S.
- Abstract
NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today’s Martian surface at Jezero crater.
- Published
- 2023
21. Empirical H/V spectral ratios at the InSight landing site and implications for the martian subsurface structure
- Author
-
NASA Astrobiology Institute (US), Centre National D'Etudes Spatiales (France), California Institute of Technology, Carrasco, Sebastián, Knapmeyer‐Endrun, Brigitte, Margerin, Ludovic, Schmelzbach, C., Onodera, K., Pan, L., Lognonné, Philippe, Menina, Sabrina, Giardini, Domenico, Stutzmann, Eléonore, Clinton, John, Stähler, Simon C., Schimmel, Martin, Golombek, Matthew, Hobiger, Manuel, Hallo, Miroslav, Kedar, Sharon, Banerdt, William Bruce, NASA Astrobiology Institute (US), Centre National D'Etudes Spatiales (France), California Institute of Technology, Carrasco, Sebastián, Knapmeyer‐Endrun, Brigitte, Margerin, Ludovic, Schmelzbach, C., Onodera, K., Pan, L., Lognonné, Philippe, Menina, Sabrina, Giardini, Domenico, Stutzmann, Eléonore, Clinton, John, Stähler, Simon C., Schimmel, Martin, Golombek, Matthew, Hobiger, Manuel, Hallo, Miroslav, Kedar, Sharon, and Banerdt, William Bruce
- Abstract
The horizontal-to-vertical (H/V) spectral ratio inversion is a traditional technique for deriving the local subsurface structure on Earth. We calculated the H/V from the ambient vibrations at different wind levels at the InSight landing site, on Mars, and also computed the H/V from the S-wave coda of the martian seismic events (marsquakes). Different H/V curves were obtained for different wind periods and from the marsquakes. From the ambient vibrations, the recordings during low-wind periods are close to the instrument self-noise level. During high-wind periods, the seismic recordings are highly contaminated by the interaction of the lander with the wind and the martian ground. Therefore, these recordings are less favourable for traditional H/V analysis. Instead, the recordings of the S-wave coda of marsquakes were preferred to derive the characteristic H/V curve of this site between 0.4 and 10 Hz. The final H/V curve presents a characteristic trough at 2.4 Hz and a strong peak at 8 Hz. Using a full diffuse wavefield approach as the forward computation and the Neighbourhood Algorithm as the sampling technique, we invert for the 1-D shear wave velocity structure at the InSight landing site. Based on our inversion results, we propose a strong site effect at the InSight site to be due to the presence of a shallow high-velocity layer (SHVL) over low-velocity units. The SHVL is likely placed below a layer of coarse blocky ejecta and can be associated with Early Amazonian basaltic lava flows. The units below the SHVL have lower velocities, possibly related to a Late Hesperian or Early Amazonian epoch with a different magmatic regime and/or a greater impact rate and more extensive weathering. An extremely weak buried low velocity layer (bLVL) between these lava flows explains the data around the 2.4 Hz trough, whereas a more competent bLVL would not generate this latter feature. These subsurface models are in good agreement with results from hammering experiment and compl
- Published
- 2023
22. Supermassive Black Hole Winds in X-rays: SUBWAYS
- Author
-
National Aeronautics and Space Administration (US), California Institute of Technology, European Commission, Israel Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Comunidad de Madrid, Consejo Nacional de Ciencia y Tecnología (México), Ministerio de Economía y Competitividad (España), Centre National de la Recherche Scientifique (France), Ministero dell'Istruzione e del Merito, Mehdipour, M., Kriss, G. A., Brusa, M., Matzeu, G.A., Gaspari, M., Kraemer, S. B., Mathur, Savita, Behar, E., Bianchi, Stefano, Cappi, M., Chartas, G., Costantini, E., Cresci, G., Dadina, M., Marco, B. De, Rosa, A. De, Dunn, J. P., Gianolli, V. E., Miniutti, Giovanni, Kaastra, J. S., King, A. R., Krongold, Y., Franca, F. La, Lanzuisi, G., Longinotti, A. L., Luminari, A., Middei, R., G. Miniutt, Giustini, Margherita, Nardini, E., Perna, M., Petrucci, P.-O., Piconcelli, E., Ponti, G., Ricci, Federica, Tombesi, F., Ursini, F., Vignali, C., Zappacosta, L., National Aeronautics and Space Administration (US), California Institute of Technology, European Commission, Israel Science Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Comunidad de Madrid, Consejo Nacional de Ciencia y Tecnología (México), Ministerio de Economía y Competitividad (España), Centre National de la Recherche Scientifique (France), Ministero dell'Istruzione e del Merito, Mehdipour, M., Kriss, G. A., Brusa, M., Matzeu, G.A., Gaspari, M., Kraemer, S. B., Mathur, Savita, Behar, E., Bianchi, Stefano, Cappi, M., Chartas, G., Costantini, E., Cresci, G., Dadina, M., Marco, B. De, Rosa, A. De, Dunn, J. P., Gianolli, V. E., Miniutti, Giovanni, Kaastra, J. S., King, A. R., Krongold, Y., Franca, F. La, Lanzuisi, G., Longinotti, A. L., Luminari, A., Middei, R., G. Miniutt, Giustini, Margherita, Nardini, E., Perna, M., Petrucci, P.-O., Piconcelli, E., Ponti, G., Ricci, Federica, Tombesi, F., Ursini, F., Vignali, C., and Zappacosta, L.
- Abstract
We present a UV spectroscopic study of ionized outflows in 21 active galactic nuclei (AGN), observed with the Hubble Space Telescope (HST). The targets of the Supermassive Black Hole Winds in X-rays (SUBWAYS) sample were selected with the aim to probe the parameter space of the underexplored AGN between the local Seyfert galaxies and the luminous quasars at high redshifts. Our targets, spanning redshifts of 0.1–0.4 and bolometric luminosities (Lbol) of 1045–1046 erg s−1, have been observed with a large multi-wavelength campaign using XMM-Newton, NuSTAR, and HST. Here, we model the UV spectra and look for different types of AGN outflows that may produce either narrow or broad UV absorption features. We examine the relations between the observed UV outflows and other properties of the AGN. We find that 60% of our targets show a presence of outflowing H I absorption, while 40% exhibit ionized outflows seen as absorption by either C IV, N V, or O VI. This is comparable to the occurrence of ionized outflows seen in the local Seyfert galaxies. All UV absorption lines in the sample are relatively narrow, with outflow velocities reaching up to −3300 km s−1. We did not detect any UV counterparts to the X-ray ultra-fast outflows (UFOs), most likely due to their being too highly ionized to produce significant UV absorption. However, all SUBWAYS targets with an X-ray UFO that have HST data demonstrate the presence of UV outflows at lower velocities. We find significant correlations between the column density (N) of the UV ions and Lbol of the AGN, with NH I decreasing with Lbol, while NO VI is increasing with Lbol. This is likely to be a photoionization effect, where toward higher AGN luminosities, the wind becomes more ionized, resulting in less absorption by neutral or low-ionization ions and more absorption by high-ionization ions. In addition, we find that N of the UV ions decreases as their outflow velocity increases. This may be explained by a mechanical power that is eva
- Published
- 2023
23. A microfluidic labyrinth self-assembled by a chemical garden
- Author
-
European Commission, Junta de Andalucía, California Institute of Technology, Testón-Martínez, Sergio, Huertas-Roldán, Teresa, Knoll, Pamela, Barge, Laura M., Sainz-Díaz, C. Ignacio, Cartwright, Julyan H. E., European Commission, Junta de Andalucía, California Institute of Technology, Testón-Martínez, Sergio, Huertas-Roldán, Teresa, Knoll, Pamela, Barge, Laura M., Sainz-Díaz, C. Ignacio, and Cartwright, Julyan H. E.
- Abstract
Chemical gardens, self-assembling precipitates that spontaneously form when a metal salt is added to a solution of another precipitating anion, are of interest for various applications including producing reactive materials in controlled structures. Here, we report on two chemical garden reaction systems (CuCl and Cu(NO) seed crystals submerged in sodium silicate) that produced self-assembled microfluidic labyrinths in a vertical 2D Hele-Shaw reactor. The formation of labyrinths as well as the specific growth modes of the precipitate were dependent on the silicate concentration: CuCl labyrinths formed only at 3 and 4 M silicate and Cu(NO) labyrinths formed only at 4 and 5 M silicate. The labyrinth structures contained silicate on the exterior and crystalline material interpreted as hydrated minerals from the metal salt in their interiors. The bubble-guided tubes that form labyrinths can be controlled by changing the angle of the 2D reaction cell; this suggests that future experiments of this type could form self-organizing structures with controlled composition and orientation for use in microfluidics and various materials science applications.
- Published
- 2023
24. The Global Seismic Moment Rate of Mars After Event S1222a
- Author
-
Knapmeyer, M., Stähler, S., Plesa, A.‐C., Ceylan, S., Charalambous, C., Clinton, J., Dahmen, N., Durán, C., Horleston, A., Kawamura, T., Kim, D., Li, J., Plasman, M., Zenhäusern, G., Weber, R. C., Giardini, D., Panning, M. P., Lognonné, P., Banerdt, W. B., 2 Institute of Geophysics ETH Zürich Zürich Switzerland, 1 DLR Institute for Planetary Research Berlin Germany, 3 Department of Electrical and Electronic Engineering Imperial College London London UK, 4 Swiss Seismological Service (SED) ETH Zurich Zürich Switzerland, 5 School of Earth Sciences University of Bristol Bristol UK, 6 Université de Paris Institut de physique du globe de Paris CNRS F‐75005 Paris France, 7 Department of Earth, Planetary, and Space Sciences University of California, Los Angeles Los Angeles CA USA, 8 NASA MSFC Huntsville AL USA, and 9 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
- Subjects
Geophysics ,ddc:523 ,S1222a ,General Earth and Planetary Sciences ,Mars ,seismic moment rate ,Mars InSight Marsquake Seismology Seismic Moment ,InSight - Abstract
The seismic activity of a planet can be described by the corner magnitude, events larger than which are extremely unlikely, and the seismic moment rate, the long‐term average of annual seismic moment release. Marsquake S1222a proves large enough to be representative of the global activity of Mars and places observational constraints on the moment rate. The magnitude‐frequency distribution of relevant Marsquakes indicates a $b$‐value of 1.06. The moment rate is likely between $1.55\times {10}^{15}\mathrm{N}\mathrm{m}/\mathrm{a}$ and $1.97\times {10}^{18}\mathrm{N}\mathrm{m}/\mathrm{a}$, with a marginal distribution peaking at $4.9\times {10}^{16}\mathrm{N}\mathrm{m}/\mathrm{a}$. Comparing this with pre‐InSight estimations shows that these tended to overestimate the moment rate, and that 30% or more of the tectonic deformation may occur silently, whereas the seismicity is probably restricted to localized centers rather than spread over the entire planet., Plain Language Summary: The seismic moment rate is a measure for how fast quakes accumulate deformation of the planet's rigid outer layer, the lithosphere. In the past decades, several models for the deformation rate of Mars were developed either from the traces quakes leave on the surface, or from mathematical models of how quickly the planet's interior cools down and shrinks. The large marsquake that occurred on the 4th of May 2022 now allows a statistical estimation of the deformation accumulated on Mars per year, and thus to confront these models with reality. It turns out that, although there is a considerable overlap, the models published prior to InSight tend to overestimate the seismic moment rate, and hence the ongoing deformation on Mars. Possible explanations are that 30% or more of the deformation occurs silently, that is, without causing quakes, or that not the entire planet is seismically active but only specific regions., Key Points: A single large marsquake suffices to constrain the global seismic moment rate. Pre‐InSight estimations tended to overestimate the moment rate. Either a significant part of the ongoing deformation occurs silent, or seismic activity is restricted to some activity centers, or both., Eidgenössische Technische Hochschule Zürich http://dx.doi.org/10.13039/501100003006, National Aeronautics and Space Administration http://dx.doi.org/10.13039/100000104, UK Space Agency http://dx.doi.org/10.13039/100011690, Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946, Insight SFI Research Centre for Data Analytics http://dx.doi.org/10.13039/501100021525, http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016, http://doi.org/10.17189/1517570
- Published
- 2023
25. Authigenic formation of clay minerals in the abyssal North Pacific
- Author
-
Steiner, Zvi, Rae, James W. B., Berelson, William M., Adkins, Jess F., Hou, Yi, Dong, Sijia, Lampronti, Giulio I., Liu, Xuewu, Achterberg, Eric P., Subhas, Adam V., Turchyn, Alexandra V., 2 School of Earth and Environmental Sciences University of St Andrews St Andrews UK, 3 University of Southern California Los Angeles CA USA, 4 Department of Geology and Planetary Sciences California Institute of Technology Pasadena CA USA, 5 Department of Earth Sciences University of Cambridge Cambridge UK, 6 College of Marine Science University of South Florida St. Petersburg Campus St. Petersburg FL USA, 1 GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany, 7 Department of Chemistry Woods Hole Oceanographic Institution Woods Hole MA USA, University of St Andrews. School of Earth & Environmental Sciences, University of St Andrews. Centre for Energy Ethics, University of St Andrews. St Andrews Isotope Geochemistry, Steiner, Z [0000-0002-9584-4956], Rae, JWB [0000-0003-3904-2526], Hou, Y [0000-0002-0846-8615], Dong, S [0000-0002-5811-9333], Achterberg, EP [0000-0002-3061-2767], Subhas, AV [0000-0002-7688-6624], Turchyn, AV [0000-0002-9298-2173], and Apollo - University of Cambridge Repository
- Subjects
reverse weathering ,Atmospheric Science ,Global and Planetary Change ,calcium ,potassium ,DAS ,Reverse weathering ,ddc:549 ,Porewater ,Strontium ,MCP ,Potassium ,Environmental Chemistry ,Clay authigenesis ,Calcium ,strontium ,SDG 14 - Life Below Water ,clay authigenesis ,porewater ,General Environmental Science - Abstract
Present estimates of the biogeochemical cycles of calcium, strontium, and potassium in the ocean reveal large imbalances between known input and output fluxes. Using pore fluid, incubation, and solid sediment data from North Pacific multi‐corer cores we show that, contrary to the common paradigm, the top centimeters of abyssal sediments can be an active site of authigenic precipitation of clay minerals. In this region, clay authigenesis is the dominant sink for potassium and strontium and consumes nearly all calcium released from benthic dissolution of calcium carbonates. These observations support the idea that clay authigenesis occurring over broad regions of the world ocean may be a major buffer for ocean chemistry on the time scale of the ocean overturning circulation, and key to the long‐term stability of Earth's climate., Key Points: North Pacific red clay sediments are a sink for marine calcium, strontium, and potassium. Authigenic formation of clay minerals is prevalent in pelagic sediments throughout the North Pacific. The main mechanism for clay formation is recrystallization of aluminosilicates, neoformation can occur in biogenic silica rich sediments., EC H2020 PRIORITY “Excellent science” H2020 European Research Council http://dx.doi.org/10.13039/100010663, Blavatnik Family Foundation http://dx.doi.org/10.13039/100011643, Isaac Newton Trust http://dx.doi.org/10.13039/501100004815, Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659, National Science Foundation http://dx.doi.org/10.13039/100000001, https://doi.pangaea.de/10.1594/PANGAEA.946881
- Published
- 2022
26. Strategies and performance of the CMS silicon tracker alignment during LHC Run 2
- Author
-
Yerevan Physics Institute, Yerevan, Tumasyan Institut für Hochenergiephysik, Armenia A., Vienna, Adam, Austria W., Andrejkovic, J. W., Bergauer, T., Blöch, D., Chatterjee, S., Dragicevic, M., Escalante Del Valle, A., Frühwirth1, R., Hinger, V., Jeitler1, M., Krammer, N., Lechner, L., Liko, D., Mikulec, I., Paulitsch, P., Pitters, F. M., Schieck1, J., Schöfbeck, R., Schwarz, D., Steininger, H., Templ, S., Waltenberger, W., Wulz1 Institute for Nuclear Problems, C. -E., Minsk, Chekhovsky, Belarus V., Litomin, A., Makarenko Universiteit Antwerpen, V., Antwerpen, Beaumont, Belgium W., Darwish2, M. R., De Wolf, E. A., Janssen, T., Kello3, T., Lelek, A., Rejeb Sfar, H., Van Mechelen, P., Van Putte, S., Van Remortel Vrije Universiteit Brussel, N., Brussel, Blekman, Belgium F., Bols, E. S., D’Hondt, J., Delcourt, M., El Faham, H., Lowette, S., Moortgat, S., Morton, A., Muller, D., Sahasransu, A. R., Tavernier, S., Van Doninck, W., Van Mulders Université Libre de Bruxelles, P., Bruxelles, Allard, Belgium Y., Beghin, D., Bilin, B., Clerbaux, B., De Lentdecker, G., Deng, W., Favart, L., Grebenyuk, A., Hohov, D., Kalsi, A. K., Khalilzadeh, A., Lee, K., Mahdavikhorrami, M., Makarenko, I., Moureaux, L., Pétré, L., Popov, A., Postiau, N., Robert, F., Song, Z., Starling, E., Thomas, L., Vanden Bemden, M., Vander Velde, C., Vanlaer, P., Vannerom, D., Wezenbeek, L., Yang Ghent University, Y., Ghent, Cornelis, Belgium T., Dobur, D., Knolle, J., Lambrecht, L., Mestdach, G., Niedziela, M., Roskas, C., Samalan, A., Skovpen, K., Tytgat, M., Ver- massen, B., Vit Université Catholique de Louvain, M., Louvain-la-Neuve, Benecke, Belgium A., Bethani, A., Bruno, G., Bury, F., Caputo, C., David, P., Deblaere, A., Delaere, C., Donertas, I. S., Giammanco, A., Jaffel, K., Jain, Sa., Lemaitre, V., Mondal, K., Prisciandaro, J., Szilasi, N., Taliercio, A., Teklishyn, M., Tran, T. T., Vischia, P., Wertz Centro Brasileiro de Pesquisas Fisicas, S., Rio de Janeiro, Alves, Brazil G. A., Hensel, C., Moraes Universidade do Estado do Rio de Janeiro, A., Aldá Júnior, Brazil W. L., Alves Gallo Pereira, M., Barroso Ferreira Filho, M., Brandao Malbouisson, H., Carvalho, W., Chinellato4, J., Da Costa, E. M., Da Silveira5, G. G., De Jesus Damiao, D., Fonseca De Souza, S., Matos Figueiredo, D., Mora Herrera, C., Mota Amarilo, K., Mundim, L., Nogima, H., Rebello Teles, P., Santoro, A., Silva Do Amaral, S. M., Sznajder, A., Thiel, M., Torres Da Silva De Araujo6, F., Vilela Pereira Universidade Estadual Paulista (a), A., Universidade Federal do ABC (b), São, Paulo, Bernardes5, Brazil C. A., Calligaris, L., Fernandez Perez Tomei, T. R., Gre- gores, E. M., Lemos, D. S., Mercadante, P. G., Novaes, S. F., and Methods in Physics Research, Sandra S. Padula 36 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Aleksandrov, Bulgaria A., Antchev, G., Hadjiiska, R., Iaydjiev, P., Misheva, M., Rodozov, M., Shopova, M., Sultanov University of Sofia, G., Dimitrov, Bulgaria A., Ivanov, T., Litov, L., Pavlov, B., Petkov, P., Petrov Beihang University, A., Beijing, Cheng, China T., Javaid7, T., Mittal, M., Wang3, H., Yuan Department of Physics, L., Tsinghua, University, Ahmad, China M., Bauer, G., Dozen8, C., Hu, Z., Martins9, J., Wang, Y., Yi10, K., 11 Institute of High Energy Physics, Chapon, China E., Chen7, G. M., Chen7, H. S., Chen, M., Iemmi, F., Kapoor, A., Leggat, D., Liao, H., Liu7, Z. -A., Milosevic, V., Monti, F., Sharma, R., Tao, J., Thomas-Wilsker, J., Wang, J., Zhang, H., Zhao State Key Laboratory of Nuclear Physics and Technology, J., Peking Uni- versity, Agapitos, China A., An, Y., Ban, Y., Chen, C., Levin, A., Li, Q., Lyu, X., Mao, Y., Qian, S. J., Wang, D., Xiao Sun Yat-Sen University, Q. Wang12 J., Guangzhou, China M., Lu, You Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Z., Shanghai, Gao3, China X., Okawa Zhejiang University, H., Hangzhou, China, Zhejiang, Lin, China Z., Xiao Universidad de Los Andes, M., Bogota, Avila, Colombia C., Cabrera, A., Florez, C., Fraga Universidad de Antioquia, J., Medellin, Mejia Guisao, Colombia J., Ramirez, F., Ruiz Alvarez, J. D., Salazar González University of Split, C. A., Faculty of Electrical Engineering, Mechanical Engi- neering and Naval Architecture, Split, Giljanovic, Croatia D., Godinovic, N., Lelas, D., Puljak University of Split, I., Faculty of Science, Antunovic, Croatia Z., Kovac, M., Sculac Institute Rudjer Boskovic, T., Zagreb, Brigljevic, Croatia V., Ferencek, D., Majumder, D., Mishra, S., Roguljic, M., Starodumov13, A., Susa University of Cyprus, T., Nicosia, Attikis, Cyprus A., Christoforou, K., Erodotou, E., Ioannou, A., Kole, G., Kolosova, M., Konstantinou, S., Mousa, J., Nicolaou, C., Ptochos, F., Razis, P. A., Rykaczewski, H., Saka Charles University, H., Prague, Finger14, Czech Republic M., M. Finger Jr., 14, Kveton Escuela Politecnica Nacional, A., Quito, Ayala Universidad San Francisco de Quito, Ecuador E., Carrera Jarrin Academy of Scientific Research and Technology of the Arab Republic of Egypt, Ecuador E., Egyptian Network of High Energy Physics, Cairo, Abdalla15, Egypt H., Assran16, Y., 17 Center for High Energy Physics (CHEP-FU), Fayoum, University, El-, Fayoum, Mahmoud, Egypt M. A., Mohammed National Institute of Chemical Physics and Biophysics, Y., Tallinn, Ahmed18, Estonia I., Bhowmik, S., Dewanjee, R. K., Ehataht, K., Kadastik, M., Nandan, S., Nielsen, C., Pata, J., Raidal, M., Tani, L., Veelken Department of Physics, C., University of Helsinki, Helsinki, Eerola, Finland P., Forthomme, L., Kirschenmann, H., Osterberg, K., Vouti- lainen Helsinki Institute of Physics, M., Bharthuar, Finland S., Brücken, E., Garcia, F., Havukainen, J., Kim, M. S., Kinnunen, R., Lampén, T., Lassila-Perini, K., Lehti, S., Lindén, T., Lotti, M., Martikainen, L., Myllymäki, M., Ott, J., Siikonen, H., Tuominen, E., Tuominiemi Lappeenranta University of Technology, J., Lappeenranta, Luukka, Finland P., Petrow, H., Tuuva IRFU, T., Cea, Université, Paris-Saclay, Gif-sur-Yvette, Amendola, France C., Besancon, M., Couderc, F., Dejardin, M., Denegri, D., Faure, J. L., Ferri, F., Ganjour, S., Givernaud, A., Gras, P., Hamel de Monchenault, G., Jarry, P., Lenzi, B., Locci, E., Malcles, J., Rander, J., Rosowsky, A., Sahin, M. Ö., Savoy-Navarro19, A., Titov, M., Yu Laboratoire Leprince-Ringuet, G. B., Cnrs/in2p3, Ecole, Polytechnique, Insti- tut Polytechnique de Paris, Palaiseau, Ahuja, France S., Beaudette, F., Bonanomi, M., Buchot Perraguin, A., Busson, P., Cappati, A., Charlot, C., Davignon, O., Diab, B., Falmagne, G., Ghosh, S., Granier de Cassagnac, R., Hakimi, A., Kucher, I., Motta, J., Nguyen, M., Ochando, C., Paganini, P., Rembser, J., Salerno, R., Sarkar, U., Sauvan, J. B., Sirois, Y., Tarabini, A., Zabi, A., Zghiche Université de Strasbourg, A., Cnrs, IPHC UMR 7178, Strasbourg, Agram20, France J. -L., Andrea, J., Apparu, D., Bloch, D., Bonnin, C., Bourgatte, G., Brom, J. -M., Chabert, E. C., Charles, L., Collard, C., Dangelser, E., Darej, D., Fontaine20, J. -C., Goerlach, U., Grimault, C., Gross, L., Haas, C., Krauth, M., Le Bihan, A. -C., Nibigira, E., Ollivier-henry, N., Silva Jiménez, E., Van Hove Institut de Physique des 2 Infinis de Lyon (IP2I ), P., Villeurbanne, Asilar, France E., Baulieu, G., Beauceron, S., Bernet, C., Boudoul, G., Camen, C., Caponetto, L., Carle, A., Chanon, N., Contardo, D., Dené, P., Depasse, P., Dupasquier, T., El Mamouni, H., Fay, J., Galbit, G., Gascon, S., Gouze- vitch, M., Ille, B., Laktineh, I. B., Lattaud, H., Lesauvage, A., Lethuillier, M., Lumb, N., Mirabito, L., Nodari, B., Perries, S., Shchablo, K., Sordini, V., Torterotot, L., Touquet, G., Vander Donckt, M., Viret Georgian Technical University, S., Tbilisi, Lomidze, Georgia I., Toriashvili21, T., Tsamalaidze14 RWTH Aachen University, Z., Physikalisches Institut, I., Aachen, Autermann, Germany C., Botta, V., Feld, L., Karpinski, W., Kiesel, M. K., Klein, K., Lipinski, M., Louis, D., Meuser, D., Pauls, A., Pierschel, G., Rauch, M. P., Röwert, N., Schomakers, C., Schulz, J., Teroerde, M., Wlochal RWTH Aachen University, M., Physikalisches Institut A, Iii., Dodonova, Ger- many A., Eliseev, D., Erdmann, M., Fackeldey, P., Fischer, B., Hebbeker, T., Hoepfner, K., Ivone, F., Mastrolorenzo, L., and Methods in Physics Research, M. 37 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Merschmeyer, Meyer, A., Mocellin, G., Mondal, S., Mukherjee, S., Noll, D., Novak, A., Pook, T., Pozdnyakov, A., Rath, Y., Reithler, H., Roemer, J., Schmidt, A., Schuler, S. C., Sharma, A., Vigilante, L., Wiedenbeck, S., Zaleski RWTH Aachen University, S., Physikalisches Institut B, Iii., Dziwok, Ger- many C., Flügge, G., Haj Ahmad22, W., Hlushchenko, O., Kress, T., Nowack, A., Pistone, C., Pooth, O., Roy, D., Sert, H., Stahl18, A., Ziemons, T., Zotz Deutsches Elektronen-Synchrotron, A., Hamburg, Aarup Petersen, Germany H., Aldaya Martin, M., Asmuss, P., Baxter, S., Bayat- makou, M., Behnke, O., Bermúdez Martínez, A., Bertsche, D., Bhattacharya, S., Bin Anuar, A. A., Borras23, K., Brunner, D., Campbell, A., Cardini, A., Cheng, C., Colombina, F., Consuegra Rodríguez, S., Correia Silva, G., Danilov, V., De Silva, M., Didukh, L., Domínguez Damiani, D., Eckerlin, G., Eckstein, D., Estevez Banos, L. I., Filatov, O., Gallo24, E., Geiser, A., Giraldi, A., Grados Luyando, J. M., Grohsjean, A., Guthoff, M., Jafari25, A., Jomhari, N. Z., Jung, H., Kasem23, A., Kasemann, M., Kaveh, H., Kleinwort, C., Krücker, D., Lange, W., Lidrych, J., Lipka, K., Lohmann26, W., Mankel, R., Maser, H., Melzer-Pellmann, I. -A., Mendizabal Morentin, M., Metwally, J., Meyer, A. B., Meyer, M., Mittag, G., Mnich, J., Muhl, C., Mussgiller, A., Otarid, Y., Pérez Adán, D., Pitzl, D., Raspereza, A., Reichelt, O., Ribeiro Lopes, B., Rübenach, J., Saggio, A., Saibel, A., Savitskyi, M., Scham27, M., Scheurer, V., Schütze, P., Schwanenberger24, C., Shchedrolosiev, M., Shevchenko, R., Sosa Ricardo, R. E., Stafford, D., Stever, R., Tonon, N., Van De Klundert, M., Velyka, A., Walsh, R., Walter, D., Wen, Y., Wichmann, K., Wiens, L., Wissing, C., Wuchterl, S., Zuber University of Hamburg, A., Aggleton, Germany R., Albrecht, S., Bein, S., Benato, L., Biskop, H., Buhmann, P., Connor, P., De Leo, K., Eich, M., Feindt, F., Fröhlich, A., Garbers, C., Garutti, E., Gunnellini, P., Hajheidari, M., Haller, J., Hinzmann, A., Jabusch, H. R., Kasieczka, G., Klanner, R., Kogler, R., Kramer, T., Kutzner, V., Lange, J., Lange, T., Lobanov, A., Malara, A., Martens, S., Mrowietz, M., Niemeyer, C. E. N., Nigamova, A., Nissan, Y., Pena Rodriguez, K. J., Rieger, O., Schleper, P., Schröder, M., Schwandt, J., Sonneveld, J., Stadie, H., Steinbrück, G., Tews, A., Vormwald, B., Wellhausen, J., Zoi Karlsruher Institut fuer Technologie, I., Karlsruhe, Ardila-Perez, Germany L. E., Balzer, M., Barvich, T., Bechtel, J., Blank, T., Brom- mer, S., Burkart, M., Butz, E., Caselle, M., Caspart, R., Chwalek, T., De Boer†, W., Dierlamm, A., Droll, A., El Morabit, K., Faltermann, N., Giffels, M., Gosewisch, J. o., Gottmann, A., Hartmann18, F., Heidecker, C., Husemann, U., Keicher, P., Koppenhofer, R., Maier, S., Metzler, M., Mitra, S., Müller, Th., Neufeld, M., Neukum, M., Nürnberg, A., Quast, G., Rabbertz, K., Rauser, J., Sander, O., Savoiu, D., Schell, D., Schnepf, M., Seith, D., Shvetsov, I., Simonis, H. J., Stanulla, J., Steck, P., Ulrich, R., Van Der Linden, J., Von Cube, R. F., Wassmer, M., Weber, M., Weddigen, A., Wieland, S., Wittig, F., Wolf, R., Wozniewski, S., Wunsch Institute of Nuclear and Particle Physics (INPP), S., Ncsr, Demokritos, Aghia, Paraskevi, Anagnostou, Greece G., Assiouras, P., Daskalakis, G., Geralis, T., Kazas, I., Kyriakis, A., Loukas, D., Papadopoulos, A., Stakia National and Kapodistrian University of Athens, A., Athens, Diamantopoulou, Greece M., Karasavvas, D., Karathanasis, G., Kontaxakis, P., Koraka, C. K., Manousakis-Katsikakis, A., Panagiotou, A., Papavergou, I., Saoulidou, N., Theofilatos, K., Tziaferi, E., Vellidis, K., Vourliotis National Technical University of Athens, E., Bakas, Greece G., Kousouris, K., Papakrivopoulos, I., Tsipolitis, G., Zacharopoulou, A., Zografos University of Ioánnina, A., Ioánnina, Adamidis, Greece K., Bestintzanos, I., Evangelou, I., Foudas, C., Gianneios, P., Katsoulis, P., Kokkas, P., Manthos, N., Papadopoulos, I., Strologas MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, J., Eötvös Loránd University, Budapest, Csanad, Hungary M., Farkas, K., Gadallah28, M. M. A., Lökös29, S., Major, P., Mandal, K., Mehta, A., Pasztor, G., Rd ́l, A. J., Surányi, O., Veres Wigner Research Centre for Physics, G. I., Balazs, Hungary T., Bartók30, M., Bencze, G., Hajdu, C., Horvath31, D., Márton, K., Sikler, F., Veszpremi Institute of Nuclear Research ATOMKI, V., Debrecen, Czellar, Hungary S., Karancsi30, J., Molnar, J., Szillasi, Z., Teyssier Institute of Physics, D., University of Debrecen, Raics, Hungary P., Trocsanyi32, Z. L., Ujvari Karoly Robert Campus, B., MATE Institute of Technology, Gyongyos, Csorgo33, Hun- gary T., Nemes33, F., Novak Indian Institute of Science (IISc), T., Bangalore, Choudhury, India S., Komaragiri, J. R., Kumar, D., Panwar, L., Tiwari National Institute of Science Education and Research, P. C., Hbni, Bhubaneswar, Bahinipati34, India S., Das, A. K., Kar, C., Mal, P., Mishra, T., Mohanty, R., Muraleedharan Nair Bindhu35, V. K., Nayak35, A., Saha, P., Sur, N., Swain, S. K., Vats35 Punjab University, D., Chandigarh, Bansal, India S., Beri, S. B., Bhatnagar, V., Chaudhary, G., Chauhan, S., Dhingra36, N., Gupta, R., Kaur, A., Kaur, M., Kaur, S., Kumari, P., Meena, M., Sandeep, K., Singh, J. B., Virdi University of Delhi, A. K., Delhi, Ahmed, India A., Bhardwaj, A., Choudhary, B. C., Gola, M., Jain, C., Jain, G., Keshri, S., Kumar, A., Naimuddin, M., Priyanka, P., Ranjan, K., Saumya, S., Shah Saha Institute of Nuclear Physics, A., Hbni, Kolkata, Bharti37, India M., Bhattacharya, R., Bhowmik, D., Dutta, S., Gomber38, B., Maity39, M., Palit, P., Rout, P. K., Saha, G., Sahu, B., Sarkar, S., Sharan, M., Singh37, B., Thakur37 Indian Institute of Technology Madras, S., Madras, Behera, India P. K., Behera, S. C., Kalbhor, P., Muhammad, A., Pradhan, R., Pujahari, P. R., Sikdar Bhabha Atomic Research Centre, A. K., Mumbai, Dutta, India D., Jha, V., Kumar, V., Mishra, D. K., Naskar40, K., Netrakanti, P. K., Pant, L. M., Shukla Tata Institute of Fundamental Research-A, P., Aziz, India T., Dugad, S., Kumar Tata Institute of Fundamental Research-B, M., Banerjee, India S., Chudasama, R., Guchait, M., Karmakar, S., Kumar, S., Majumder, G., Mazumdar, K., Mukherjee Indian Institute of Science Education and Research (IISER), S., Pune, Alpana, India K., Dube, S., Kansal, B., Laha, A., Pandey, S., Rane, A., Rastogi, A., and Methods in Physics Research, S. Sharma 38 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Isfahan University of Technology, Isfahan, Bakhshiansohi12, Iran H., Khazaie, E., Zeinali41 Institute for Research in Fundamental Sciences (IPM), M., Tehran, Abbas, Iran S. M., Chenarani42, S., Etesami, S. M., Khakzad, M., Mohammadi Najafabadi University College Dublin, M., Dublin, Bari, Italy, Bari, Ramos, D., Bologna, Italy, Bologna, Lo Meoa, S., Grosso, G., Lusiani, E., Pavia, Italy, Pavia, Perugia, Italy, Peru-, Gia, Baldinelli, G., Bianchi, F., Magherinib, M., Pisa, Italy, Italy, Albergo, S., Costa, S., Di Mattia, A., Saizu, M. A., Tricomi, A., Tuve, C., Potenza, R., Catania, Italy, Manca, Mandorli, G., Massa, M., Mazzoni, E., Messineo, A., Scrib- anoa, A., Firenze, Italy, Firenze, Frascati, Benussi, Italy L., Bianco, S., Genova, Italy, Gen-, Ova, Milano, Italy, Milano, Boldrini, G., Pinolini, B. S., Napoli, Italy, Potenza, Italy, Padova, Italy, Trento, Beccherle, R., Rome, Italy, Rome, Torino, Italy, Novara, Coli, S., Rivettia, A., Trieste, Italy, Trieste, Daegu, Dogra, Korea S., Huh, C., Kim, B., Kim, D. H., Kim, G. N., Kim, J., Lee, J., Lee, S. W., Moon, C. S., Y. D., Oh, Pak, S. I., Radburn-Smith, B. C., Sekmen, S., Yang Chonnam National University, Y. C., Institute for Universe and Elementary Particles, Kwangju, Kim, Korea H., D’Amantea, V., Di Domenicoa, M. R., D, A 1037 (2022) 166795 Hanyang University, Seoul, Francois, Korea B., Kim, T. J., Park Korea University, J., Cho, Korea S., Choi, S., Go, Y., Hong, B., Lee, K. S., Lim, J., Park, J., Park, S. K., Yoo Kyung Hee University, J., Department of Physics, Republic of Korea, Goh, Korea J., Gurtu Sejong University, A., Kim, Korea H. S., Kim Seoul National University, Y., Almond, Korea J., Bhyun, J. H., Choi, J., Jeon, S., Kim, J. S., Ko, S., Kwon, H., Lee, H., Lee, S., B. H., Oh, Oh, M., S. B., Oh, Seo, H., Yang, U. K., Yoon University of Seoul, I., Jang, Korea W., Kang, D. Y., Kang, Y., Kim, S., Ko, B., Lee, J. S. H., Lee, Y., Park, I. C., Roh, Y., Ryu, M. S., Song, D., Watson, I. J., Yang Yonsei University, S., Korea S., Ha, Yoo Sungkyunkwan University, H. D., Suwon, Choi, Korea M., Yu College of Engineering and Technology, I., American University of the Middle East (AUM), Egaila, Kuwait, Dasman, Beyrouthy, Kuwait T., Maghrbi Riga Technical University, Y., Riga, Veckalns49 Vilnius University, Latvia V., Vilnius, Ambrozas, Lithuania M., Carvalho Antunes De Oliveira, A., Juodagalvis, A., Rinkevicius, A., Tamulaitis National Centre for Particle Physics, G., Universiti, Malaya, Kuala, Lumpur, Bin Norjoharuddeen, Malaysia N., Wan Abdullah, W. A. T., Yusli, M. N., Zolkapli Universidad de Sonora (UNISON), Z., Hermosillo, Benitez, Mexico J. F., Castaneda Hernandez, A., Coello, M. León., Murillo Quijada, J. A., Sehrawat, A., Valencia Palomo Centro de Investigacion y de Estudios Avanzados del IPN, L., Mexico, City, Ayala, Mexico G., Castilla-Valdez, H., De La Cruz-Burelo, E., Heredia-De La Cruz50, I., Lopezfernandez, R., Mondragon Herrera, C. A., Perez Navarro, D. A., Sánchez Hernández Universidad Iberoamericana, A., Carrillo Moreno, Mexico S., Oropeza Barrera, C., Vazquez Valencia Benemerita Universidad Autonoma de Puebla, F., Puebla, Pedraza, Mexico I., Salazar Ibarguen, H. A., Uribe Estrada University of Montenegro, C., Podgorica, Mijuskovic51, Montenegro J., Raicevic University of Auckland, N., Auckland, Krofcheck University of Canterbury, New Zealand D., Christchurch, Butler National Centre for Physics, New Zealand P. H., Quaid-I-Azam, University, Islamabad, Ahmad, Pak- istan A., Asghar, M. I., Awais, A., Awan, M. I. M., Hoorani, H. R., Khan, W. A., Shah, M. A., Shoaib, M., Waqas AGH University of Science and Technology Faculty of Computer Sci- ence, M., Electronics and Telecommunications, Krakow, Avati, Poland V., Grzanka, L., Malawski National Centre for Nuclear Research, M., Swierk, Bialkowska, Poland H., Bluj, M., Boimska, B., Górski, M., Kazana, M., Szleper, M., Zalewski Institute of Experimental Physics, P., Faculty of Physics, University of Warsaw, Warsaw, Bunkowski, Poland K., Doroba, K., Kalinowski, A., Konecki, M., Krolikowski Laboratório de Instrumentção e Física Experimental de Partículas, J., Lisboa, Araujo, Portugal M., Bargassa, P., Bastos, D., Boletti, A., Faccioli, P., Gallinaro, M., Hollar, J., Leonardo, N., Niknejad, T., Pisano, M., Seixas, J., Toldaiev, O., Varela Joint Institute for Nuclear Research, J., Dubna, Afanasiev, Russia S., Budkouski, D., Golutvin, I., Gorbunov, I., Karjavine, V., Korenkov, V., Lanev, A., Malakhov, A., Matveev52, V., Palichik, V., Perelygin, V., Savina, M., Seitova, D., Shalaev, V., Shmatov, S., Shulha, S., Smirnov, V., Teryaev, O., Voytishin, N., Yuldashev54, B. S., Zarubin, A., Zhizhin Petersburg Nuclear Physics Institute, I., Petersburg), Gatchina (St., Gavrilov, Russia G., Golovtcov, V., Ivanov, Y., Kim55, V., Kuznetsova56, E., Murzin, V., Oreshkin, V., Smirnov, I., Sosnov, D., Sulimov, V., Uvarov, L., Volkov, S., Vorobyev Institute for Nuclear Research, A., Moscow, Andreev, Russia Yu., Dermenev, A., Gninenko, S., Golubev, N., Karneyeu, A., Kirpichnikov, D., Kirsanov, M., Krasnikov, N., Pashenkov, A., Pivovarov, G., Alikhanov of NRC ‘Kurchatov Institute’, A. Toropin Institute for Theoretical and Experimental Physics named by A. I., Epshteyn, Russia V., Gavrilov, V., Lychkovskaya, N., Nikitenko57, A., Popov, V., Stepennov, A., Toms, M., Vlasov, E., Zhokin Moscow Institute of Physics and Technology, A., Aushev National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Russia T., Bychkova, Russia O., Chadeeva58, M., Parygin, P., Popova, E., Rusinov, V., Lebedev Physical Institute, D. Selivanova P. N., Andreev, Russia V., Azarkin, M., Dremin, I., Kirakosyan, M., Terkulov Skobeltsyn Institute of Nuclear Physics, A., Lomonosov Moscow State University, Belyaev, Russia A., Boos, E., Dubinin59, M., Dudko, L., Ershov, A., Gribushin, A., Kaminskiy60, A., Klyukhin, V., Kodolova, O., Lokhtin, I., Obraztsov, S., Petrushanko, S., Savrin Novosibirsk State University (NSU), V., Novosibirsk, Blinov61, Russia V., Dimova61, T., Kardapoltsev61, L., Kozyrev61, A., Ovtin61, I., and Methods in Physics Research, O. 40 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Radchenko61, Skovpen61 Institute for High Energy Physics of National Research Centre ’Kurcha- tov Institute’, Y., Protvino, Azhgirey, Russia I., Bayshev, I., Elumakhov, D., Kachanov, V., Konstantinov, D., Mandrik, P., Petrov, V., Ryutin, R., Slabospitskii, S., Sobol, A., Troshin, S., Tyurin, N., Uzunian, A., Volkov National Research Tomsk Polytechnic University, A., Tomsk, Babaev, Russia A., Okhotnikov Tomsk State University, V., Borshch, Russia V., Ivanchenko, V., Tcherniaev University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, E., Belgrade, Adzic62, Serbia P., Dordevic, M., Milenovic, P., Milosevic Centro de Investigaciones Energéticas Medioambientales y Tecnológi- cas (CIEMAT), J., Madrid, Aguilar-Benitez, Spain M., Alcaraz Maestre, J., Álvarez Fernández, A., Bachiller, I., Barrio Luna, M., Bedoya, Cristina F., Carrillo Montoya, C. A., Cepeda, M., Cerrada, M., Colino, N., De La Cruz, B., Delgado Peris, A., Fernández Ramos, J. P., Flix, J., Fouz, M. C., Gonzalez Lopez, O., Goy Lopez, S., Hernandez, J. M., Josa, M. I., Holgado, J. León., Moran, D., Navarro Tobar, Á., Perez Dengra, C., Pérez-Calero Yzquierdo, A., Puerta Pelayo, J., Redondo, I., Romero, L., Sánchez Navas, S., Urda Gómez, L., Willmott Universidad Autónoma de Madrid, C., de Trocóniz, Spain J. F., Reyes-Almanza Universidad de Oviedo, R., Instituto Universitario de Ciencias, y Tec- nologías Espaciales de Asturias (ICTEA), Oviedo, Alvarez Gonzalez, Spain B., Cuevas, J., Erice, C., Fernandez Menendez, J., Folgueras, S., Gonzalez Caballero, I., González Fernández, J. R., Palencia Cortezon, E., Álvarez, C. Ramón., Rodríguez Bouza, V., Soto Rodríguez, A., Trapote, A., Trevisani, N., Vico Villalba Instituto de Física de Cantabria (IFCA), C., CSIC-Universidad de Cantabria, Santander, Brochero Cifuentes, Spain J. A., Cabrillo, I. J., Calderon, A., Curras, E., Duarte Campderros, J., Fernandez, M., Fernandez Madrazo, C., Fernández Manteca, P. J., Alonso, A. García., Gomez, G., Gonzalez Sanchez, J., Jaramillo Echeverria, R. W., Martinez Rivero, C., Martinez Ruiz del Arbol, P., Matorras, F., Matorras Cuevas, P., Moya, D., Piedra Gomez, J., Prieels, C., Rodrigo, T., Ruiz-Jimeno, A., Scodellaro, L., Vila, I., Virto, A. L., Vizan Garcia University of Colombo, J. M., Colombo, Jayananda, Sri Lanka M. K., Kailasapathy63, B., Sonnadara, D. U. J., Wickra- marathna University of Ruhuna, D. D. C., Matara, Dharmaratna, Sri Lanka W. G. D., Liyanage, K., Perera, N., Wickramage CERN, N., European Organization for Nuclear Research, Geneva, Aarrestad, Switzer- land T. K., Abbaneo, D., Albert, E., Alimena, J., Auffray, E., Auzinger, G., Baechler, J., Baillon†, P., Barinoff, M., Barney, D., Batista Lopes, J., Bendavid, J., Bergamin, G., Bianco, M., Blanchot, G., Bocci, A., Boyer, F., Camporesi, T., Capeans Garrido, M., Caratelli, A., Carnesecchi, R., Ceresa, D., Cerminara, G., Chernyavskaya, N., Chhibra, S. S., Chris- tiansen, J., Cichy, K., Cipriani, M., Cristella, L., D’Enterria, D., Dabrowski, A., Daguin, J., David, A., De Roeck, A., Defranchis, M. M., Deile, M., Detraz, S., Dobson, M., Dudek, M., Dunser, M., Dupont, N., Elliott-Peisert, A., Emriskova, N., Fallavollita64, F., Fasanella, D., Figueiredo De Sá Sousa De Almeida, J. P., Filenius, A., Florent, A., Frank, N., Franzoni, G., French, T., Funk, W., Giani, S., Gigi, D., Gill, K., Glege, F., Gouskos, L., Haranko, M., Hegeman, J., Hollos, A. E., Hugo, G., Innocente, V., James, T., Janot, P., Kaplon, J., Kaspar, J., Kerekes, Z., Kieseler, J., Kloukinas, K., Komm, M., Koss, N., Kottelat, L. J., Kovács, M. I., Kratochwil, N., La Rosa, A., Lange, C., Laurila, S., Lecoq, P., Lenoir, P., Lintuluoto, A., Long, K., Loos, R., Lourenço, C., Maier, B., Malgeri, L., Mallios, S., Mannelli, M., Marchioro, A., Marini, A. C., Mateos Domínguez, I., Meijers, F., Mersi, S., Meschi, E., Michelis, S., Millet, A., Moortgat, F., Mulders, M., Onnela, A., Orfanelli, S., Orsini, L., Pakulski, T., Pantaleo, F., Pape, L., Perez, A., Perez, E., Perez Gomez, F., Pernot, J. F., Peruzzi, M., Petagna, P., Petrilli, A., Petrucciani, G., Pfeiffer, A., Piazza, Q., Pierini, M., Piparo, D., Pitt, M., Postema, H., Qu, H., Quast, T., Rabady, D., Racz, A., Reales Gutiérrez, G., Rieger, M., Rose, P., Rovere, M., Sakulin, H., Salfeld-Nebgen, J., Scarfi, S., Schäfer, C., Schwick, C., Selvaggi, M., Silva, P., Sinani, M., Snoeys, W., Sphicas65, P., Summers, S., Tatar, K., Tavares Rego, R., Tavolaro, V. R., Treille, D., Tropea, P., Troska, J., Tsirou, A., Van Onsem, G. P., Vasey, F., Vichoudis, P., Wanczyk66, J., Wozniak, K. A., Zeuner Paul Scherrer Institut, W. D., Villigen, Bertl†, Switzerland W., Caminada67, L., Ebrahimi, A., Erdmann, W., Horisberger, R., Ingram, Q., Kaestli, H. C., Kotlinski, D., Langenegger, U., Meier, B., Missiroli67, M., Noehte67, L., Rohe, T., Streuli ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), S., Zurich, Androsov66, Switzerland K., Backhaus, M., Becker, R., Berger, P., Calandri, A., Da Silva Di Calafiori, D. R., De Cosa, A., Dissertori, G., Dittmar, M., Djambazov, L., Donegà, M., Dorfer, C., Eble, F., Gedia, K., Glessgen, F., Gómez Espinosa, T. A., Grab, C., Hits, D., Lustermann, W., Lyon, A. -M., Manzoni, R. A., Marchese, L., Martin Perez, C., Meinhard, M. T., Nessi-Tedaldi, F., Niedziela, J., Pauss, F., Perovic, V., Pigazzini, S., Ratti, M. G., Reichmann, M., Reissel, C., Reitenspiess, T., Ristic, B., Roser, U., Ruini, D., Sanz Becerra, D. A., Soerensen, J., Stampf, V., Steggemann66, J., Wallny, R., Zhu Universität Zürich, D. H., Amsler68, Switzerland C., Bärtschi, P., Bösiger, K., Botta, C., Brzhechko, D., Canelli, M. F., Cormier, K., De Wit, A., Del Burgo, R., Heikkilä, J. K., Huwiler, M., Jin, W., Jofrehei, A., Kilminster, B., Leontsinis, S., Liechti, S. P., Macchi- olo, A., Maier, R., Meiring, P., Mikuni, V. M., Molinatti, U., Neutelings, I., Reimers, A., Robmann, P., Sanchez Cruz, S., Schweiger, K., Takahashi, Y., Wolf National Central University, D., Chung-Li, Adloff69, Taiwan C., Kuo, C. M., Lin, W., Roy, A., Sarkar39, T., Yu National Taiwan University (NTU), S. S., Taipei, Ceard, Taiwan L., Chao, Y., Chen, K. F., Chen, P. H., Hou, W. -S., Y. y., Li, R. -S., Lu, Paganis, E., Psallidas, A., Steen, A., H. y., Wu, Yazgan, E., Yu Chulalongkorn University, P. r., Bangkok, Asavapibhop, Thailand B., Asawatangtrakuldee, C., Srimanobhas Çukurova University, N., Physics, Department, Science and Art Faculty, Adana, Boran, Turkey F., Damarseckin70, S., Demiroglu, Z. S., Dolek, F., Dumanoglu71, I., Eskut, E., Guler72, Y., Gurpinar Guler72, E., Isik, C., Kara, O., Kayis Topaksu, A., Kiminsu, U., Onengut, G., Ozdemir73, K., Polatoz, A., Simsek, A. E., Tali74, B., Tok, U. G., Turkcapar, S., Zorbakir Middle East Technical University, I. S., Ankara, Isildak75, Turkey B., Karapinar76, G., Ocalan77, K., Yalvac78 Bogazici University, M., Istanbul, Akgun, Turkey B., Atakisi, I. O., Gülmez, E., Kaya78, M., Kaya80, O., Özçelik, Ö., Tekten81, S., and Methods in Physics Research, E. A. Yetkin82 41 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Istanbul Technical University, Cakir, Turkey A., Cankocak71, K., Komurcu, Y., Sen83 Istanbul University, S., Cerci74, Turkey S., Hos84, I., Kaynak, B., Ozkorucuklu, S., Sunar Cerci74, Zorbilmez D., Cannaert, C. E., Chertok, M., Conway, J., Cox, P. T., Erbacher, R., Haza, G., Hemer, D., Jensen, F., Kukral, O., Lander, R., Mulhearn, M., Pellett, D., Regnery, B., Taylor, D., Thomson, J., Wei, W., Welton, T., Yao, Y., Zhang University of California, F., Los, Angeles, California, Bachtis, USA M., Cousins, R., Datta, A., Hamilton, D., Hauser, J., Ignatenko, M., Iqbal, M. A., Lam, T., Nash, W. A., Regnard, S., Saltzberg, D., Stone, B., Valuev University of California, V., Riverside, Riverside, Burt, USA K., Chen, Y., Clare, R., Gary, J. W., Gordon, M., Hanson, G., Karapostoli, G., Long, O. R., Manganelli, N., Olmedo Negrete, M., Si, W., Wimpenny, S., Zhang University of California, Y., San, Diego, Jolla, La, Branson, USA J. G., Chang, P., Cittolin, S., Cooperstein, S., Deelen, N., Diaz, D., Duarte, J., Gerosa, R., Giannini, L., Gilbert, D., Guiang, J., Kansal, R., Krutelyov, V., Lee, R., Letts, J., Masciovecchio, M., Pieri, M., Sathia Narayanan, B. V., Sharma, V., Tadel, M., Vartak, A., Wurthwein, F., Xiang, Y., Yagil University of California, A., Santa Barbara, - Department of Physics, Santa, Barbara, Amin, USA N., Campagnari, C., Citron, M., Dorsett, A., Dutta, V., Incandela, J., Kilpatrick, M., Kyre, S., Marsh, B., Mei, H., Oshiro, M., Quinnan, M., Richman, J., Sarica, U., Setti, F., Sheplock, J., Stuart, D., Wang California Institute of Technology, S., Pasadena, California, Bornheim, USA A., Cerri, O., Dutta, I., Lawhorn, J. M., Lu, N., Mao, J., Newman, H. B., Nguyen, T. Q., Spiropulu, M., Vlimant, J. R., Wang, C., Xie, S., Zhang, Z., Zhu Carnegie Mellon University, R. Y., Pittsburgh, Pennsylvania, Alison, USA J., An, S., Andrews, M. B., Bryant, P., Ferguson, T., Harilal, A., Liu, C., Mudholkar, T., Paulini, M., Sanchez, A., Terrill University of Colorado Boulder, W., Boulder, Colorado, Cumalat, USA J. P., Ford, W. T., Hassani, A., Macdonald, E., Patel, R., Perloff, A., Savard, C., Stenson, K., Ulmer, K. A., Wagner Cornell University, S. R., Ithaca, New, York, Alexander, USA J., Bright-Thonney, S., Cheng, Y., Cranshaw, D. J., Fan, J., Hogan, S., Lantz, S., Monroy, J., Padilla Fuentes, Y., Patterson, J. R., Quach, D., Reichert, J., Reid, M., Riley, D., Ryd, A., Smolenski, K., Strohman, C., Sun, W., Thom, J., Wittich, P., Zou Fermi National Accelerator Laboratory, R., Batavia, Illinois, Albrow, USA M., Alyari, M., Apollinari, G., Apresyan, A., Apyan, A., Bakshi, A., Banerjee, S., Bauerdick, L. A. T., Berry, D., Berryhill, J., Bhat, P. C., Burkett, K., Butler, D., Butler, J. N., Canepa, A., Cerati, G. B., Cheung, H. W. K., Chlebana, F., Cremonesi, M., Derylo, G., Di Petrillo, K. F., Dickinson, J., Elvira, V. D., Feng, Y., Freeman, J., Gecse, Z., Ghosh, A., Gingu, C., Gonzalez, H., Gray, L., Green, D., Grunendahl, S., Gutsche, O., Harris, R. M., Heller, R., Herwig, T. C., Hirschauer, J., Jayatilaka, B., Jindariani, S., Johnson, M., Joshi, U., Klabbers, P., Klijnsma, T., Klima, B., Kwok, K. H. M., Lammel, S., Lei, C. M., Lincoln, D., Lipton, R., Liu, T., Madrid, C., Maeshima, K., Mantilla, C., Mason, D., Mcbride, P., Merkel, P., Mrenna, S., Nahn, S., Ngadiuba, J., O’Dell, V., Papadimitriou, V., Pedro, K., Pena59, C., Prokofyev, O., Ravera, F., Reinsvold Hall, A., Ristori, L., Sexton-Kennedy, E., Smith, N., Soha, A., Spalding, W. J., Spiegel, L., Stoynev, S., Strait, J., Taylor, L., Tkaczyk, S., Tran, N. V., Uplegger, L., Vaandering, E. W., Voirin, E., Weber University of Florida, H. A., Gainesville, Florida, Acosta, USA D., Avery, P., Bourilkov, D., Cadamuro, L., Cherepanov, V., Errico, F., Field, R. D., Guerrero, D., Joshi, B. M., Kim, M., Koenig, E., Konigs- berg, J., Korytov, A., K. H., Lo, Matchev, K., Menendez, N., Mitselmakher, G., Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Grynyov National Scientific Center, Ukraine B., Kharkov Institute of Physics and Technology, Levchuk University of Bristol, Ukraine L., Bristol, Anthony, United Kingdom D., Bhal, E., Bologna, S., Brooke, J. J., Bundock, A., Clement, E., Cussans, D., Flacher, H., Goldstein, J., Heath, G. P., Heath, H. F., Kreczko, L., Krikler, B., Paramesvaran, S., Seif El Nasr-Storey, S., Smith, V. J., Stylianou85, N., Walkingshaw Pass, K., White Rutherford Appleton Laboratory, R., Didcot, Bell, United Kingdom K. W., Belyaev86, A., Brew, C., Brown, R. M., Cockerill, D. J. A., Cooke, C., Coughlan, J. A., Ellis, K. V., Harder, K., Harper, S., Holmberg87, M. -L., Linacre, J., Manolopoulos, K., Newbold, D. M., Olaiya, E., Petyt, D., Reis, T., Schuh, T., Shepherd-Themistocleous, C. H., Tomalin, I. R., Williams Imperial College, T., London, Bainbridge, United Kingdom R., Bloch, P., Bonomally, S., Borg, J., Breeze, S., Brown, C. E., Buchmuller, O., Cepaitis, V., Chahal88, G. S., Colling, D., Dauncey, P., Davies, G., Della Negra, M., Fayer, S., Fedi, G., Hall, G., Hassanshahi, M. H., Iles, G., Langford, J., Lyons, L., Magnan, A. - M., Malik, S., Martelli, A., Monk, D. G., Nash89, J., Pesaresi, M., Raymond, D. M., Richards, A., Rose, A., Scott, E., Seez, C., Shtipliyski, A., Tapper, A., Uchida, K., Virdee18, T., Vojinovic, M., Wardle, N., Webb, S. N., Winterbottom Brunel University, D., Uxbridge, Coldham, United Kingdom K., Cole, J. E., Ghorbani, M., Khan, A., Kyberd, P., Reid, I. D., Teodorescu, L., Zahid Baylor University, S., Waco, Texas, Abdullin, USA S., Brinkerhoff, A., Caraway, B., Dittmann, J., Hatakeyama, K., Kanuganti, A. R., Mcmaster, B., Pastika, N., Saunders, M., Sawant, S., Sutantawibul, C., Wilson Catholic University of America, J., Washington, Dc, Bartek, USA R., Dominguez, A., Uniyal, R., Vargas Hernandez The University of Alabama, A. M., Tuscaloosa, Alabama, Buccilli, USA A., Cooper, S. I., Di Croce, D., Gleyzer, S. V., Henderson, C., Perez, C. U., Rumerio90, P., West Boston University, C., Boston, Massachusetts, Akpinar, USA A., Albert, A., Arcaro, D., Cosby, C., Demiragli, Z., Fontanesi, E., Gastler, D., Hazen, E., May, S., Peck, A., Rohlf, J., Salyer, K., Sperka, D., Spitzbart, D., Suarez, I., Tsatsos, A., Yuan, S., Zou Brown University, D., Providence, Rhode, Island, Benelli, USA G., Burkle, B., Coubez23, X., Cutts, D., Hadley, M., Heintz, U., Hinton, N., Hogan91, J. M., Honma, A., Korotkov, A., Kwon, T., Landsberg, G., Lau, K. T., Li, D., Lukasik, M., Luo, J., Narain, M., Pervan, N., Sagir92, S., Simpson, F., Spencer, E., Usai, E., Wong, W. Y., Yan, X., Yu, D., Zhang University of California, W., Davis, Davis, Bonilla, USA J., Brainerd, C., Breedon, R., Calderon De La Barca Sanchez, M., and Methods in Physics Research, 42 The CMS Collaboration Nuclear Inst., Muthirakalayil Madhu, A 1037 (2022) 166795 A., Rawal, N., Rosenzweig, D., Rosenzweig, S., Rotter, J., Shi, K., Sturdy, J., Yigitbasi, E., Zuo Florida State University, X., Tallahassee, Florida, Adams, USA T., Askew, A., Habibullah, R., Hagopian, V., Johnson, K. F., Khurana, R., Kolberg, T., Martinez, G., Prosper, H., Schiber, C., Viazlo, O., Yohay, R., Zhang Florida Institute of Technology, J., Melbourne, Florida, Baarmand, USA M. M., Butalla, S., Elkafrawy93, T., Hohlmann, M., Kumar Verma, R., Noonan, D., Rahmani, M., Yumiceva University of Illinois at Chicago (UIC), F., Chicago, Illinois, Adams, USA M. R., Becerril Gonzalez, H., Cavanaugh, R., Chen, X., Dittmer, S., Evdokimov, A., Evdokimov, O., Gerber, C. E., Hangal, D. A., Hofman, D. J., Merrit, A. H., Mills, C., Oh, G., Roy, T., Rudrabhatla, S., Tonjes, M. B., Varelas, N., Viinikainen, J., Wang, X., Wu, Z., Ye, Z., Yoo The University of Iowa, J., Iowa, City, Iowa, Alhusseini, USA M., Dilsiz94, K., Durgut, S., Gandrajula, R. P., Koseyan, O. K., Merlo, J. -P., Mestvirishvili95, A., Nachtman, J., Ogul96, H., Onel, Y., Penzo, A., Rude, C., Snyder, C., Tiras97 Johns Hopkins University, E., Baltimore, Maryland, Amram, USA O., Blumenfeld, B., Corcodilos, L., Davis, J., De Havenon, V., Eminizer, M., Feingold, J., Gritsan, A. V., Kang, L., Kyriacou, S., Maksi- movic, P., Martin, C., Roskes, J., Sullivan, K., Swartz, M., Vámi, T. Á., You The University of Kansas, C., Lawrence, Kansas, Abreu, USA A., Anguiano, J., Baldenegro Barrera, C., Baringer, P., Bean, A., Bylinkin, A., Flowers, Z., Isidori, T., Khalil, S., King, J., Krintiras, G., Kropivnitskaya, A., Lazarovits, M., Lindsey, C., Marquez, J., Minafra, N., Murray, M., Nickel, M., Rogan, C., Royon, C., Salvatico, R., Sanders, S., Schmitz, E., Smith, C., Tapia Takaki, J. D., Wang, Q., Warner, Z., Williams, J., Wilson Kansas State University, G., Manhattan, Kansas, Duric, USA S., Ivanov, A., Kaadze, K., Kim, D., Maravin, Y., Mitchell, T., Modak, A., Nam, K., Taylor Lawrence Livermore National Laboratory, R., Livermore, California, Rebassoo, USA F., Wright University of Maryland, D., College, Park, Maryland, Adams, USA E., Baden, A., Baron, O., Belloni, A., Eno, S. C., Hadley, N. J., Jabeen, S., Kellogg, R. G., Koeth, T., Mignerey, A. C., Nabili, S., Palmer, C., Seidel, M., Skuja, A., Wang, L., Wong Massachusetts Institute of Technology, K., Cambridge, Massachusetts, Abercrombie, USA D., Andreassi, G., Bi, R., Brandt, S., Busza, W., Cali, I. A., D’Alfonso, M., Eysermans, J., Freer, C., Gomez Ceballos, G., Goncharov, M., Harris, P., Hu, M., Klute, M., Kovalskyi, D., Krupa, J., Lee, Y. -J., Mironov, C., Paus, C., Rankin, D., Roland, C., Roland, G., Shi, Z., Stephans, G. S. F., Wang, Z., Wyslouch University of Minnesota, B., Minneapolis, Minnesota, Chatterjee, USA R. M., Evans, A., Hansen, P., Hiltbrand, J., Jain, Sh., Krohn, M., Kubota, Y., Mans, J., Revering, M., Rusack, R., Saradhy, R., Schroeder, N., Strobbe, N., Wadud University of Mississippi, M. A., Oxford, Mississippi, Acosta, USA J. G., Cremaldi, L. M., Oliveros, S., Perera, L., Summers† University of Nebraska-Lincoln, D., Lincoln, Nebraska, Avdeeva, USA E., Bloom, K., Bryson, M., Claes, D. R., Fangmeier, C., Finco, L., Golf, F., Joo, C., Kravchenko, I., Meier, F., Musich, M., Reed, I., Siado, J. E., Snow†, G. R., Tabb, W., Yan, F., Zecchinelli State University of New York at Buffalo, A. G., Buffalo, Agarwal, USA G., Bandyopadhyay, H., Hay, L., Iashvili, I., Kharchilava, A., Mclean, C., Nguyen, D., Pekkanen, J., Rappoccio, S., Williams Northeastern University, A., Alverson, USA G., Barberis, E., Haddad, Y., Hortiangtham, A., Li, J., Madi- gan, G., Marzocchi, B., Morse, D. M., Nguyen, V., Orimoto, T., Parker, A., Skinnari, L., Tishelman-Charny, A., Wamorkar, T., Wang, B., Wisecarver, A., Wood Northwestern University, D., Evanston, Illinois, Bhattacharya, USA S., Bueghly, J., Chen, Z., Gilbert, A., Gunter, T., Hahn, K. A., Liu, Y., Odell, N., Schmitt, M. H., Sung, K., Velasco University of Notre Dame, M., Notre, Dame, Indiana, Band, USA R., Bucci, R., Das, A., Dev, N., Goldouzian, R., Hildreth, M., Hurtado Anampa, K., Jessop, C., Lannon, K., Lawrence, J., Loukas, N., Lut- ton, D., Marinelli, N., Mcalister, I., Mccauley, T., Mcgrady, C., Mohrman, K., Musienko52, Y., Ruchti, R., Siddireddy, P., Townsend, A., Wayne, M., Wightman, A., Zarucki, M., Zygala The Ohio State University, L., Columbus, Ohio, Bylsma, USA B., Cardwell, B., Durkin, L. S., Francis, B., Hill, C., Nunez Ornelas, M., Wei, K., Winer, B. L., Yates Princeton University, B. R., Princeton, New, Jersey, Addesa, USA F. M., Bonham, B., Das, P., Dezoort, G., Elmer, P., Frankenthal, A., Greenberg, B., Haubrich, N., Higginbotham, S., Kalogeropoulos, A., Kopp, G., Kwan, S., Lange, D., Marlow, D., Mei, K., Ojalvo, I., Olsen, J., Stickland, D., Tully University of Puerto Rico, C., Mayaguez, Puerto, Rico, Malik, USA S., Norberg, S., Ramirez Vargas Purdue University, J. E., West, Lafayette, Bakshi, USA A. S., Barnes, V. E., Chawla, R., Das, S., Gutay, L., Jones, M., Jung, A. W., Karmarkar, S., Kondratyev, D., Koshy, A. M., Liu, M., Negro, G., Neumeister, N., Paspalaki, G., Piperov, S., Purohit, A., Schulte, J. F., Stojanovic19, M., Thieman, J., Wang, F., Xiao, R., Xie Purdue University Northwest, W., Hammond, Indiana, Dolen, USA J., Parashar Rice University, N., Houston, Texas, Baty, USA A., Decaro, M., Dildick, S., Ecklund, K. M., Freed, S., Gardner, P., Geurts, F. J. M., Li, W., Liu, H., Nussbaum, T., Padley, B. P., Redjimi, R., Shi, W., Stahl Leiton, A. G., Yang, S., Zhang, L., Zhang University of Rochester, Y., Rochester, Bodek, USA A., de Barbaro, P., Demina, R., Dulemba, J. L., Fallon, C., Ferbel, T., Galanti, M., Garcia-Bellido, A., Hindrichs, O., Khukhunaishvili, A., Ranken, E., Taus Rutgers, R., The State University of New Jersey, Piscataway, Bartz, USA E., Chiarito, B., Chou, J. P., Gandrakota, A., Gershtein, Y., Halki- adakis, E., Hart, A., Heindl, M., Karacheban26, O., Laflotte, I., Lath, A., Montalvo, R., Nash, K., Osherson, M., Salur, S., Schnetzer, S., Somalwar, S., Stone, R., Thayil, S. A., Thomas, S., Wang University of Tennessee, H., Knoxville, Tennessee, Acharya, USA H., Delannoy, A. G., Fiorendi, S., Spanier Texas A&, S., University, M, College, Station, Texas, Bouhali98, USA O., Dalchenko, M., Delgado, A., Eusebi, R., Gilmore, J., and Methods in Physics Research, T. 43 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 Huang, Kamon99, T., Kim, H., Luo, S., Malhotra, S., Mueller, R., Overton, D., Rathjens, D., Safonov Texas Tech University, A., Lubbock, Texas, Akchurin, USA N., Damgov, J., Hegde, V., Kunori, S., Lamichhane, K., Mengke, T., Muthumuni, S., Peltola, T., Volobouev, I., Whitbeck Vanderbilt University, A., Nashville, Tennessee, Appelt, USA E., D’Angelo, P., Greene, S., Gurrola, A., Johns, W., Melo, A., Ni, H., Padeken, K., Romeo, F., Sheldon, P., Tuo, S., Velkovska University of Virginia, J., Charlottesville, Virginia, Arenton, USA M. W., Cox, B., Cummings, G., Hakala, J., Hirosky, R., Joyce, M., Ledovskoy, A., Li, A., Neu, C., Perez Lara, C. E., Tannenwald, B., White, S., Wolfe Wayne State University, E., Detroit, Michigan, Poudyal University of Wisconsin - Madison, USA N., Madison, Wi, Wisconsin, Black, USA K., Bose, T., Caillol, C., Dasu, S., De Bruyn, I., Everaerts, P., Fienga, F., Galloni, C., He, H., Herndon, M., Hervé, A., Hussain, U., Lanaro, A., Loeliger, A., Loveless, R., Madhusudanan Sreekala, J., Mallampalli, A., Mohammadi, A., Pinna, D., Savin, A., Shang, V., Smith, W. H., Teague, D., Trembath-Reichert, S., Vetens 30 Also at Institute of Physics, W., Hungary 31 Also at Institute of Nuclear Research ATOMKI, Hungary 32 Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Hungary 33 Also at Wigner Research Centre for Physics, Hungary 34 Also at IIT Bhubaneswar, Bhubaneswar, India 35 Also at Institute of Physics, Khalsa College, India 36 Also at G. H. G., Punjab, India 37 Also at Shoolini University, Solan, India 38 Also at University of Hyderabad, Hyderabad, India 39 Also at University of Visva-Bharati, Santiniketan, India 40 Also at Indian Institute of Technology (IIT), India 41 Also at Sharif University of Technology, Iran 42 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran 43 Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Italy 44 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy 45 Also at Centro Siciliano di Fisica Nucleare, e di Struttura Della Materia, Catania, Italy 46 Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania 47 Also at Universita di Napoli ‘Federico II’, Napoli, Italy 48 Also at Consiglio Nazionale delle Ricerche, - Istituto Officina dei Materiali, Perugia, Italy 49 Also at Riga Technical University, Latvia 50 Also at Consejo Nacional de Ciencia, y Tecnología, Mexico 51 Also at IRFU, France 52 Also at Institute for Nuclear Research, Russia 53 Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Russia 54 Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Petersburg Polytechnic University, Uzbekistan 55 Also at St., Petersburg, St., Russia 56 Also at University of Florida, USA 57 Also at Imperial College, Lebedev Physical Institute, United Kingdom 58 Also at P. N., Russia 59 Also at California Institute of Technology, USA 60 Also at INFN Sezione di Padova, Università di Padova, Università di Trento, Trento, Italy, Padova, Italy 61 Also at Budker Institute of Nuclear Physics, Russia 62 Also at Faculty of Physics, University of Belgrade, Serbia 63 Also at Trincomalee Campus, Eastern, University, Sri, Lanka, Nilaveli, Sri Lanka 64 Also at INFN Sezione di Pavia, Università di Pavia, Italy 65 Also at National and Kapodistrian University of Athens, Greece 66 Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzer- land 67 Also at Universität Zürich, Switzerland 68 Also at Stefan Meyer Institute for Subatomic Physics, Austria 69 Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecyle-Vieux, France 70 Also at Şırnak University, Sirnak, Turkey 71 Also at Near East University, Research Center of Experimental Health Science, Turkey 72 Also at Konya Technical University, Konya, Turkey 73 Also at Piri Reis University, Turkey 74 Also at Adiyaman University, Adiyaman, Turkey 75 Also at Ozyegin University, Turkey 76 Also at Izmir Institute of Technology, Izmir, Turkey 77 Also at Necmettin Erbakan University, Turkey 78 Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey † Deceased, 1 Also at TU Wien, Wien, Austria, 2 Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt 3 Also 4 Also 5 Also 6 Also 7 Also 8 Also, 9 Also 10 Also at Nanjing Normal University Department of Physics, Nanjing, China 11 Now at The University of Iowa, USA 12 Also at Deutsches Elektronen-Synchrotron, Alikhanov of NRC ‘Kurchatov Institute’, Germany 13 Also at Institute for Theoretical and Experimental Physics named by A. I., Russia 14 Also at Joint Institute for Nuclear Research, Russia 15 Also at Cairo University, Egypt 16 Also at Suez University, Suez, Egypt 17 Now at British University in Egypt, Egypt 18 Also at CERN, Switzerland 19 Also at Purdue University, USA 20 Also at Université de Haute Alsace, Mulhouse, France 21 Also at Tbilisi State University, Georgia 22 Also at Erzincan Binali Yildirim University, Erzincan, Turkey 23 Also at RWTH Aachen University, Germany 24 Also at University of Hamburg, Germany 25 Also at Isfahan University of Technology, Iran 26 Also at Brandenburg University of Technology, Cottbus, Germany 27 Also at Forschungszentrum Julich, Juelich, Germany 28 Also at Physics Department, Assiut, University, Assiut, Egypt 29 Also at Karoly Robert Campus, Hungary at Université Libre de Bruxelles, Belgium at Universidade Estadual de Campinas, Campinas, Brazil at Federal University of Rio Grande do Sul, Porto, Alegre, Brazil at The University of the State of Amazonas, Manaus, Brazil at University of Chinese Academy of Sciences, China at Department of Physics, China at UFMS, Nova, Andradina, and Methods in Physics Research, Brazil 44 The CMS Collaboration Nuclear Inst., A 1037 (2022) 166795 79 Also at Marmara University, Turkey 80 Also at Milli Savunma University, Turkey 81 Also at Kafkas University, Kars, Turkey 82 Also at Istanbul Bilgi University, Turkey 83 Also at Hacettepe University, Turkey 84 Also at Istanbul University, - Cerrahpasa, Turkey 85 Also at Vrije Universiteit Brussel, Belgium 86 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom 87 Also at Rutherford Appleton Laboratory, United Kingdom 88 Also at IPPP Durham University, Durham, United Kingdom 89 Also at Monash University, Clayton, Australia 90 Also at Universitá di Torino, Torino, Italy 91 Also at Bethel University, Paul, St., Minneapolis, USA 92 Also at Karamanoğlu Mehmetbey University, Karaman, Turkey 93 Also at Ain Shams University, Egypt 94 Also at Bingol University, Bingol, Turkey 95 Also at Georgian Technical University, Georgia 96 Also at Sinop University, Sinop, Turkey 97 Also at Erciyes University, Kayseri, Turkey 98 Also at Texas A, M University at Qatar, Doha, Qatar 99 Also at Kyungpook National University, Daegu, Korea, Universidad de Cantabria, CMS Collaboration, The CMS Collaboration, Department of Physics, Helsinki Institute of Physics, University of Zurich, Belforte, S., Candelise, V., Casarsa, M., Cossutti, F., DA ROLD, A., DELLA RICCA, G., Sorrentino, G., Vazzoler, F., ET AL (the CMS, Collaboration), Tumasyan, A, Adam, W, Andrejkovic, JW, Bergauer, T, Bloch, D, Chatterjee, S, Dragicevic, M, Del Valle, AE, Fruwirth, R, Hinger, V, Jeitler, M, Krammer, N, Lechner, L, Liko, D, Mikulec, I, Paulitsch, P, Pitters, FM, Schieck, J, Schofbeck, R, Schwarz, D, Steininger, H, Templ, S, Waltenberger, W, Wulz, E, Chekhovsky, V, Litomin, A, Makarenko, V, Beaumont, W, Darwish, MR, De Wolf, EA, Janssen, T, Kello, T, Lelek, A, Sfar, HR, Van Mechelen, P, Van Putte, S, Van Remortel, N, Blekman, F, Bols, ES, D'Hondt, J, Delcourt, M, El Faham, H, Lowette, S, Moortgat, S, Morton, A, Muller, D, Sahasransu, AR, Tavernier, S, Van Doninck, W, Van Mulders, P, Allard, Y, Beghin, D, Bilin, B, Clerbaux, B, De Lentdecker, G, Deng, W, Favart, L, Grebenyuk, A, Hohov, D, Kalsi, AK, Khalilzadeh, A, Lee, K, Mahdavikhorrami, M, Makarenko, I, Moureaux, L, Petre, L, Popov, A, Postiau, N, Robert, F, Song, Z, Starling, E, Thomas, L, Vanden Bemden, M, Vander Velde, C, Vanlaer, P, Vannerom, D, Wezenbeek, L, Yang, Y, Cornelis, T, Dobur, D, Knolle, J, Lambrecht, L, Mestdach, G, Niedziela, M, Roskas, C, Samalan, A, Skovpen, K, Tytgat, M, Vermassen, B, Vit, M, Benecke, A, Bethani, A, Bruno, G, Bury, F, Caputo, C, David, P, Deblaere, A, Delaere, C, Donertas, IS, Giammanco, A, Jaffel, K, Jain, S, Lemaitre, V, Mondal, K, Prisciandaro, J, Szilasi, N, Taliercio, A, Teklishyn, M, Tran, TT, Vischia, P, Wertz, S, Alves, GA, Hensel, C, Moraes, A, Alda, WL, Pereira, MAG, Ferreira, MB, Malbouisson, HB, Carvalho, W, Chinellato, J, Da Costa, EM, Da Silveira, GG, Damiao, DD, De Souza, SF, Figueiredo, DM, Herrera, CM, Amarilo, KM, Mundim, L, Nogima, H, Teles, PR, Santoro, A, Do Amaral, SMS, Sznajder, A, Thiel, M, De Araujo, FTD, Pereira, AV, Bernardes, CA, Calligaris, L, Tomei, TRFP, Gregores, EM, Lemos, DS, Mercadante, PG, Novaes, SF, Padula, SS, Aleksandrov, A, Antchev, G, Hadjiiska, R, Iaydjiev, P, Misheva, M, Rodozov, M, Shopova, M, Sultanov, G, Dimitrov, A, Ivanov, T, Litov, L, Pavlov, B, Petkov, P, Petrov, A, Cheng, T, Javaid, T, Mittal, M, Wang, H, Yuan, L, Ahmad, M, Bauer, G, Dozen, C, Hu, Z, Martins, J, Wang, Y, Yi, K, Chapon, E, Chen, GM, Chen, HS, Chen, M, Iemmi, F, Kapoor, A, Leggat, D, Liao, H, Liu, A, Milosevic, V, Monti, F, Sharma, R, Tao, J, Thomas-Wilsker, J, Wang, J, Zhang, H, Zhao, J, Agapitos, A, An, Y, Ban, Y, Chen, C, Levin, A, Li, Q, Lyu, X, Mao, Y, Qian, SJ, Wang, D, Wang, Q, Lu, M, You, Z, Gao, X, Okawa, H, Lin, Z, Xiao, M, Avila, C, Cabrera, A, Florez, C, Fraga, J, Guisao, JM, Ramirez, F, Alvarez, JDR, Gonzalez, CAS, Giljanovic, D, Godinovic, N, Lelas, D, Puljak, I, Antunovic, Z, Kovac, M, Sculac, T, Brigljevic, V, Ferencek, D, Majumder, D, Mishra, S, Roguljic, M, Starodumov, A, Susa, T, Attikis, A, Christoforou, K, Erodotou, E, Ioannou, A, Kole, G, Kolosova, M, Konstantinou, S, Mousa, J, Nicolaou, C, Ptochos, F, Razis, PA, Rykaczewski, H, Saka, H, Finger, M, Kveton, A, Ayala, E, Jarrin, EC, Abdalla, H, Assran, Y, Mahmoud, MA, Mohammed, Y, Ahmed, I, Bhowmik, S, Dewanjee, RK, Ehataht, K, Kadastik, M, Nandan, S, Nielsen, C, Pata, J, Raidal, M, Tani, L, Veelken, C, Eerola, P, Forthomme, L, Kirschenmann, H, Osterberg, K, Voutilainen, M, Bharthuar, S, Brucken, E, Garcia, F, Havukainen, J, Kim, MS, Kinnunen, R, Lampen, T, Lassila-Perini, K, Lehti, S, Linden, T, Lotti, M, Martikainen, L, Myllymaki, M, Ott, J, Siikonen, H, Tuominen, E, Tuominiemi, J, Luukka, P, Petrow, H, Tuuva, T, Amendola, C, Besancon, M, Couderc, F, Dejardin, M, Denegri, D, Faure, JL, Ferri, F, Ganjour, S, Givernaud, A, Gras, P, de Monchenault, GH, Jarry, P, Lenzi, B, Locci, E, Malcles, J, Rander, J, Rosowsky, A, Sahin, MO, Savoy-Navarro, A, Titov, M, Yu, GB, Ahuja, S, Beaudette, F, Bonanomi, M, Perraguin, AB, Busson, P, Cappati, A, Charlot, C, Davignon, O, Diab, B, Falmagne, G, Ghosh, S, de Cassagnac, RG, Hakimi, A, Kucher, I, Motta, J, Nguyen, M, Ochando, C, Paganini, P, Rembser, J, Salerno, R, Sarkar, U, Sauvan, JB, Sirois, Y, Tarabini, A, Zabi, A, Zghiche, A, Agram, L, Andrea, J, Apparu, D, Bonnin, C, Bourgatte, G, Brom, JM, Chabert, EC, Charles, L, Collard, C, Dangelser, E, Darej, D, Fontaine, C, Goerlach, U, Grimault, C, Gross, L, Haas, C, Krauth, M, Le Bihan, AC, Nibigira, E, Ollivier-henry, N, Jimenez, ES, Van Hove, P, Asilar, E, Baulieu, G, Beauceron, S, Bernet, C, Boudoul, G, Camen, C, Caponetto, L, Carle, A, Chanon, N, Contardo, D, Dene, P, Depasse, P, Dupasquier, T, El Mamouni, H, Fay, J, Galbit, G, Gascon, S, Gouzevitch, M, Ille, B, Laktineh, IB, Lattaud, H, Lesauvage, A, Lethuillier, M, Lumb, N, Mirabito, L, Nodari, B, Perries, S, Shchablo, K, Sordini, V, Torterotot, L, Touquet, G, Vander Donckt, M, Viret, S, Lomidze, I, Toriashvili, T, Tsamalaidze, Z, Autermann, C, Botta, V, Feld, L, Karpinski, W, Kiesel, MK, Klein, K, Lipinski, M, Louis, D, Meuser, D, Pauls, A, Pierschel, G, Rauch, MP, Rowert, N, Schomakers, C, Schulz, J, Teroerde, M, Wlochal, M, Dodonova, A, Eliseev, D, Erdmann, M, Fackeldey, P, Fischer, B, Hebbeker, T, Hoepfner, K, Ivone, F, Mastrolorenzo, L, Merschmeyer, M, Meyer, A, Mocellin, G, Mondal, S, Mukherjee, S, Noll, D, Novak, A, Pook, T, Pozdnyakov, A, Rath, Y, Reithler, H, Roemer, J, Schmidt, A, Schuler, SC, Sharma, A, Vigilante, L, Wiedenbeck, S, Zaleski, S, Dziwok, C, Flugge, G, Ahmad, WH, Hlushchenko, O, Kress, T, Nowack, A, Pistone, C, Pooth, O, Roy, D, Sert, H, Stahl, A, Ziemons, T, Zotz, A, Petersen, HA, Martin, MA, Asmuss, P, Baxter, S, Bayatmakou, M, Behnke, O, Martinez, AB, Bertsche, D, Bhattacharya, S, Bin Anuar, AA, Borras, K, Brunner, D, Campbell, A, Cardini, A, Cheng, C, Colombina, F, Rodriguez, SC, Silva, GC, Danilov, V, De Silva, M, Didukh, L, Damiani, DD, Eckerlin, G, Eckstein, D, Banos, LIE, Filatov, O, Gallo, E, Geiser, A, Giraldi, A, Luyando, JMG, Grohsjean, A, Guthoff, M, Jafari, A, Jomhari, NZ, Jung, H, Kasem, A, Kasemann, M, Kaveh, H, Kleinwort, C, Krucker, D, Lange, W, Lidrych, J, Lipka, K, Lohmann, W, Mankel, R, Maser, H, Melzer-Pellmann, IA, Morentin, MM, Metwally, J, Meyer, AB, Meyer, M, Mittag, G, Mnich, J, Muhl, C, Mussgiller, A, Otarid, Y, Adan, DP, Pitzl, D, Raspereza, A, Reichelt, O, Lopes, BR, Rubenach, J, Saggio, A, Saibel, A, Savitskyi, M, Scham, M, Scheurer, V, Schutze, P, Schwanenberger, C, Shchedrolosiev, M, Shevchenko, R, Ricardo, RES, Stafford, D, Stever, R, Tonon, N, Van De Klundert, M, Velyka, A, Walsh, R, Walter, D, Wen, Y, Wichmann, K, Wiens, L, Wissing, C, Wuchterl, S, Zuber, A, Aggleton, R, Albrecht, S, Bein, S, Benato, L, Biskop, H, Buhmann, P, Connor, P, De Leo, K, Eich, M, Feindt, F, Frohlich, A, Garbers, C, Garutti, E, Gunnellini, P, Hajheidari, M, Haller, J, Hinzmann, A, Jabusch, HR, Kasieczka, G, Klanner, R, Kogler, R, Kramer, T, Kutzner, V, Lange, J, Lange, T, Lobanov, A, Malara, A, Martens, S, Mrowietz, M, Niemeyer, CEN, Nigamova, A, Nissan, Y, Rodriguez, KJP, Rieger, O, Schleper, P, Schroder, M, Schwandt, J, Sonneveld, J, Stadie, H, Steinbruck, G, Tews, A, Vormwald, B, Wellhausen, J, Zoi, I, Ardila-Perez, LE, Balzer, M, Barvich, T, Bechtel, J, Blank, T, Brommer, S, Burkart, M, Butz, E, Caselle, M, Caspart, R, Chwalek, T, De Boer, W, Dierlamm, A, Droll, A, El Morabit, K, Faltermann, N, Giffels, M, Gosewisch, JO, Gottmann, A, Hartmann, F, Heidecker, C, Husemann, U, Keicher, P, Koppenhofer, R, Maier, S, Metzler, M, Mitra, S, Muller, T, Neufeld, M, Neukum, M, Nurnberg, A, Quast, G, Rabbertz, K, Rauser, J, Sander, O, Savoiu, D, Schell, D, Schnepf, M, Seith, D, Shvetsov, I, Simonis, HJ, Stanulla, J, Steck, P, Ulrich, R, Van der Linden, J, Von Cube, RF, Wassmer, M, Weber, M, Weddigen, A, Wieland, S, Wittig, F, Wolf, R, Wozniewski, S, Wunsch, S, Anagnostou, G, Assiouras, P, Daskalakis, G, Geralis, T, Kazas, I, Kyriakis, A, Loukas, D, Papadopoulos, A, Stakia, A, Diamantopoulou, M, Karasavvas, D, Karathanasis, G, Kontaxakis, P, Koraka, CK, Manousakis-Katsikakis, A, Panagiotou, A, Papavergou, I, Saoulidou, N, Theofilatos, K, Tziaferi, E, Vellidis, K, Vourliotis, E, Bakas, G, Kousouris, K, Papakrivopoulos, I, Tsipolitis, G, Zacharopoulou, A, Zografos, A, Adamidis, K, Bestintzanos, I, Evangelou, I, Foudas, C, Gianneios, P, Katsoulis, P, Kokkas, P, Manthos, N, Papadopoulos, I, Strologas, J, Csanad, M, Farkas, K, Gadallah, MMA, Major, P, Mandal, K, Mehta, A, Pasztor, G, Suranyi, O, Veres, GI, Balazs, T, Bencze, G, Hajdu, C, Horvath, D, Marton, K, Sikler, F, Veszpremi, V, Czellar, S, Karancsi, J, Molnar, J, Szillasi, Z, Teyssier, D, Raics, P, Trocsanyi, ZL, Ujvari, B, Csorgo, T, Nemes, F, Novak, T, Choudhury, S, Komaragiri, JR, Kumar, D, Panwar, L, Tiwari, PC, Bahinipati, S, Das, AK, Kar, C, Mal, P, Mishra, T, Mohanty, R, Bindhu, VKMN, Nayak, A, Saha, P, Sur, N, Swain, SK, Vats, D, Bansal, S, Beri, SB, Bhatnagar, V, Chaudhary, G, Chauhan, S, Dhingra, N, Gupta, R, Kaur, A, Kaur, M, Kaur, S, Kumari, P, Meena, M, Sandeep, K, Singh, JB, Virdi, AK, Ahmed, A, Bhardwaj, A, Choudhary, BC, Gola, M, Jain, C, Jain, G, Keshri, S, Kumar, A, Naimuddin, M, Priyanka, P, Ranjan, K, Saumya, S, Shah, A, Bharti, M, Bhattacharya, R, Bhowmik, D, Dutta, S, Gomber, B, Maity, M, Palit, P, Rout, PK, Saha, G, Sahu, B, Sarkar, S, Sharan, M, Singh, B, Thakur, S, Behera, PK, Behera, SC, Kalbhor, P, Muhammad, A, Pradhan, R, Pujahari, PR, Sikdar, AK, Dutta, D, Jha, V, Kumar, V, Mishra, DK, Naskar, K, Netrakanti, PK, Pant, LM, Shukla, P, Aziz, T, Dugad, S, Kumar, M, Banerjee, S, Chudasama, R, Guchait, M, Karmakar, S, Kumar, S, Majumder, G, Mazumdar, K, Alpana, K, Dube, S, Kansal, B, Laha, A, Pandey, S, Rane, A, Rastogi, A, Sharma, S, Bakhshiansohi, H, Khazaie, E, Zeinali, M, Abbas, SM, Chenarani, S, Etesami, SM, Khakzad, M, Najafabadi, MM, Grunewald, M, Abbrescia, M, Aly, R, Aruta, C, Cariola, P, Colaleo, A, Creanza, D, De Filippis, N, De Palma, M, De Robertis, G, Di Florio, A, Di Pilato, A, Elmetenawee, W, Fiore, L, Gelmi, A, Gul, M, Iaselli, G, Ince, M, Lezki, S, Loddo, F, Maggi, G, Maggi, M, Margjeka, I, Martiradonna, S, Mastrapasqua, V, Merlin, JA, Mongelli, A, My, S, Nuzzo, S, Pellecchia, A, Pompili, A, Pugliese, G, Ramos, D, Ranieri, A, Selvaggi, G, Silvestris, L, Simone, FM, Venditti, R, Verwilligen, P, Abbiendi, G, Battilana, C, Bonacorsi, D, Borgonovi, L, Brigliadori, L, Campanini, R, Capiluppi, P, Castro, A, Cavallo, FR, Cuffiani, M, Dallavalle, GM, Diotalevi, T, Fabbri, F, Fanfani, A, Giacomelli, P, Giommi, L, Grandi, C, Guiducci, L, Lo Meoa, S, Lunerti, L, Marcellini, S, Masetti, G, Navarria, FL, Perrotta, A, Primavera, F, Rossi, AM, Rovelli, T, Siroli, GP, Albergo, S, Costa, S, Di Mattia, A, Potenza, R, Saizu, MA, Tricomi, A, Tuve, C, Barbagli, G, Brianzi, M, Cassese, A, Ceccarelli, R, Ciaranfi, R, Ciulli, V, Civinini, C, D'Alessandro, R, Fiori, F, Focardi, E, Latino, G, Lenzi, P, Lizzo, M, Meschini, M, Paoletti, S, Seidita, R, Sguazzoni, G, Viliani, L, Benussi, L, Bianco, S, Piccolo, D, Bozzo, M, Ferro, F, Mulargia, R, Robutti, E, Tosi, S, Benaglia, A, Boldrini, G, Brivio, F, Cetorelli, F, De Guio, F, Dinardo, ME, Dini, P, Gennai, S, Ghezzi, A, Govoni, P, Guzzi, L, Lucchini, MT, Malberti, M, Malvezzi, S, Massironi, A, Menasce, D, Moroni, L, Paganoni, M, Pedrini, D, Pinolini, BS, Ragazzi, S, Redaelli, N, de Fatis, TT, Valsecchi, D, Zuolo, D, Marconi, G, Buontempo, S, Carnevali, F, Cavallo, N, De Iorio, A, Fabozzi, F, Iorio, AOM, Lista, L, Meola, S, Paolucci, P, Rossi, B, Sciacca, C, Azzi, P, Bacchetta, N, Bisello, D, Bortignon, P, Bragagnolo, A, Carlin, R, Checchia, P, Dorigo, T, Dosselli, U, Gasparini, F, Gasparini, U, Grosso, G, Hoh, SY, Layer, L, Lusiani, E, Margoni, M, Meneguzzo, AT, Pazzini, J, Ronchese, P, Rossin, R, Simonetto, F, Strong, G, Tosi, M, Yarar, H, Zanetti, M, Zotto, P, Zucchetta, A, Zumerle, G, Aime, C, Braghieri, A, Calzaferri, S, Fiorina, D, Gaioni, L, Manghisoni, M, Montagna, P, Ratti, L, Ratti, SP, Re, V, Riccardi, C, Riceputi, E, Salvini, P, Traversi, G, Vai, I, Vitulo, P, Asenov, P, Baldinelli, G, Bianchi, F, Bilei, GM, Bizzaglia, S, Checcucci, B, Ciangottini, D, Fano, L, Farnesini, L, Ionica, M, Lariccia, P, Magherini, M, Mantovani, G, Mariani, V, Menichelli, M, Morozzi, A, Moscatelli, F, Passeri, D, Piccinelli, A, Placidi, P, Presilla, M, Rossi, A, Santocchia, A, Spiga, D, Storchi, L, Tedeschi, T, Turrioni, C, Azzurri, P, Bagliesi, G, Basti, A, Beccherle, R, Bertacchi, V, Bianchini, L, Boccali, T, Bosi, F, Bossini, E, Castaldi, R, Ciocci, MA, D'Amante, V, Dell'Orso, R, Di Domenico, MR, Donato, S, Giassi, A, Grippo, MT, Ligabue, F, Magazzu, G, Manca, E, Mandorli, G, Massa, M, Mazzoni, E, Messineo, A, Moggi, A, Morsani, F, Palla, F, Parolia, S, Raffaelli, F, Ramirez-Sanchez, G, Rizzi, A, Rolandi, G, Chowdhury, SR, Scribano, A, Shafiei, N, Spagnolo, P, Tenchini, R, Tonelli, G, Turini, N, Venturi, A, Verdini, PG, Barria, P, Campana, M, Cavallari, F, Del Re, D, Di Marco, E, Diemoz, M, Longo, E, Meridiani, P, Organtini, G, Pandolfi, F, Paramatti, R, Quaranta, C, Rahatlou, S, Rovelli, C, Santanastasio, F, Soffi, L, Tramontano, R, Amapane, N, Arcidiacono, R, Argiro, S, Arneodo, M, Bartosik, N, Bellan, R, Bellora, A, Antequera, JB, Biino, C, Cartiglia, N, Coli, S, Cometti, S, Costa, M, Covarelli, R, Dellacasa, G, Demaria, N, Garbolino, S, Grippo, M, Kiani, B, Legger, F, Mariotti, C, Maselli, S, Migliore, E, Monteil, E, Monteno, M, Obertino, MM, Ortona, G, Pacher, L, Pastrone, N, Pelliccioni, M, Angioni, GLP, Rivetti, A, Ruspa, M, Shchelina, K, Siviero, F, Sola, V, Solano, A, Soldi, D, Staiano, A, Tornago, M, Trocino, D, Vagnerini, A, Belforte, S, Candelise, V, Casarsa, M, Cossutti, F, Da Rold, A, Della Ricca, G, Sorrentino, G, Vazzoler, F, Dogra, S, Huh, C, Kim, B, Kim, DH, Kim, GN, Kim, J, Lee, J, Lee, SW, Moon, CS, Oh, YD, Pak, SI, Radburn-Smith, BC, Sekmen, S, Yang, YC, Kim, H, Moon, DH, Francois, B, Kim, TJ, Park, J, Cho, S, Choi, S, Go, Y, Hong, B, Lee, KS, Lim, J, Park, SK, Yoo, J, Goh, J, Gurtu, A, Kim, HS, Kim, Y, Almond, J, Bhyun, JH, Choi, J, Jeon, S, Kim, JS, Ko, S, Kwon, H, Lee, H, Lee, S, Oh, BH, Oh, M, Oh, SB, Seo, H, Yang, UK, Yoon, I, Jang, W, Kang, DY, Kang, Y, Kim, S, Ko, B, Lee, JSH, Lee, Y, Park, IC, Roh, Y, Ryu, MS, Song, D, Watson, IJ, Yang, S, Ha, S, Yoo, HD, Choi, M, Yu, I, Beyrouthy, T, Maghrbi, Y, Veckalns, V, Ambrozas, M, De Oliveira, ACA, Juodagalvis, A, Rinkevicius, A, Tamulaitis, G, Bin Norjoharuddeen, N, Abdullah, WATW, Yusli, MN, Zolkapli, Z, Benitez, JF, Hernandez, AC, Coello, ML, Quijada, JAM, Sehrawat, A, Palomo, LV, Ayala, G, Castilla-Valdez, H, De la Cruz-Burelo, E, Heredia-De la Cruz, I, LopezFernandez, R, Herrera, CAM, Navarro, DAP, Hernandez, AS, Moreno, SC, Barrera, CO, Valencia, FV, Pedraza, I, Ibarguen, HAS, Estrada, CU, Mijuskovic, J, Raicevic, N, Krofcheck, D, Butler, PH, Ahmad, A, Asghar, MI, Awais, A, Awan, MIM, Hoorani, HR, Khan, WA, Shah, MA, Shoaib, M, Waqas, M, Avati, V, Grzanka, L, Malawski, M, Bialkowska, H, Bluj, M, Boimska, B, Gorski, M, Kazana, M, Szleper, M, Zalewski, P, Bunkowski, K, Doroba, K, Kalinowski, A, Konecki, M, Krolikowski, J, Araujo, M, Bargassa, P, Bastos, D, Boletti, A, Faccioli, P, Gallinaro, M, Hollar, J, Leonardo, N, Niknejad, T, Pisano, M, Seixas, J, Toldaiev, O, Varela, J, Afanasiev, S, Budkouski, D, Golutvin, I, Gorbunov, I, Karjavine, V, Korenkov, V, Lanev, A, Malakhov, A, Matveev, V, Palichik, V, Perelygin, V, Savina, M, Seitova, D, Shalaev, V, Shmatov, S, Shulha, S, Smirnov, V, Teryaev, O, Voytishin, N, Yuldashev, BS, Zarubin, A, Zhizhin, I, Gavrilov, G, Golovtcov, V, Ivanov, Y, Kim, V, Kuznetsova, E, Murzin, V, Oreshkin, V, Smirnov, I, Sosnov, D, Sulimov, V, Uvarov, L, Volkov, S, Vorobyev, A, Andreev, U, Dermenev, A, Gninenko, S, Golubev, N, Karneyeu, A, Kirpichnikov, D, Kirsanov, M, Krasnikov, N, Pashenkov, A, Pivovarov, G, Toropin, A, Epshteyn, V, Gavrilov, V, Lychkovskaya, N, Nikitenko, A, Popov, V, Stepennov, A, Toms, M, Vlasov, E, Zhokin, A, Aushev, T, Bychkova, O, Chadeeva, M, Parygin, P, Popova, E, Rusinov, V, Selivanova, D, Andreev, V, Azarkin, M, Dremin, I, Kirakosyan, M, Terkulov, A, Belyaev, A, Boos, E, Dubinin, M, Dudko, L, Ershov, A, Gribushin, A, Kaminskiy, A, Klyukhin, V, Kodolova, O, Lokhtin, I, Obraztsov, S, Petrushanko, S, Savrin, V, Blinov, V, Dimova, T, Kardapoltsev, L, Kozyrev, A, Ovtin, I, Radchenko, O, Skovpen, Y, Azhgirey, I, Bayshev, I, Elumakhov, D, Kachanov, V, Konstantinov, D, Mandrik, P, Petrov, V, Ryutin, R, Slabospitskii, S, Sobol, A, Troshin, S, Tyurin, N, Uzunian, A, Volkov, A, Babaev, A, Okhotnikov, V, Borshch, V, Ivanchenko, V, Tcherniaev, E, Adzic, P, Dordevic, M, Milenovic, P, Milosevic, J, Aguilar-Benitez, M, Maestre, JA, Fernandez, AA, Bachiller, I, Luna, MB, Bedoya, CF, Montoya, CAC, Cepeda, M, Cerrada, M, Colino, N, De la Cruz, B, Peris, AD, Ramos, JPF, Flix, J, Fouz, MC, Lopez, OG, Lopez, SG, Hernandez, JM, Josa, MI, Holgado, JL, Moran, D, Tobar, AN, Dengra, CP, Yzquierdo, APC, Pelayo, JP, Redondo, I, Romero, L, Navas, SS, Gomez, LU, Willmott, C, de Troconiz, JF, Reyes-Almanza, R, Gonzalez, BA, Cuevas, J, Erice, C, Menendez, JF, Folgueras, S, Caballero, IG, Fernandez, JRG, Cortezon, EP, Alvarez, CR, Bouza, VR, Rodriguez, AS, Trapote, A, Trevisani, N, Villalba, CV, Cifuentes, JAB, Cabrillo, IJ, Calderon, A, Curras, E, Campderros, JD, Fernandez, M, Madrazo, CF, Manteca, PJF, Alonso, AG, Gomez, G, Sanchez, JG, Echeverria, RWJ, Rivero, CM, del Arbol, PMR, Matorras, F, Cuevas, PM, Moya, D, Gomez, JP, Prieels, C, Rodrigo, T, Ruiz-Jimeno, A, Scodellaro, L, Vila, I, Virto, AL, Garcia, JMV, Jayananda, MK, Kailasapathy, B, Sonnadara, DUJ, Wickramarathna, DDC, Dharmaratna, WGD, Liyanage, K, Perera, N, Wickramage, N, Aarrestad, TK, Abbaneo, D, Albert, E, Alimena, J, Auffray, E, Auzinger, G, Baechler, J, Baillon, P, Barinoff, M, Barney, D, Lopes, JB, Bendavid, J, Bergamin, G, Bianco, M, Blanchot, G, Bocci, A, Boyer, F, Camporesi, T, Garrido, MC, Caratelli, A, Carnesecchi, R, Ceresa, D, Cerminara, G, Chernyavskaya, N, Chhibra, SS, Christiansen, J, Cichy, K, Cipriani, M, Cristella, L, D'Enterria, D, Dabrowski, A, Daguin, J, David, A, De Roeck, A, Defranchis, MM, Deile, M, Detraz, S, Dobson, M, Dudek, M, Dunser, M, Dupont, N, Elliott-Peisert, A, Emriskova, N, Fallavollita, F, Fasanella, D, De Almeida, JPFDS, Filenius, A, Florent, A, Frank, N, Franzoni, G, French, T, Funk, W, Giani, S, Gigi, D, Gill, K, Glege, F, Gouskos, L, Haranko, M, Hegeman, J, Hollos, AE, Hugo, G, Innocente, V, James, T, Janot, P, Kaplon, J, Kaspar, J, Kerekes, Z, Kieseler, J, Kloukinas, K, Komm, M, Koss, N, Kottelat, LJ, Kovacs, MI, Kratochwil, N, La Rosa, A, Lange, C, Laurila, S, Lecoq, P, Lenoir, P, Lintuluoto, A, Long, K, Loos, R, Lourenco, C, Maier, B, Malgeri, L, Mallios, S, Mannelli, M, Marchioro, A, Marini, AC, Dominguez, IM, Meijers, F, Mersi, S, Meschi, E, Michelis, S, Millet, A, Moortgat, F, Mulders, M, Onnela, A, Orfanelli, S, Orsini, L, Pakulski, T, Pantaleo, F, Pape, L, Perez, A, Perez, E, Gomez, FP, Pernot, JF, Peruzzi, M, Petagna, P, Petrilli, A, Petrucciani, G, Pfeiffer, A, Piazza, Q, Pierini, M, Piparo, D, Pitt, M, Postema, H, Qu, H, Quast, T, Rabady, D, Racz, A, Gutierrez, GR, Rieger, M, Rose, P, Rovere, M, Sakulin, H, Salfeld-Nebgen, J, Scarfi, S, Schafer, C, Schwick, C, Selvaggi, M, Silva, P, Sinani, M, Snoeys, W, Sphicas, P, Summers, S, Tatar, K, Rego, RT, Tavolaro, VR, Treille, D, Tropea, P, Troska, J, Tsirou, A, Van Onsem, GP, Vasey, F, Vichoudis, P, Wanczyk, J, Wozniak, KA, Zeuner, WD, Bertl, W, Caminada, L, Ebrahimi, A, Erdmann, W, Horisberger, R, Ingram, Q, Kaestli, HC, Kotlinski, D, Langenegger, U, Meier, B, Missiroli, M, Noehte, L, Rohe, T, Streuli, S, Androsov, K, Backhaus, M, Becker, R, Berger, P, Calandri, A, Di Calafiori, DRD, De Cosa, A, Dissertori, G, Dittmar, M, Djambazov, L, Donega, M, Dorfer, C, Eble, F, Gedia, K, Glessgen, F, Espinosa, TAG, Grab, C, Hits, D, Lustermann, W, Lyon, AM, Manzoni, RA, Marchese, L, Perez, CM, Meinhard, MT, Nessi-Tedaldi, F, Niedziela, J, Pauss, F, Perovic, V, Pigazzini, S, Ratti, MG, Reichmann, M, Reissel, C, Reitenspiess, T, Ristic, B, Roser, U, Ruini, D, Becerra, DAS, Soerensen, J, Stampf, V, Steggemann, J, Wallny, R, Zhu, DH, Amsler, C, Bartschi, P, Bosiger, K, Botta, C, Brzhechko, D, Canelli, MF, Cormier, K, De Wit, A, Del Burgo, R, Heikkila, JK, Huwiler, M, Jin, W, Jofrehei, A, Kilminster, B, Leontsinis, S, Liechti, SP, Macchiolo, A, Maier, R, Meiring, P, Mikuni, VM, Molinatti, U, Neutelings, I, Reimers, A, Robmann, P, Cruz, SS, Schweiger, K, Takahashi, Y, Wolf, D, Adloff, C, Kuo, CM, Lin, W, Roy, A, Sarkar, T, Yu, SS, Ceard, L, Chao, Y, Chen, KF, Chen, PH, Hou, WS, Li, YY, Lu, RS, Paganis, E, Psallidas, A, Steen, A, Wu, HY, Yazgan, E, Yu, PR, Asavapibhop, B, Asawatangtrakuldee, C, Srimanobhas, N, Boran, F, Damarseckin, S, Demiroglu, ZS, Dolek, F, Dumanoglu, I, Eskut, E, Guler, Y, Guler, EG, Isik, C, Kara, O, Topaksu, AK, Kiminsu, U, Onengut, G, Ozdemir, K, Polatoz, A, Simsek, AE, Tali, B, Tok, UG, Turkcapar, S, Zorbakir, IS, Isildak, B, Karapinar, G, Ocalan, K, Yalvac, M, Akgun, B, Atakisi, IO, Gulmez, E, Kaya, M, Kaya, O, Tekten, S, Yetkin, EA, Cakir, A, Cankocak, K, Komurcu, Y, Sen, S, Cerci, S, Hos, I, Kaynak, B, Ozkorucuklu, S, Cerci, DS, Zorbilmez, C, Grynyov, B, Levchuk, L, Anthony, D, Bhal, E, Bologna, S, Brooke, JJ, Bundock, A, Clement, E, Cussans, D, Flacher, H, Goldstein, J, Heath, GP, Heath, HF, Kreczko, L, Krikler, B, Paramesvaran, S, El Nasr-Storey, SS, Smith, VJ, Stylianou, N, Pass, KW, White, R, Bell, KW, Brew, C, Brown, RM, Cockerill, DJA, Cooke, C, Coughlan, JA, Ellis, KV, Harder, K, Harper, S, Holmberg, L, Linacre, J, Manolopoulos, K, Newbold, DM, Olaiya, E, Petyt, D, Reis, T, Schuh, T, Shepherd-Themistocleous, CH, Tomalin, IR, Williams, T, Bainbridge, R, Bloch, P, Bonomally, S, Borg, J, Breeze, S, Brown, CE, Buchmuller, O, Cepaitis, V, Chahal, GS, Colling, D, Dauncey, P, Davies, G, Della Negra, M, Fayer, S, Fedi, G, Hall, G, Hassanshahi, MH, Iles, G, Langford, J, Lyons, L, Magnan, M, Malik, S, Martelli, A, Monk, DG, Nash, J, Pesaresi, M, Raymond, DM, Richards, A, Rose, A, Scott, E, Seez, C, Shtipliyski, A, Tapper, A, Uchida, K, Virdee, T, Vojinovic, M, Wardle, N, Webb, SN, Winterbottom, D, Coldham, K, Cole, JE, Ghorbani, M, Khan, A, Kyberd, P, Reid, ID, Teodorescu, L, Zahid, S, Abdullin, S, Brinkerhoff, A, Caraway, B, Dittmann, J, Hatakeyama, K, Kanuganti, AR, McMaster, B, Pastika, N, Saunders, M, Sawant, S, Sutantawibul, C, Wilson, J, Bartek, R, Dominguez, A, Uniyal, R, Hernandez, AMV, Buccilli, A, Cooper, SI, Di Croce, D, Gleyzer, SV, Henderson, C, Perez, CU, Rumerio, P, West, C, Akpinar, A, Albert, A, Arcaro, D, Cosby, C, Demiragli, Z, Fontanesi, E, Gastler, D, Hazen, E, May, S, Peck, A, Rohlf, J, Salyer, K, Sperka, D, Spitzbart, D, Suarez, I, Tsatsos, A, Yuan, S, Zou, D, Benelli, G, Burkle, B, Coubez, X, Cutts, D, Hadley, M, Heintz, U, Hinton, N, Hogan, JM, Honma, A, Korotkov, A, Kwon, T, Landsberg, G, Lau, KT, Li, D, Lukasik, M, Luo, J, Narain, M, Pervan, N, Sagir, S, Simpson, F, Spencer, E, Usai, E, Wong, WY, Yan, X, Yu, D, Zhang, W, Bonilla, J, Brainerd, C, Breedon, R, Sanchez, MCD, Cannaert, E, Chertok, M, Conway, J, Cox, PT, Erbacher, R, Haza, G, Hemer, D, Jensen, F, Kukral, O, Lander, R, Mulhearn, M, Pellett, D, Regnery, B, Taylor, D, Thomson, J, Wei, W, Welton, T, Yao, Y, Zhang, F, Bachtis, M, Cousins, R, Datta, A, Hamilton, D, Hauser, J, Ignatenko, M, Iqbal, MA, Lam, T, Nash, WA, Regnard, S, Saltzberg, D, Stone, B, Valuev, V, Burt, K, Chen, Y, Clare, R, Gary, JW, Gordon, M, Hanson, G, Karapostoli, G, Long, OR, Manganelli, N, Negrete, MO, Si, W, Wimpenny, S, Zhang, Y, Branson, JG, Chang, P, Cittolin, S, Cooperstein, S, Deelen, N, Diaz, D, Duarte, J, Gerosa, R, Giannini, L, Gilbert, D, Guiang, J, Kansal, R, Krutelyov, V, Lee, R, Letts, J, Masciovecchio, M, Pieri, M, Narayanan, BVS, Sharma, V, Tadel, M, Vartak, A, Wurthwein, F, Xiang, Y, Yagil, A, Amin, N, Campagnari, C, Citron, M, Dorsett, A, Dutta, V, Incandela, J, Kilpatrick, M, Kyre, S, Marsh, B, Mei, H, Oshiro, M, Quinnan, M, Richman, J, Sarica, U, Setti, F, Sheplock, J, Stuart, D, Wang, S, Bornheim, A, Cerri, O, Dutta, I, Lawhorn, JM, Lu, N, Mao, J, Newman, HB, Nguyen, TQ, Spiropulu, M, Vlimant, JR, Wang, C, Xie, S, Zhang, Z, Zhu, RY, Alison, J, An, S, Andrews, MB, Bryant, P, Ferguson, T, Harilal, A, Liu, C, Mudholkar, T, Paulini, M, Sanchez, A, Terrill, W, Cumalat, JP, Ford, WT, Hassani, A, MacDonald, E, Patel, R, Perloff, A, Savard, C, Stenson, K, Ulmer, KA, Wagner, SR, Alexander, J, Bright-Thonney, S, Cheng, Y, Cranshaw, DJ, Fan, J, Hogan, S, Lantz, S, Monroy, J, Fuentes, YP, Patterson, JR, Quach, D, Reichert, J, Reid, M, Riley, D, Ryd, A, Smolenski, K, Strohman, C, Sun, W, Thom, J, Wittich, P, Zou, R, Albrow, M, Alyari, M, Apollinari, G, Apresyan, A, Apyan, A, Bakshi, A, Bauerdick, LAT, Berry, D, Berryhill, J, Bhat, PC, Burkett, K, Butler, D, Butler, JN, Canepa, A, Cerati, GB, Cheung, HWK, Chlebana, F, Cremonesi, M, Derylo, G, Di Petrillo, KF, Dickinson, J, Elvira, VD, Feng, Y, Freeman, J, Gecse, Z, Ghosh, A, Gingu, C, Gonzalez, H, Gray, L, Green, D, Grunendahl, S, Gutsche, O, Harris, RM, Heller, R, Herwig, TC, Hirschauer, J, Jayatilaka, B, Jindariani, S, Johnson, M, Joshi, U, Klabbers, P, Klijnsma, T, Klima, B, Kwok, KHM, Lammel, S, Lei, CM, Lincoln, D, Lipton, R, Liu, T, Madrid, C, Maeshima, K, Mantilla, C, Mason, D, McBride, P, Merkel, P, Mrenna, S, Nahn, S, Ngadiuba, J, O'Dell, V, Papadimitriou, V, Pedro, K, Pena, C, Prokofyev, O, Ravera, F, Hall, AR, Ristori, L, Sexton-Kennedy, E, Smith, N, Soha, A, Spalding, WJ, Spiegel, L, Stoynev, S, Strait, J, Taylor, L, Tkaczyk, S, Tran, NV, Uplegger, L, Vaandering, EW, Voirin, E, Weber, HA, Acosta, D, Avery, P, Bourilkov, D, Cadamuro, L, Cherepanov, V, Errico, F, Field, RD, Guerrero, D, Joshi, BM, Kim, M, Koenig, E, Konigsberg, J, Korytov, A, Lo, KH, Matchev, K, Menendez, N, Mitselmakher, G, Madhu, AM, Rawal, N, Rosenzweig, D, Rosenzweig, S, Rotter, J, Shi, K, Sturdy, J, Yigitbasi, E, Zuo, X, Adams, T, Askew, A, Habibullah, R, Hagopian, V, Johnson, KF, Khurana, R, Kolberg, T, Martinez, G, Prosper, H, Schiber, C, Viazlo, O, Yohay, R, Zhang, J, Baarmand, MM, Butalla, S, Elkafrawy, T, Hohlmann, M, Verma, RK, Noonan, D, Rahmani, M, Yumiceva, F, Adams, MR, Gonzalez, HB, Cavanaugh, R, Chen, X, Dittmer, S, Evdokimov, A, Evdokimov, O, Gerber, CE, Hangal, DA, Hofman, DJ, Merrit, AH, Mills, C, Oh, G, Roy, T, Rudrabhatla, S, Tonjes, MB, Varelas, N, Viinikainen, J, Wang, X, Wu, Z, Ye, Z, Alhusseini, M, Dilsiz, K, Durgut, S, Gandrajula, RP, Koseyan, OK, Merlo, JP, Mestvirishvili, A, Nachtman, J, Ogul, H, Onel, Y, Penzo, A, Rude, C, Snyder, C, Tiras, E, Amram, O, Blumenfeld, B, Corcodilos, L, Davis, J, De Havenon, V, Eminizer, M, Feingold, J, Gritsan, AV, Kang, L, Kyriacou, S, Maksimovic, P, Martin, C, Roskes, J, Sullivan, K, Swartz, M, Vami, TA, You, C, Abreu, A, Anguiano, J, Barrera, CB, Baringer, P, Bean, A, Bylinkin, A, Flowers, Z, Isidori, T, Khalil, S, King, J, Krintiras, G, Kropivnitskaya, A, Lazarovits, M, Lindsey, C, Marquez, J, Minafra, N, Murray, M, Nickel, M, Rogan, C, Royon, C, Salvatico, R, Sanders, S, Schmitz, E, Smith, C, Takaki, JDT, Warner, Z, Williams, J, Wilson, G, Duric, S, Ivanov, A, Kaadze, K, Kim, D, Maravin, Y, Mitchell, T, Modak, A, Nam, K, Taylor, R, Rebassoo, F, Wright, D, Adams, E, Baden, A, Baron, O, Belloni, A, Eno, SC, Hadley, NJ, Jabeen, S, Kellogg, RG, Koeth, T, Mignerey, AC, Nabili, S, Palmer, C, Seidel, M, Skuja, A, Wang, L, Wong, K, Abercrombie, D, Andreassi, G, Bi, R, Brandt, S, Busza, W, Cali, IA, D'Alfonso, M, Eysermans, J, Freer, C, Ceballos, GG, Goncharov, M, Harris, P, Hu, M, Klute, M, Kovalskyi, D, Krupa, J, Lee, YJ, Mironov, C, Paus, C, Rankin, D, Roland, C, Roland, G, Shi, Z, Stephans, GSF, Wang, Z, Wyslouch, B, Chatterjee, RM, Evans, A, Hansen, P, Hiltbrand, J, Krohn, M, Kubota, Y, Mans, J, Revering, M, Rusack, R, Saradhy, R, Schroeder, N, Strobbe, N, Wadud, MA, Acosta, JG, Cremaldi, LM, Oliveros, S, Perera, L, Summers, D, Avdeeva, E, Bloom, K, Bryson, M, Claes, DR, Fangmeier, C, Finco, L, Golf, F, Joo, C, Kravchenko, I, Meier, F, Musich, M, Reed, I, Siado, JE, Snow, GR, Tabb, W, Yan, F, Zecchinelli, AG, Agarwal, G, Bandyopadhyay, H, Hay, L, Iashvili, I, Kharchilava, A, McLean, C, Nguyen, D, Pekkanen, J, Rappoccio, S, Williams, A, Alverson, G, Barberis, E, Haddad, Y, Hortiangtham, A, Li, J, Madigan, G, Marzocchi, B, Morse, DM, Nguyen, V, Orimoto, T, Parker, A, Skinnari, L, Tishelman-Charny, A, Wamorkar, T, Wang, B, Wisecarver, A, Wood, D, Bueghly, J, Chen, Z, Gilbert, A, Gunter, T, Hahn, KA, Liu, Y, Odell, N, Schmitt, MH, Sung, K, Velasco, M, Band, R, Bucci, R, Das, A, Dev, N, Goldouzian, R, Hildreth, M, Anampa, KH, Jessop, C, Lannon, K, Lawrence, J, Loukas, N, Lutton, D, Marinelli, N, Mcalister, I, McCauley, T, Mcgrady, C, Mohrman, K, Musienko, Y, Ruchti, R, Siddireddy, P, Townsend, A, Wayne, M, Wightman, A, Zarucki, M, Zygala, L, Bylsma, B, Cardwell, B, Durkin, LS, Francis, B, Hill, C, Ornelas, MN, Wei, K, Winer, BL, Yates, BR, Addesa, FM, Bonham, B, Das, P, Dezoort, G, Elmer, P, Frankenthal, A, Greenberg, B, Haubrich, N, Higginbotham, S, Kalogeropoulos, A, Kopp, G, Kwan, S, Lange, D, Marlow, D, Mei, K, Ojalvo, I, Olsen, J, Stickland, D, Tully, C, Norberg, S, Vargas, JER, Bakshi, AS, Barnes, VE, Chawla, R, Das, S, Gutay, L, Jones, M, Jung, AW, Karmarkar, S, Kondratyev, D, Koshy, AM, Liu, M, Negro, G, Neumeister, N, Paspalaki, G, Piperov, S, Purohit, A, Schulte, JF, Stojanovic, M, Thieman, J, Wang, F, Xiao, R, Xie, W, Dolen, J, Parashar, N, Baty, A, Decaro, M, Dildick, S, Ecklund, KM, Freed, S, Gardner, P, Geurts, FJM, Li, W, Liu, H, Nussbaum, T, Padley, BP, Redjimi, R, Shi, W, Leiton, AGS, Zhang, L, Bodek, A, de Barbaro, P, Demina, R, Dulemba, JL, Fallon, C, Ferbel, T, Galanti, M, Garcia-Bellido, A, Hindrichs, O, Khukhunaishvili, A, Ranken, E, Taus, R, Bartz, E, Chiarito, B, Chou, JP, Gandrakota, A, Gershtein, Y, Halkiadakis, E, Hart, A, Heindl, M, Karacheban, O, Laflotte, I, Lath, A, Montalvo, R, Nash, K, Osherson, M, Salur, S, Schnetzer, S, Somalwar, S, Stone, R, Thayil, SA, Thomas, S, Acharya, H, Delannoy, AG, Fiorendi, S, Spanier, S, Bouhali, O, Dalchenko, M, Delgado, A, Eusebi, R, Gilmore, J, Huang, T, Kamon, T, Luo, S, Malhotra, S, Mueller, R, Overton, D, Rathjens, D, Safonov, A, Akchurin, N, Damgov, J, Hegde, V, Kunori, S, Lamichhane, K, Mengke, T, Muthumuni, S, Peltola, T, Volobouev, I, Whitbeck, A, Appelt, E, D'Angelo, P, Greene, S, Gurrola, A, Johns, W, Melo, A, Ni, H, Padeken, K, Romeo, F, Sheldon, P, Tuo, S, Velkovska, J, Arenton, MW, Cox, B, Cummings, G, Hakala, J, Hirosky, R, Joyce, M, Ledovskoy, A, Li, A, Neu, C, Lara, CEP, Tannenwald, B, White, S, Wolfe, E, Poudyal, N, Black, K, Bose, T, Caillol, C, Dasu, S, De Bruyn, I, Everaerts, P, Fienga, F, Galloni, C, He, H, Herndon, M, Herve, A, Hussain, U, Lanaro, A, Loeliger, A, Loveless, R, Sreekala, JM, Mallampalli, A, Mohammadi, A, Pinna, D, Savin, A, Shang, V, Smith, WH, Teague, D, Trembath-Reichert, S, Vetens, W, Damarseçkin, Serdal, Physics, Elementary Particle Physics, Faculty of Sciences and Bioengineering Sciences, Vriendenkring VUB, and Sağır, Sinan
- Subjects
Technology ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Tracker ,Legacy reprocessing ,measurement methods ,tracking detector, alignment ,Settore ING-INF/01 - Elettronica ,Physics, Particles & Fields ,PARTICLE PHYSICS ,LARGE HADRON COLLIDER ,CMS ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,tracking detector: alignment ,Detector ,Alignment ,MillePede-II ,HipPy ,VERTEX ,High energy physics ,Experimental particle physics ,LHC ,p p: scattering ,p p: colliding beams ,B: decay ,tau: hadronic decay ,interaction: gauge ,interaction: model ,transverse momentum: missing-energy ,new physics: search for ,mass spectrum: transverse ,black hole: quantum ,vector boson: mass ,W': leptonic decay ,sensitivity ,leptoquark: coupling ,CERN LHC Coll ,leptoquark: mass: lower limit ,anomaly ,channel cross section: upper limit ,effective field theory ,Higgs ,Detectors and Experimental Techniques ,Instruments & Instrumentation ,physics.ins-det ,Instrumentation ,detector, alignment ,Physics ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Physics, Nuclear ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Engineering sciences. Technology ,Particle Physics - Experiment ,performance ,Nuclear and High Energy Physics ,530 Physics ,0299 Other Physical Sciences ,FOS: Physical sciences ,10192 Physics Institute ,114 Physical sciences ,0201 Astronomical and Space Sciences ,ddc:530 ,3106 Nuclear and High Energy Physics ,CMS, performance ,Nuclear Science & Technology ,numerical calculations ,Science & Technology ,hep-ex ,3105 Instrumentation ,silicon ,Physics and Astronomy ,alignment [tracking detector] ,semiconductor detector - Abstract
The strategies for and the performance of the CMS silicon tracking system alignment during the 2015-2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1037, ISSN:0168-9002, ISSN:1872-9576
- Published
- 2022
- Full Text
- View/download PDF
27. The chern-simons topological quantum field theory and the so(8) large color R-matrix for quantum knot invariants
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, California Institute of Technology, Miranda Galcerán, Eva, Wilkinson Gruen, Angus Fred, Gukov, Sergei, Park, Sunghyuk, Cavallar Oriol, Alberto Ricardo, Universitat Politècnica de Catalunya. Departament de Matemàtiques, California Institute of Technology, Miranda Galcerán, Eva, Wilkinson Gruen, Angus Fred, Gukov, Sergei, Park, Sunghyuk, and Cavallar Oriol, Alberto Ricardo
- Abstract
A física teòrica, la Teoria Quàntica de Camps (TQC) és un marc teòric extremadament reeixit que combina la Relativitat Especial amb la Mecànica Quàntica, permetent el diseny de models físics de les partícules subatómiques i quasipartícules que descriuen els aspectes més fundamentals de la matèria amb una precisió increïblement alta. Entre aquestes teories, la TQC Chern-Simons és una especial, que no només descriu fenòmens topològics a la física com ara l’Efecte Hall Quàntic, sinó que encaixa amb la noció del que es coneix com una Teoria Topològica de Camps Quàntics (TTCQ). Va ser fent servir aquests axiomes de les TTCQs que Edward Witten va mostrar al 1989 com d’estretament relacionada està la teoria de Chern-Simons amb l’àmbit d’invariants polinòmics que apareixen a la Teoria de Nusos, com ara el ben conegut polinomi de Jones. En aquests darrers anys, investigacions en aquest camp han donat lloc a nous i més poderosos invariants d’enllaços i, a través de cirurgies de Dehn sobre ells, de 3-varietats també. Per exemple, la sèrie de Gukov-Manolescu recentment proposta el 2020 —denotada FK(x, q)— és un invariant conjectural de complements de nusos que, en cert sentit, continua analíticament els polinomis de Jones colorejats. Poc després, Sunghyuk Park va introduir l’enfoc de la Matriu R de Gran Color corresponent a sl(2,C) per estudiar FK per trenats positius i calcular FK per a diversos nusos i enllaços. Aquest procediment ha estat així mateix extès per Angus Gruen a totes les altres àlgebres de Lie sl(n+1) més enllà de sl(2). En aquest treball, després d’un extens repàs sobre els anteriorment esmentats conceptes, abordem la família so(2n) d’àlgebres de Lie semisimples sobre els complexos a la classificació de Cartan, centrant-nos principalment en el cas so(8) atrets per la simetria triple al seu diagrama de Dynkin D4., En física teórica, la Teoría Cuántica de Campos (TCC) es un marco teórico extremadamente exitoso que combina la Relatividad Especial con la Mecánica Cuántica, permitiendo el diseño de modelos físicos de las partículas subatómicas y cuasipartículas que describen los aspectos más fundamentales de la materia con una precisión increíblemente alta. Entre dichas teorías, la TCC Chern-Simons es una especial, que no sólo describe fenómenos topológicos en física tales como el Efecto Hall Cuántico, sino que encaja con la noción de lo que se conoce como una Teoría Topológica de Campos Cuánticos (TTCC). Fue utilizando estos axiomas de las TTCCs que Edward Witten mostró en 1989 cómo de estrechamente relacionada está la teoría de Chern-Simons con el ámbito de invariantes polinómicos que aparecen en la Teoría de Nudos, tales como el bien conocido polinomio de Jones. En estos últimos años, investigaciones en este campo han dado lugar a nuevos y más poderosos invariantes de enlaces y, a través de cirugías de Dehn sobre ellos, así mismo de 3-variedades. Por ejemplo, la serie de Gukov-Manolescu recientemente propuesta en 2020 —denotada FK(x, q)— es un invariante conjetural de complementos de nudos que, en cierto sentido, continúa analíticamente los polinomios de Jones coloreados. Poco después, Sunghyuk Park introdujo el enfoque de la Matriz R de Gran Color correspondiente a sl(2,C) para estudiar FK para trenzados positivos y calcular FK para varios nudos y enlaces. Este procedimiento ha sido a su vez extendido por Angus Gruen a todas las otras álgebras de Lie sl(n+1) más allá de sl(2). En la presente obra, tras un extenso repaso sobre los anteriormente mencionados conceptos, abordamos la família so(2n) de álgebras de Lie semisimples sobre los complejos en la clasificación de Cartan, centrándonos principalmente en el caso so(8) atraídos por la simetría triple en su diagrama de Dynkin D4., In theoretical physics, Quantum Field Theory (QFT) is an extremely successful theoretical framework combining both Special Relativity and Quantum Mechanics, enabling to design physical models of subatomic particles and quasiparticles describing the most fundamental aspects of matter with an incredibly high accuracy. Among these theories, the Chern-Simons QFT is a special one, not only describing topological phenomena in physics such as the Quantum Hall Effect, but also fitting the notion of what is known as a Topological Quantum Field Theory (TQFT). It was by using the axioms of TQFTs that Edward Witten showed back in 1989 how closely related the Chern-Simons theory is to the realm of polynomial invariants appearing in Knot Theory, such as the well-known Jones polynomial. In the past years, further research in this field has led to new and more powerful invariants of links and, by means of Dehn surgeries on them, of 3-manifolds as well. For instance, the Gukov-Manolescu series proposed recently in 2020 —denoted FK(x, q)— is a conjectural invariant of knot complements that, in a sense, analytically continues the colored Jones polynomials. Shortly after, Sunghyuk Park introduced the Large Color R-matrix approach for sl(2,C) to study FK for some simple links, giving a definition of FK for positive braid knots and computing FK for various knots and links. This procedure has in turn been extended by Angus Gruen to all other Lie algebras sl(n+1) beyond sl(2). In this work, after a broad review on the above mentioned background, we move on to the family so(2n) of complex semisimple Lie algebras in Cartan’s classification, mainly focusing on the so(8) case attracted by the three-fold symmetry in its Dynkin diagram D4., Outgoing
- Published
- 2022
28. Surface waves and crustal structure on Mars
- Author
-
ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., Panning, Mark P., ETH Zurich, NASA Astrobiology Institute (US), Agence Nationale de la Recherche (France), UK Space Agency, California Institute of Technology, National Aeronautics and Space Administration (US), Kim, D., Banerdt, W. B., Ceylan, S., Giardini, Domenico, Lekic, Vedran, Lognonné, P., Beghein, C., Beucler, E., Carrasco, Sebastián, Charalambous, C., Clinton, John F., Drilleau, M., Duran, C., Golombek, M. P., Joshi, R., Khan, A., Knapmeyer‐Endrun, Brigitte, Li, J., Maguire, R., Pike, William T., Samuel, H., Schimmel, Martin, Schmerr, Nicholas C., Stähler, S. C., Stutzmann, E., Wieczorek, M., Xu, Z. D., Batov, A., Bozdag, E., Dahmen, N., Davis, P., Gudkova, T., Horleston, A., Huang, Quancheng, Kawamura, T., King, S., McLennan, S M, Nimmo, F., Plasman, M., Plesa, A. C., Stepanova, I. E., Weidner, E., Zenhäusern, Geraldine, Daubar, I., Fernando, B., García, R. F., Posiolova, L. V., and Panning, Mark P.
- Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
- Published
- 2022
29. ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Evidence for a Molecular Jet Launched at an Unprecedented Early Phase of Protostellar Evolution
- Author
-
Ministry of Science and Technology (Taiwan), Academia Sinica (Taiwan), National Natural Science Foundation of China, Chinese Academy of Sciences, California Institute of Technology, National Aeronautics and Space Administration (US), Ministerio de Ciencia e Innovación (España), Japan Society for the Promotion of Science, Dutta, Somnath, Lee, Chin-Fei, Hirano, Naomi, Liu, Tie, Johnstone, Doug, Liu, Sheng-Yuan, Tatematsu, Ken'ichi, Goldsmith, Paul F., Sahu, Dipen, Evans, Neal D., Sanhueza, Patricio, Kwon, Woojin, Qin, Sheng-Li, Ranjan Samal, Manash, Zhang, Qizhou, Kim, Kee-Tae, Shang, Hsien, Lee, Chang Won, Moraghan, Anthony, Jhan, Kai-Syun, Li, Shanghuo, Lee, Jeong-Eun, Traficante, A., Juvela, Mika, Bronfman, L., Eden, David J., Soam, Archana, He, Jinhua, Liu, Hong-li, Kuan, Yi-Jehng, Pelkonen, Veli Matti, Luo, Qiu-Yi, Yi, Hee-Weon, Hsu, Shih-Ying, Ministry of Science and Technology (Taiwan), Academia Sinica (Taiwan), National Natural Science Foundation of China, Chinese Academy of Sciences, California Institute of Technology, National Aeronautics and Space Administration (US), Ministerio de Ciencia e Innovación (España), Japan Society for the Promotion of Science, Dutta, Somnath, Lee, Chin-Fei, Hirano, Naomi, Liu, Tie, Johnstone, Doug, Liu, Sheng-Yuan, Tatematsu, Ken'ichi, Goldsmith, Paul F., Sahu, Dipen, Evans, Neal D., Sanhueza, Patricio, Kwon, Woojin, Qin, Sheng-Li, Ranjan Samal, Manash, Zhang, Qizhou, Kim, Kee-Tae, Shang, Hsien, Lee, Chang Won, Moraghan, Anthony, Jhan, Kai-Syun, Li, Shanghuo, Lee, Jeong-Eun, Traficante, A., Juvela, Mika, Bronfman, L., Eden, David J., Soam, Archana, He, Jinhua, Liu, Hong-li, Kuan, Yi-Jehng, Pelkonen, Veli Matti, Luo, Qiu-Yi, Yi, Hee-Weon, and Hsu, Shih-Ying
- Abstract
Protostellar outflows and jets play a vital role in star formation as they carry away excess angular momentum from the inner disk surface, allowing the material to be transferred toward the central protostar. Theoretically, low-velocity and poorly collimated outflows appear from the beginning of the collapse at the first hydrostatic core (FHSC) stage. With growing protostellar core mass, high-density jets are launched, entraining an outflow from the infalling envelope. Until now, molecular jets have been observed at high velocity (≳100 km s) in early Class 0 protostars. We, for the first time, detect a dense molecular jet in SiO emission with low velocity (∼4.2 km s, deprojected ∼24 km s) from source G208.89-20.04Walma (hereafter G208Walma) using ALMA Band 6 observations. This object has some characteristics of FHSCs, such as a small outflow/jet velocity, extended 1.3 mm continuum emission, and N D line emission. Additional characteristics, however, are typical of early protostars: collimated outflow and SiO jet. The full extent of the outflow corresponds to a dynamical timescale of ∼ 930 − 100 + 200 yr. The spectral energy distribution also suggests a very young source having an upper limit of T ∼ 31 K and L ∼ 0.8 L . We conclude that G208Walma is likely in the transition phase from FHSC to protostar, and the molecular jet has been launched within a few hundred years of initial collapse. Therefore, G208Walma may be the earliest object discovered in the protostellar phase with a molecular jet.
- Published
- 2022
30. Fundamental Science and Engineering Questions in Planetary Cave Exploration
- Author
-
Human Frontier Science Program, NASA Innovative Advanced Concepts, European Research Council, Ministerio de Ciencia e Innovación (España), California Institute of Technology, National Aeronautics and Space Administration (US), Wynne, Judson [0000-0003-0408-0629], Titus, Timothy N. [0000-0003-0700-4875], Azua-Bustos, Armando [0000-0002-6590-4145], Boston, Penelope Jane [0000-0002-0652-3473], León, Pablo G. de [0000-0002-6046-8700], Waele, J. de [0000-0001-5325-5208], Jones, Heather L. [0000-0001-9503-8746], Malaska, Michael J. [0000-0003-0064-5258], Miller, A. Z. [0000-0002-0553-8470], Sonderegger, Derek [0000-0001-5151-8588], Uckert, Kyle [0000-0002-0859-5526], Wong, Uland [0000-0002-3642-6236], Cushing, Glen E. [0000-0002-9673-8207], Fairén, Alberto G. [0000-0002-2938-6010], Frumkin, Amos [0000-0002-2028-4210], Kearney, Michelle [0000-0003-1279-2511], Kerber, Laura H. [0000-0002-6092-9722], Massironi, M. [0000-0002-7757-8818], Onac, Bogdan P. [0000-0003-2332-6858], Parazynski, Scott E. [0000-0002-2759-8925], Phillips-Lander, Charity M. [0000-0003-1064-8196], Prettyman, Thomas H. [0000-0003-1064-8196], Schulze-Makuch, Dirk [0000-0002-1923-9746], Wagner, Robert V. [0000-0001-5999-0721], Williams, Kaj E. [0000-0003-1755-1872], Wynne, J. Judson, Titus, Timothy N., Agha-Mohammadi, Ali Akbar, Azua-Bustos, Armando, Boston, Penelope Jane, León, Pablo G. de, Demirel-Floyd, Cansu, Waele, J. de, Jones, Heather L., Malaska, Michael J., Miller, A. Z., Sapers, Haley M., Sauro, Francesco, Sonderegger, Derek, Uckert, Kyle, Wong, Uland, Alexander, Emmit Calvin, Chiao, Leroy, Cushing, Glen E., DeDecker, John, Fairén, Alberto G., Frumkin, Amos, Harris, Gary L., Kearney, Michelle, Kerber, Laura H., Léveillé, Richard J., Manyapu, Kavya K., Massironi, M., Mylroie, John Erik, Onac, Bogdan P., Parazynski, Scott E., Phillips-Lander, Charity M., Prettyman, Thomas H., Schulze-Makuch, Dirk, Wagner, Robert V., Whittaker, William L., Williams, Kaj E., Human Frontier Science Program, NASA Innovative Advanced Concepts, European Research Council, Ministerio de Ciencia e Innovación (España), California Institute of Technology, National Aeronautics and Space Administration (US), Wynne, Judson [0000-0003-0408-0629], Titus, Timothy N. [0000-0003-0700-4875], Azua-Bustos, Armando [0000-0002-6590-4145], Boston, Penelope Jane [0000-0002-0652-3473], León, Pablo G. de [0000-0002-6046-8700], Waele, J. de [0000-0001-5325-5208], Jones, Heather L. [0000-0001-9503-8746], Malaska, Michael J. [0000-0003-0064-5258], Miller, A. Z. [0000-0002-0553-8470], Sonderegger, Derek [0000-0001-5151-8588], Uckert, Kyle [0000-0002-0859-5526], Wong, Uland [0000-0002-3642-6236], Cushing, Glen E. [0000-0002-9673-8207], Fairén, Alberto G. [0000-0002-2938-6010], Frumkin, Amos [0000-0002-2028-4210], Kearney, Michelle [0000-0003-1279-2511], Kerber, Laura H. [0000-0002-6092-9722], Massironi, M. [0000-0002-7757-8818], Onac, Bogdan P. [0000-0003-2332-6858], Parazynski, Scott E. [0000-0002-2759-8925], Phillips-Lander, Charity M. [0000-0003-1064-8196], Prettyman, Thomas H. [0000-0003-1064-8196], Schulze-Makuch, Dirk [0000-0002-1923-9746], Wagner, Robert V. [0000-0001-5999-0721], Williams, Kaj E. [0000-0003-1755-1872], Wynne, J. Judson, Titus, Timothy N., Agha-Mohammadi, Ali Akbar, Azua-Bustos, Armando, Boston, Penelope Jane, León, Pablo G. de, Demirel-Floyd, Cansu, Waele, J. de, Jones, Heather L., Malaska, Michael J., Miller, A. Z., Sapers, Haley M., Sauro, Francesco, Sonderegger, Derek, Uckert, Kyle, Wong, Uland, Alexander, Emmit Calvin, Chiao, Leroy, Cushing, Glen E., DeDecker, John, Fairén, Alberto G., Frumkin, Amos, Harris, Gary L., Kearney, Michelle, Kerber, Laura H., Léveillé, Richard J., Manyapu, Kavya K., Massironi, M., Mylroie, John Erik, Onac, Bogdan P., Parazynski, Scott E., Phillips-Lander, Charity M., Prettyman, Thomas H., Schulze-Makuch, Dirk, Wagner, Robert V., Whittaker, William L., and Williams, Kaj E.
- Abstract
Nearly half a century ago, two papers postulated the likelihood of lunar lava tube caves using mathematical models. Today, armed with an array of orbiting and fly-by satellites and survey instrumentation, we have now acquired cave data across our solar system-including the identification of potential cave entrances on the Moon, Mars, and at least nine other planetary bodies. These discoveries gave rise to the study of planetary caves. To help advance this field, we leveraged the expertise of an interdisciplinary group to identify a strategy to explore caves beyond Earth. Focusing primarily on astrobiology, the cave environment, geology, robotics, instrumentation, and human exploration, our goal was to produce a framework to guide this subdiscipline through at least the next decade. To do this, we first assembled a list of 198 science and engineering questions. Then, through a series of social surveys, 114 scientists and engineers winnowed down the list to the top 53 highest priority questions. This exercise resulted in identifying emerging and crucial research areas that require robust development to ultimately support a robotic mission to a planetary cave-principally the Moon and/or Mars. With the necessary financial investment and institutional support, the research and technological development required to achieve these necessary advancements over the next decade are attainable. Subsequently, we will be positioned to robotically examine lunar caves and search for evidence of life within Martian caves; in turn, this will set the stage for human exploration and potential habitation of both the lunar and Martian subsurface.
- Published
- 2022
31. Global tropical precipitation relationships to free-tropospheric water vapor using radio occultations
- Author
-
California Institute of Technology, National Aeronautics and Space Administration (US), Universities Space Research Association (US), Generalitat de Catalunya, European Commission, Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), National Science Foundation (US), Centro para el Desarrollo Tecnológico Industrial (España), Japan Science and Technology Agency, Padullés, Ramon, Kuo, Yi-Hung, Neelin, David J., Turk, F. Joseph, Ao, Chi On, Torre Juárez, Manuel de la, California Institute of Technology, National Aeronautics and Space Administration (US), Universities Space Research Association (US), Generalitat de Catalunya, European Commission, Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), National Science Foundation (US), Centro para el Desarrollo Tecnológico Industrial (España), Japan Science and Technology Agency, Padullés, Ramon, Kuo, Yi-Hung, Neelin, David J., Turk, F. Joseph, Ao, Chi On, and Torre Juárez, Manuel de la
- Abstract
The transition to deep convection and associated precipitation is often studied in relationship to the associated column water vapor owing to the wide availability of these data from various ground or satellite-based products. Based on radiosonde and ground-based global navigation satellite system (GNSS) data examined at limited locations and model comparison studies, water vapor at different vertical levels is conjectured to have different relationships to convective intensity. Here, the relationship between precipitation and water vapor in different free-tropospheric layers is investigated using globally distributed GNSS radio occultation (RO) temperature and moisture profiles collocated with GPM IMERG precipitation across the tropical latitudes. A key feature of the RO measurement is its ability to directly sense in and near regions of heavy precipitation and clouds. Sharp pickups (i.e., sudden increases) of conditionally averaged precipitation as a function of water vapor in different tropospheric layers are noted for a variety of tropical ocean and land regions. The layer-integrated water vapor value at which this pickup occurs has a dependence on temperature that is more complex than constant RH, with larger subsaturation at warmer temperatures. These relationships of precipitation to its thermodynamic environment for different layers can provide a baseline for comparison with climate model simulations of the convective onset. Furthermore, vertical profiles before, during, and after convection are consistent with the hypothesis that the lower troposphere plays a causal role in the onset of convection, while the upper troposphere is moistened by detrainment from convection.
- Published
- 2022
32. Stratospheric Moistening After 2000
- Author
-
Konopka, Paul, Tao, Mengchu, Ploeger, Felix, Hurst, Dale F., Santee, Michelle L., Wright, Jonathon S., Riese, Martin, 2 Carbon Neutrality Research Center Institute of Atmospheric Physics Beijing China, 1 Forschungszentrum Jülich Jülich Germany, 3 Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA, 5 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA, and 6 Department of Earth System Science Tsinghua University Beijing China
- Subjects
Geophysics ,ddc:551.6 ,ddc:550 ,General Earth and Planetary Sciences - Abstract
The significant climate feedback of stratospheric water vapor (SWV) necessitates quantitative estimates of SWV budget changes. Model simulations driven by the newest European Centre for Medium‐Range Weather Forecast reanalysis ERA5, satellite observations from the Stratospheric Water and OzOne Satellite Homogenized data set, Microwave Limb Sounder, and in situ frost point hygrometer observations from Boulder all show substantial and persistent stratospheric moistening after a sharp drop in water vapor at the turn of the millennium. This moistening occurred mainly during 2000–2006 and SWV abundances then remained high over the last decade. We find strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole, mainly during austral winter. Moistening of the tropical stratosphere after 2000 occurred during late boreal winter/spring, reached values of ∼0.2 ppm/decade, was well correlated with a warming of the cold point tropopause by ∼0.4 K/decade and can only be partially attributed to El Nino‐Southern Oscillation and volcanic eruptions., Plain Language Summary: Water vapor is an effective greenhouse gas. Human‐induced climate change has led to warmer air in the troposphere, which consequently can hold more moisture, thus enhancing the greenhouse effect. The long‐term change in stratospheric water vapor (SWV) is less clear and currently under debate. Using satellite observations, balloon soundings and model simulations, we find an increase of SWV after 2000. This moistening occurred mainly during 2000–2006 and the stratospheric moisture content then remained high over the last decade. The increase of SWV is stronger in the Northern than in the Southern Hemisphere. Over the South Pole, a weak decrease was found. Moistening of the tropical stratosphere occurred mainly during late winter and spring, and was in line with warming of the tropical tropopause, the coldest region that separates the troposphere and stratosphere. Natural causes such as volcanic eruptions cannot completely explain this stratospheric moistening., Key Points: Stratospheric moistening after 2000 is clearly detectable in ERA5‐driven simulations, satellite and in situ observations. Hemispheric asymmetry is found with strong positive trends in the Northern Hemisphere and weak negative trends over the South Pole. Moistening of the lower tropical stratosphere is only partially caused by El Nino‐Southern Oscillation and volcanic eruptions., https://doi.org/10.5067/Aura/MLS/DATA2508, https://doi.org/10.5067/GLOSSAC-L3-V2.0
- Published
- 2022
33. Hydrodynamics in the ocean environment / Milton S. Plesset, T. Yao-Tsu Wu [and] Stanley W. Doroff, editors.
- Author
-
Symposium on Naval Hydrodynamics California Institute of Technology) 1970, Doroff, Stanley W., Plesset, Milton S., Wu, Theodore Y.-T., California Institute of Technology, Naval Undersea Research and Development Center, United States. Office of Naval Research, MBLWHOI Library, Symposium on Naval Hydrodynamics California Institute of Technology) 1970, Doroff, Stanley W., Plesset, Milton S., Wu, Theodore Y.-T., California Institute of Technology, Naval Undersea Research and Development Center, and United States. Office of Naval Research
- Subjects
Congresses ,Hydrodynamics ,Oceanography - Published
- 1972
34. Hydrodynamics in the ocean environment
- Author
-
Symposium on Naval Hydrodynamics California Institute of Technology) 1970, Doroff, Stanley W., Plesset, Milton S., Wu, Theodore Y.-T., California Institute of Technology, Naval Undersea Research and Development Center, United States. Office of Naval Research, MBLWHOI Library, Symposium on Naval Hydrodynamics California Institute of Technology) 1970, Doroff, Stanley W., Plesset, Milton S., Wu, Theodore Y.-T., California Institute of Technology, Naval Undersea Research and Development Center, and United States. Office of Naval Research
- Subjects
Congresses ,Hydrodynamics ,Oceanography
35. Validating the Fisher approach for stage IV spectroscopic surveys
- Author
-
Ministero dell'Istruzione, dell'Università e della Ricerca, National Aeronautics and Space Administration (US), California Institute of Technology, European Commission, Yahia-Cherif, Safir, Blanchard, Alain, Camera, Stefano, Casas, Santiago, Ilić, Stefan, Markovič, K., Pourtsidou, A., Sakr, Ziad, Sapone, Domenico, Tutusaus, Isaac, Ministero dell'Istruzione, dell'Università e della Ricerca, National Aeronautics and Space Administration (US), California Institute of Technology, European Commission, Yahia-Cherif, Safir, Blanchard, Alain, Camera, Stefano, Casas, Santiago, Ilić, Stefan, Markovič, K., Pourtsidou, A., Sakr, Ziad, Sapone, Domenico, and Tutusaus, Isaac
- Abstract
In recent years, forecasting activities have become an important tool in designing and optimising large-scale structure surveys. To predict the performance of such surveys, the Fisher matrix formalism is frequently used as a fast and easy way to compute constraints on cosmological parameters. Among them lies the study of the properties of dark energy which is one of the main goals in modern cosmology. As so, a metric for the power of a survey to constrain dark energy is provided by the figure of merit (FoM). This is defined as the inverse of the surface contour given by the joint variance of the dark energy equation of state parameters {w0,  wa} in the Chevallier-Polarski-Linder parameterization, which can be evaluated from the covariance matrix of the parameters. This covariance matrix is obtained as the inverse of the Fisher matrix. The inversion of an ill-conditioned matrix can result in large errors on the covariance coefficients if the elements of the Fisher matrix are estimated with insufficient precision. The conditioning number is a metric providing a mathematical lower limit to the required precision for a reliable inversion, but it is often too stringent in practice for Fisher matrices with sizes greater than 2†×†2. In this paper, we propose a general numerical method to guarantee a certain precision on the inferred constraints, such as the FoM. It consists of randomly vibrating (perturbing) the Fisher matrix elements with Gaussian perturbations of a given amplitude and then evaluating the maximum amplitude that keeps the FoM within the chosen precision. The steps used in the numerical derivatives and integrals involved in the calculation of the Fisher matrix elements can then be chosen accordingly in order to keep the precision of the Fisher matrix elements below this maximum amplitude. We illustrate our approach by forecasting stage IV spectroscopic surveys cosmological constraints from the galaxy power spectrum. We infer the range of steps for whi
- Published
- 2021
36. Seismic Constraints on the Thickness and Structure of the Martian Crust from InSight
- Author
-
California Institute of Technology, Panning, M., Knapmeyer‐Endrun, Brigitte, Bissig, F., Joshi, R., Khan, A., Kim, D., Lekic, Vedran, Tauzin, B., Tharimena, S., Plasman, M., Compaire, N., Garcia, R., Margerin, L., Schimmel, Martin, Stutzmann, E., Schmerr, N., Bozdag, E., Plesa, A. C., Wieczorek, M., Broquet, A., Antonangeli, D., McLennan, Scott M., Samuel, H., Michaut, C., Pan, L., Perrin , C., Smrekar, S., Johnson, C. L., Brinkmann, N., Mittelholz, A., Rivoldini, A., Davis, P., Lognonné, P., Pinot, B, Scholz, J. R., Stähler, S., Knapmeyer, M., van Driel, M., Giardini, Domenico, Banerdt, B., California Institute of Technology, Panning, M., Knapmeyer‐Endrun, Brigitte, Bissig, F., Joshi, R., Khan, A., Kim, D., Lekic, Vedran, Tauzin, B., Tharimena, S., Plasman, M., Compaire, N., Garcia, R., Margerin, L., Schimmel, Martin, Stutzmann, E., Schmerr, N., Bozdag, E., Plesa, A. C., Wieczorek, M., Broquet, A., Antonangeli, D., McLennan, Scott M., Samuel, H., Michaut, C., Pan, L., Perrin , C., Smrekar, S., Johnson, C. L., Brinkmann, N., Mittelholz, A., Rivoldini, A., Davis, P., Lognonné, P., Pinot, B, Scholz, J. R., Stähler, S., Knapmeyer, M., van Driel, M., Giardini, Domenico, and Banerdt, B.
- Abstract
NASA¿s InSight mission [1] has for the first time placed a very broad-band seismometer on the surface of Mars. The Seismic Experiment for Interior Structure (SEIS) [2] has been collecting continuous data since early February 2019. The main focus of InSight is to enhance our understanding of the internal structure and dynamics of Mars, which includes the goal to better constrain the crustal thickness of the planet [3]. Knowing the present-day crustal thickness of Mars has important implications for its thermal evolution [4] as well as for the partitioning of silicates and heat-producing elements between the different layers of Mars. Current estimates for the crustal thickness of Mars are based on modeling the relationship between topography and gravity [5,6], but these studies rely on different assumptions, e.g. on the density of the crust and upper mantle, or the bulk silicate composition of the planet and the crust. The resulting values for the average crustal thickness differ by more than 100%, from 30 km to more than 100 km [7]. New independent constraints from InSight will be based on seismically determining the crustal thickness at the landing site. This single firm measurement of crustal thickness at one point on the planet will allow to constrain both the average crustal thickness of Mars as well as thickness variations across the planet when combined with constraints from gravity and topography [8]. Here we describe the determination of the crustal structure and thickness at the InSight landing site based on seismic receiver functions for three marsquakes compared with autocorrelations of InSight data [9].
- Published
- 2021
37. Reducing scattered light in LIGO's third observing run
- Author
-
California Institute of Technology, National Science Foundation (US), Soni, S., Covas, P.B., Zweizig, John G., LIGO Scientific Collaboration, California Institute of Technology, National Science Foundation (US), Soni, S., Covas, P.B., Zweizig, John G., and LIGO Scientific Collaboration
- Abstract
Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.
- Published
- 2021
38. LIGO detector characterization in the second and third observing runs
- Author
-
Max Planck Society, California Institute of Technology, Massachusetts Institute of Technology, National Science Foundation (US), Davis, D., Covas, P.B., Keitel, David, Sintes, Alicia M., Tenorio, Rodrigo, Zweizig, John G., Max Planck Society, California Institute of Technology, Massachusetts Institute of Technology, National Science Foundation (US), Davis, D., Covas, P.B., Keitel, David, Sintes, Alicia M., Tenorio, Rodrigo, and Zweizig, John G.
- Abstract
The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO–Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs.
- Published
- 2021
39. Constraining 20th-Century Sea-Level Rise in the South Atlantic Ocean
- Author
-
International Space Science Institute, California Institute of Technology, National Aeronautics and Space Administration (US), Natural Environment Research Council (UK), Frederikse, Thomas, Adhikari, Surendra, Daley, Tim J., Dangendorf, Sönke, Gehrels, Roland, Landerer, Felix, Marcos, Marta, Newton, Thomas L., Rush, Graham, Slangen, Aimée B. A., Wöppelmann, Guy, International Space Science Institute, California Institute of Technology, National Aeronautics and Space Administration (US), Natural Environment Research Council (UK), Frederikse, Thomas, Adhikari, Surendra, Daley, Tim J., Dangendorf, Sönke, Gehrels, Roland, Landerer, Felix, Marcos, Marta, Newton, Thomas L., Rush, Graham, Slangen, Aimée B. A., and Wöppelmann, Guy
- Abstract
Sea level in the South Atlantic Ocean has only been measured at a small number of tide-gauge locations, which causes considerable uncertainty in 20th-century sea-level trend estimates in this basin. To obtain a better-constrained sea-level trend in the South Atlantic Ocean, this study aims to answer two questions. The first question is: can we combine new observations, vertical land motion estimates, and information on spatial sampling biases to obtain a likely range of 20th-century sea-level rise in the South Atlantic? We combine existing observations with recovered observations from Dakar and a high-resolution sea-level reconstruction based on salt-marsh sediments from the Falkland Islands and find that the rate of sea-level rise in the South Atlantic has likely been between 1.1 and 2.2 mm year−1 (5%–95% confidence intervals), with a central estimate of 1.6 mm year−1. This rate is on the high side, but not statistically different compared to global-mean trends from recent reconstructions. The second question is: are there any physical processes that could explain a large deviation from the global-mean sea-level trend in the South Atlantic? Sterodynamic (changes in ocean dynamics and steric effects) and gravitation, rotation, and deformation effects related to ice mass loss and land water storage have probably led to a 20th-century sea-level trend in the South Atlantic above the global mean. Both observations and physical processes thus suggest that 20th-century sea-level rise in the South Atlantic has been about 0.3 mm year−1 above the rate of global-mean sea-level rise, although even with the additional observations, the uncertainties are still too large to distinguish a statistically significant difference.
- Published
- 2021
40. Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars InSight Mission
- Author
-
German Centre for Air and Space Travel, David and Lucile Packard Foundation, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Agence Nationale de la Recherche (France), Schimmel, Martin [0000-0003-2601-4462], Kim, Doyeon, Davis, Paul, Lekic, Vedran, Maguire, Ross, Compaire, Nicolas, Schimmel, Martin, Stutzmann, E., Irving, Jessica C. E., Lognonné, P., Scholz, J. R., Clinton, John F., Zenhäusern, G., Deng, Sizhuang, Levander, A., Panning, Mark P., Garcia, Raphael F., Giardini, Domenico, Hurst, K., Knapmeyer‐Endrun, Brigitte, Nimmo, F., Pike, William T., Pou, Laurent, Schmerr, N., Stahler, S. C., Tauzin, Benoit, Widmer‐Schnidrig, Rudolf, Banerdt, William B., German Centre for Air and Space Travel, David and Lucile Packard Foundation, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Agence Nationale de la Recherche (France), Schimmel, Martin [0000-0003-2601-4462], Kim, Doyeon, Davis, Paul, Lekic, Vedran, Maguire, Ross, Compaire, Nicolas, Schimmel, Martin, Stutzmann, E., Irving, Jessica C. E., Lognonné, P., Scholz, J. R., Clinton, John F., Zenhäusern, G., Deng, Sizhuang, Levander, A., Panning, Mark P., Garcia, Raphael F., Giardini, Domenico, Hurst, K., Knapmeyer‐Endrun, Brigitte, Nimmo, F., Pike, William T., Pou, Laurent, Schmerr, N., Stahler, S. C., Tauzin, Benoit, Widmer‐Schnidrig, Rudolf, and Banerdt, William B.
- Abstract
The Seismic Experiment for Interior Structure (SEIS) of the InSight mission to Mars has been providing direct information on Martian interior structure and dynamics of that planet since it landed. Compared with seismic recordings on the Earth, ground‐motion measurements acquired by SEIS on Mars are not only made under dramatically different ambient noise conditions, but also include idiosyncratic signals that arise from coupling between different InSight sensors and spacecraft components. This work is to synthesize what is known about these signal types, illustrate how they can manifest in waveforms and noise correlations, and present pitfalls in structural interpretations based on standard seismic analysis methods. We show that glitches (a type of prominent transient signal) can produce artifacts in ambient noise correlations. Sustained signals that vary in frequency, such as lander modes that are affected by variations in temperature and wind conditions over the course of the Martian sol, can also contaminate ambient noise results. Therefore, both types of signals have the potential to bias interpretation in terms of subsurface layering. We illustrate that signal processing in the presence of identified nonseismic signals must be informed by an understanding of the underlying physical processes in order for high‐fidelity waveforms of ground motion to be extracted. Whereas the origins of the most idiosyncratic signals are well understood, the 2.4 Hz resonance remains debated, and the literature does not contain an explanation of its fine spectral structure. Even though the selection of idiosyncratic signal types discussed in this article may not be exhaustive, we provide guidance on the best practices for enhancing the robustness of structural interpretations.
- Published
- 2021
41. Detection of Aerosols at Microbar Pressures in an Exoplanet Atmosphere
- Author
-
National Aeronautics and Space Administration (US), Sao Paulo Research Foundation, California Institute of Technology, Ministerio de Economía y Competitividad (España), European Commission, Estrela, Raissa, Swain, Mark R., Roudier, Gael M., West, Robert, Sedaghati, E., Valio, Adriana, National Aeronautics and Space Administration (US), Sao Paulo Research Foundation, California Institute of Technology, Ministerio de Economía y Competitividad (España), European Commission, Estrela, Raissa, Swain, Mark R., Roudier, Gael M., West, Robert, Sedaghati, E., and Valio, Adriana
- Abstract
The formation of hazes at microbar pressures has been explored by theoretical models of exoplanet atmospheres to explain Rayleigh scattering and/or featureless transmission spectra; however observational evidence of aerosols in the low-pressure formation environments has proved elusive. Here, we show direct evidence of aerosols existing at ∼1 microbar pressures in the atmosphere of the warm sub-Saturn WASP-69b using observations taken with the Space Telescope Imaging Spectrograph and Wide Field Camera 3 instruments on the Hubble Space Telescope. The transmission spectrum shows a wavelength-dependent slope induced by aerosol scattering that covers 11 scale heights of spectral modulation. Drawing on the extensive studies of haze in our solar system, we model the transmission spectrum based on a scaled version of Jupiter's haze-density profile to show that the WASP-69b transmission spectrum can be produced by scattering from an approximately constant density of particles extending throughout the atmospheric column from 40 millibar to microbar pressures. These results are consistent with theoretical expectations based on microphysics of the aerosol particles that have suggested haze can exist at microbar pressures in exoplanet atmospheres. © 2021. The American Astronomical Society. All rights reserved.
- Published
- 2021
42. Thickness and structure of the Martian crust from InSight seismic data
- Author
-
California Institute of Technology, Swiss National Science Foundation, European Commission, NASA Astrobiology Institute (US), Canadian Space Agency, European Space Agency, Knapmeyer‐Endrun, Brigitte, Panning, M.P., Bissig, F., Joshi, R., Khan, A., Kim, D., Lekic, Vedran, Tauzin, B., Tharimena, S., Plasman, M., Compaire, N., Garcia, R. F., Margerin, L., Schimmel, Martin, Stutzmann, E., Schmerr, N., Bozdag, E., Plesa, A. C., Wieczorek, M. A., Broquet, A., Antonangeli, D., McLennan, Scott M., Samuel, H., Michaut, C., Pan, L., Smrekar, S. E., Johnson, C.L., Brinkman, N., Mittelholz, A., Rivoldini, A., Davis, P. M., Lognonné, P., Pinot, B, Scholz, J. R., Stahler, Simon, Knapmeyer, M., van Driel, M., Giardini, Domenico, Banerdt, W. B., California Institute of Technology, Swiss National Science Foundation, European Commission, NASA Astrobiology Institute (US), Canadian Space Agency, European Space Agency, Knapmeyer‐Endrun, Brigitte, Panning, M.P., Bissig, F., Joshi, R., Khan, A., Kim, D., Lekic, Vedran, Tauzin, B., Tharimena, S., Plasman, M., Compaire, N., Garcia, R. F., Margerin, L., Schimmel, Martin, Stutzmann, E., Schmerr, N., Bozdag, E., Plesa, A. C., Wieczorek, M. A., Broquet, A., Antonangeli, D., McLennan, Scott M., Samuel, H., Michaut, C., Pan, L., Smrekar, S. E., Johnson, C.L., Brinkman, N., Mittelholz, A., Rivoldini, A., Davis, P. M., Lognonné, P., Pinot, B, Scholz, J. R., Stahler, Simon, Knapmeyer, M., van Driel, M., Giardini, Domenico, and Banerdt, W. B.
- Abstract
A planet's crust bears witness to the history of planetary formation and evolution, but for Mars, no absolute measurement of crustal thickness has been available. Here, we determine the structure of the crust beneath the InSight landing site on Mars using both marsquake recordings and the ambient wavefield. By analyzing seismic phases that are reflected and converted at subsurface interfaces, we find that the observations are consistent with models with at least two and possibly three interfaces. If the second interface is the boundary of the crust, the thickness is 20 +/- 5 kilometers, whereas if the third interface is the boundary, the thickness is 39 +/- 8 kilometers. Global maps of gravity and topography allow extrapolation of this point measurement to the whole planet, showing that the average thickness of the martian crust lies between 24 and 72 kilometers. Independent bulk composition and geodynamic constraints show that the thicker model is consistent with the abundances of crustal heat-producing elements observed for the shallow surface, whereas the thinner model requires greater concentration at depth.
- Published
- 2021
43. Quaternionic geometry in dimension 8
- Author
-
Jorgen Ellegaard Andersen (Aarhus University) Christian Bar (Potsdam University) David Baraglia (University of Adelaide) Stefan Behrens (Utrecht University) Olivier Biquard (École Normale Supérieure) Indranil Biswas (Tata Institute of Fundamental Research) Philip Boalch (Université Paris-Sud) Fedor Bogomolov (Courant Institute of Mathematical Sciences, NYU) Steven Bradlow (University of Illinois Urbana-Champaign) Gil Cavalcanti (Utrecht University) Leonid Chekhov (Steklov Mathematical Institute of Russian Academy of Sciences and Laboratoire Poncelet) Brian Collier (University of Maryland) Tristan Collins (Harvard University) Diego Conti (Università di Milano Bicocca) Xenia de la Ossa (University of Oxford) Mykola Dedushenko (The California Institute of Technology) Simon Donaldson (Imperial and Simons Center, Stony Brook) Mathieu Dutour Sikiric (Ruder Boskovic) Giovanni Forni (University of Maryland) Marco Gualtieri (University of Toronto) Hang Fu (Courant Institute of Mathematical Sciences, NYU) Oscar Garcia-Prada (Institute of Mathematical Sciences) Paul Gauduchon (École Polytechnique) William Goldman (University of Maryland) Peter Gothen (University of Porto) Samuel Grushevsky (Stony Brook University) Sergei Gukov (The California Institute of Technology) Sebastian Hannes (Potsdam University) Tamas Hausel (Institute of Science and Technology Austria) Jochen Heinloth (University of Duisburg) Klaus Hulek (Leibniz University at Hannover) Jacques Hurtubise (McGill University) Lisa Jeffrey (University of Toronto) Ralph Klaasse (Utrecht University) Magdalena Larfors (Uppsala University) Thomas Bruun Madsen (Aarhus University) Marta Mazzocco (Loughborough University) Anton Mellit (Institute of Science and Technology Austria) Sergei Merkulov (University of Luxembourg) Shigefumi Mori (Kyoto University) James Mracek (University of Toronto) Ignasi Mundet i Riera (University of Barcelona) Du Pei (Aarhus University and The California Institute of Technology) Yuri Prokhorov, Jørgen Ellegaard Andersen, Andrew Dancer, Oscar García-Prada, Conti, D, Madsen, T, Salamon, S, Jorgen Ellegaard Andersen (Aarhus University) Christian Bar (Potsdam University) David Baraglia (University of Adelaide) Stefan Behrens (Utrecht University) Olivier Biquard (École Normale Supérieure) Indranil Biswas (Tata Institute of Fundamental Research) Philip Boalch (Université Paris-Sud) Fedor Bogomolov (Courant Institute of Mathematical Sciences, NYU) Steven Bradlow (University of Illinois Urbana-Champaign) Gil Cavalcanti (Utrecht University) Leonid Chekhov (Steklov Mathematical Institute of Russian Academy of Sciences and Laboratoire Poncelet) Brian Collier (University of Maryland) Tristan Collins (Harvard University) Diego Conti (Università di Milano Bicocca) Xenia de la Ossa (University of Oxford) Mykola Dedushenko (The California Institute of Technology) Simon Donaldson (Imperial and Simons Center, Stony Brook) Mathieu Dutour Sikiric (Ruder Boskovic) Giovanni Forni (University of Maryland) Marco Gualtieri (University of Toronto) Hang Fu (Courant Institute of Mathematical Sciences, NYU) Oscar Garcia-Prada (Institute of Mathematical Sciences) Paul Gauduchon (École Polytechnique) William Goldman (University of Maryland) Peter Gothen (University of Porto) Samuel Grushevsky (Stony Brook University) Sergei Gukov (The California Institute of Technology) Sebastian Hannes (Potsdam University) Tamas Hausel (Institute of Science and Technology Austria) Jochen Heinloth (University of Duisburg) Klaus Hulek (Leibniz University at Hannover) Jacques Hurtubise (McGill University) Lisa Jeffrey (University of Toronto) Ralph Klaasse (Utrecht University) Magdalena Larfors (Uppsala University) Thomas Bruun Madsen (Aarhus University) Marta Mazzocco (Loughborough University) Anton Mellit (Institute of Science and Technology Austria) Sergei Merkulov (University of Luxembourg) Shigefumi Mori (Kyoto University) James Mracek (University of Toronto) Ignasi Mundet i Riera (University of Barcelona) Du Pei (Aarhus University and The California Institute of Technology) Yuri Prokhorov, Jørgen Ellegaard Andersen, Andrew Dancer, Oscar García-Prada, Conti, D, Madsen, T, and Salamon, S
- Abstract
We describe the 8-dimensional Wolf spaces as cohomogeneity one SU (3) -manifolds, and discover perturbations of the quaternion-kähler metric on the simply-connected 8-manifold G_2 /SO (4) that carry a closed fundamental 4-form but are not Einstein
- Published
- 2018
44. The long-term enhanced brightness of the magnetar 1E 1547.0-5408
- Author
-
Japan Society for the Promotion of Science, Agencia Estatal de Investigación (España), Generalitat Valenciana, National Aeronautics and Space Administration (US), California Institute of Technology, Coti Zelati, Francesco, Borghese, Alice, Rea, Nanda, Viganò, Daniele, Enoto, Teruaki, Esposito, Paolo, Pons, José A., Campana, Sergio, Israel, Gian Luca, Japan Society for the Promotion of Science, Agencia Estatal de Investigación (España), Generalitat Valenciana, National Aeronautics and Space Administration (US), California Institute of Technology, Coti Zelati, Francesco, Borghese, Alice, Rea, Nanda, Viganò, Daniele, Enoto, Teruaki, Esposito, Paolo, Pons, José A., Campana, Sergio, and Israel, Gian Luca
- Abstract
We present the evolution of the X-ray emission properties of the magnetar 1E 1547.0-5408 since February 2004 over a time period covering three outbursts. We analyzed new and archival observations taken with the Swift, NuSTAR, Chandra, and XMM-Newton X-ray satellites. The source has been observed at a relatively steady soft X-ray flux of ≈10-11 erg cm-2 s-1 (0.3-10 keV) over the last 9 years, which is about an order of magnitude fainter than the flux at the peak of the last outburst in 2009, but a factor of ∼30 larger than the level in 2006. The broad-band spectrum extracted from two recent NuSTAR observations in April 2016 and February 2019 showed a faint hard X-ray emission up to ∼70 keV. Its spectrum is adequately described by a flat power law component, and its flux is ∼7 × 10-12 erg cm-2 s-1 (10-70 keV), that is a factor of ∼20 smaller than at the peak of the 2009 outburst. The hard X-ray spectral shape has flattened significantly in time, which is at variance with the overall cooling trend of the soft X-ray component. The pulse profile extracted from these NuSTAR pointings displays variability in shape and amplitude with energy (up to ≈25 keV). Our analysis shows that the flux of 1E 1547.0-5408 is not yet decaying to the 2006 level and that the source has been lingering in a stable, high-intensity state for several years. This might suggest that magnetars can hop among distinct persistent states that are probably connected to outburst episodes and that their persistent thermal emission can be almost entirely powered by the dissipation of currents in the corona.
- Published
- 2020
45. Euclid preparation: VII. Forecast validation for Euclid cosmological probes
- Author
-
Academy of Finland, European Commission, Agenzia Spaziale Italiana, Belgian Science Policy Office, Canadian Euclid Consortium, Centre National D'Etudes Spatiales (France), Danish Space Research Institute, German Centre for Air and Space Travel, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), National Aeronautics and Space Administration (US), Netherlands Research School for Astronomy, Norwegian Space Agency, Romanian Space Agency, State Secretariat for Education, Research and Innovation (Switzerland), Swiss Space Office, UK Space Agency, Ministero dell'Istruzione, dell'Università e della Ricerca, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), International Max Planck Research Schools, Swiss National Science Foundation, Blanchard, Alain, Tutusaus, Isaac, Castander, Francisco J., Lloro, Iván, Zucca, E., Euclid Consortium, Academy of Finland, European Commission, Agenzia Spaziale Italiana, Belgian Science Policy Office, Canadian Euclid Consortium, Centre National D'Etudes Spatiales (France), Danish Space Research Institute, German Centre for Air and Space Travel, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), National Aeronautics and Space Administration (US), Netherlands Research School for Astronomy, Norwegian Space Agency, Romanian Space Agency, State Secretariat for Education, Research and Innovation (Switzerland), Swiss Space Office, UK Space Agency, Ministero dell'Istruzione, dell'Università e della Ricerca, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), International Max Planck Research Schools, Swiss National Science Foundation, Blanchard, Alain, Tutusaus, Isaac, Castander, Francisco J., Lloro, Iván, Zucca, E., and Euclid Consortium
- Abstract
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts. Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required. Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly
- Published
- 2020
46. Deep XMM-Newton observations of the northern disc of M31: II. Tracing the hot interstellar medium
- Author
-
Federal Ministry of Science, Research and Economy (Germany), German Centre for Air and Space Travel, German Research Foundation, National Science Foundation (US), National Aeronautics and Space Administration (US), California Institute of Technology, Kavanagh, P. J., Sasaki, M., Breitschwerdt, D., Avillez, M. A. de, Filipovic, M.D., Galvin, T., Haberl, Frank, Hatzidimitriou, Despina, Henze, Martin, Plucinsky, P. P., Saeedi, S., Sokolovsky, K. V., Williams, Benjamin F., Federal Ministry of Science, Research and Economy (Germany), German Centre for Air and Space Travel, German Research Foundation, National Science Foundation (US), National Aeronautics and Space Administration (US), California Institute of Technology, Kavanagh, P. J., Sasaki, M., Breitschwerdt, D., Avillez, M. A. de, Filipovic, M.D., Galvin, T., Haberl, Frank, Hatzidimitriou, Despina, Henze, Martin, Plucinsky, P. P., Saeedi, S., Sokolovsky, K. V., and Williams, Benjamin F.
- Abstract
Aims. We use new deep XMM-Newton observations of the northern disc of M31 to trace the hot interstellar medium (ISM) in unprecedented detail and to characterise the physical properties of the X-ray emitting plasmas. Methods. We used all XMM-Newton data up to and including our new observations to produce the most detailed image yet of the hot ISM plasma in a grand design spiral galaxy such as our own. We compared the X-ray morphology to multi-wavelength studies in the literature to set it in the context of the multi-phase ISM. We performed spectral analyses on the extended emission using our new observations as they offer sufficient depth and count statistics to constrain the plasma properties. Data from the Panchromatic Hubble Andromeda Treasury were used to estimate the energy injected by massive stars and their supernovae. We compared these results to the hot gas properties. Results. The brightest emission regions were found to be correlated with populations of massive stars, notably in the 10 kpc star-forming ring. The plasma temperatures in the ring regions are ∼0.2 up to ∼0.6 keV. We suggest this emission is hot ISM heated in massive stellar clusters and superbubbles. We derived X-ray luminosities, densities, and pressures for the gas in each region. We also found large extended emission filling low density gaps in the dust morphology of the northern disc, notably between the 5 and 10 kpc star-forming rings. We propose that the hot gas was heated and expelled into the gaps by the populations of massive stars in the rings. Conclusions. It is clear that the massive stellar populations are responsible for heating the ISM to X-ray emitting temperatures, filling their surroundings, and possibly driving the hot gas into the low density regions. Overall, the morphology and spectra of the hot gas in the northern disc of M31 is similar to other galaxy discs.
- Published
- 2020
47. MSS/1: Single-Station and Single-Event Marsquake Inversion
- Author
-
California Institute of Technology, National Aeronautics and Space Administration (US), National Supercomputing Center of Tianjin, Swiss National Science Foundation, NASA Jet Propulsion Laboratory, Schimmel, Martin [0000-0003-2601-4462], Drilleau, M., Beucler, E., Lognonné, P., Panning, M.P., Knapmeyer‐Endrun, Brigitte, Banerdt, W. B., Beghein, C., Ceylan, S., van Driel, M., Joshi, R., Kawamura, T., Khan, A., Menina, S., Rivoldini, A., Samuel, H., Stähler, S., Xu, H., Bonnin, Mickaël, Clinton, John F., Giardini, Domenico, Kenda, B., Lekic, Vedran, Mocquet, A., Murdoch, N., Schimmel, Martin, Smrekar, S. E., Stutzmann, E., Tauzin, B., Tharimena, S., California Institute of Technology, National Aeronautics and Space Administration (US), National Supercomputing Center of Tianjin, Swiss National Science Foundation, NASA Jet Propulsion Laboratory, Schimmel, Martin [0000-0003-2601-4462], Drilleau, M., Beucler, E., Lognonné, P., Panning, M.P., Knapmeyer‐Endrun, Brigitte, Banerdt, W. B., Beghein, C., Ceylan, S., van Driel, M., Joshi, R., Kawamura, T., Khan, A., Menina, S., Rivoldini, A., Samuel, H., Stähler, S., Xu, H., Bonnin, Mickaël, Clinton, John F., Giardini, Domenico, Kenda, B., Lekic, Vedran, Mocquet, A., Murdoch, N., Schimmel, Martin, Smrekar, S. E., Stutzmann, E., Tauzin, B., and Tharimena, S.
- Abstract
SEIS, the seismometer of the InSight mission, which landed on Mars on 26 November 2018, is monitoring the seismic activity of the planet. The goal of the Mars Structure Service (MSS) is to provide, as a mission product, the first average 1-D velocity model of Mars from the recorded InSight data. Prior to the mission, methodologies have been developed and tested to allow the location of the seismic events and estimation of the radial structure, using surface waves and body waves arrival times, and receiver functions. The paper describes these validation tests and compares the performance of the different algorithms to constrain the velocity model below the InSight station and estimate the 1-D average model over the great circle path between source and receiver. These tests were performed in the frame of a blind test, during which synthetic data were inverted. In order to propagate the data uncertainties on the output model distribution, Bayesian inversion techniques are mainly used. The limitations and strengths of the methods are assessed. The results show the potential of the MSS approach to retrieve the structure of the crust and underlying mantle. However, at this time, large quakes with clear surface waves have not yet been recorded by SEIS, which makes the estimation of the 1-D average seismic velocity model challenging. Additional locatable events, especially at large epicentral distances, and development of new techniques to fully investigate the data, will ultimately provide more constraints on the crust and mantle of Mars. ©2020 The Authors.
- Published
- 2020
48. Distribution of Water Vapor in Molecular Clouds. II
- Author
-
National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), Melnick, Gary J., Tolls, V., Snell, R. L., Kaufman, M. J., Bergin, E.A., Goicoechea, Javier R., Goldsmith, P. F., González-Alfonso, E., Hollenbach, D. J., Lis, D.C., Neufeld, D. A., National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), Melnick, Gary J., Tolls, V., Snell, R. L., Kaufman, M. J., Bergin, E.A., Goicoechea, Javier R., Goldsmith, P. F., González-Alfonso, E., Hollenbach, D. J., Lis, D.C., and Neufeld, D. A.
- Abstract
The depth-dependent abundance of both gas-phase and solid-state water within dense, quiescent, molecular clouds is important to both the cloud chemistry and gas cooling. Where water is in the gas phase, it is free to participate in the network of ion-neutral reactions that lead to a host of oxygen-bearing molecules, and its many ortho- A nd para-energy levels make it an effective coolant for gas temperatures greater than 20 K. Where water is abundant as ice on grain surfaces, and unavailable to cool the gas, significant amounts of oxygen are removed from the gas phase, suppressing the gas-phase chemical reactions that lead to a number of oxygen-bearing species, including O. Models of far-UV (FUV)-illuminated clouds predict that the gas-phase water abundance peaks in the range 3 and 8 mag of the cloud surface, depending on the gas density and FUV field strength. Deeper within such clouds, water is predicted to exist mainly as ice on grain surfaces. More broadly, these models are used to analyze a variety of other regions, including outflow cavities associated with young stellar objects and the surface layers of protoplanetary disks. In this paper, we report the results of observational tests of FUV-illuminated cloud models toward the Orion Molecular Ridge and Cepheus B using data obtained from the Herschel Space Observatory and the Five College Radio Astronomy Observatory. Toward Orion, 2220 spatial positions were observed along the face-on Orion Ridge in the HO 1-1 557 GHz and NH J, K = 1,0-0,0 572 GHz lines. Toward Cepheus B, two strip scans were made in the same lines across the edge-on ionization front. These new observations demonstrate that gas-phase water exists primarily within a few magnitudes of dense cloud surfaces, strengthening the conclusions of an earlier study based on a much smaller data set, and indirectly supports the prediction that water ice is quite abundant in dense clouds.
- Published
- 2020
49. See Change: VLT spectroscopy of a sample of high-redshift Type Ia supernova host galaxies
- Author
-
Science and Technology Facilities Council (UK), European Southern Observatory, National Aeronautics and Space Administration (US), European Space Agency, Hubble Space Telescope, Space Telescope Science Institute (US), California Institute of Technology, California State University, W. M. Keck Foundation, Williams, S. C., Hook, I. M., Hayden, B., Nordin, J., Aldering, G., Boone, K., Goobar, A., Lidman, C. E., Perlmutter, S., Rubin, D., Ruiz-Lapuente, Pilar, Saunders, C., Science and Technology Facilities Council (UK), European Southern Observatory, National Aeronautics and Space Administration (US), European Space Agency, Hubble Space Telescope, Space Telescope Science Institute (US), California Institute of Technology, California State University, W. M. Keck Foundation, Williams, S. C., Hook, I. M., Hayden, B., Nordin, J., Aldering, G., Boone, K., Goobar, A., Lidman, C. E., Perlmutter, S., Rubin, D., Ruiz-Lapuente, Pilar, and Saunders, C.
- Abstract
The Supernova Cosmology Project has conducted the 'See Change' programme, aimed at discovering and observing high-redshift (1.13 ¿ z ¿ 1.75) Type Ia supernovae (SNe Ia). We used multifilter Hubble Space Telescope (HST) observations of massive galaxy clusters with sufficient cadence to make the observed SN Ia light curves suitable for a cosmological probe of dark energy at z > 0.5. This See Change sample of SNe Ia with multi-colour light curves will be the largest to date at these redshifts. As part of the See Change programme, we obtained ground-based spectroscopy of each discovered transient and/or its host galaxy. Here, we present Very Large Telescope (VLT) spectra of See Change transient host galaxies, deriving their redshifts, and host parameters such as stellar mass and star formation rate. Of the 39 See Change transients/hosts that were observed with the VLT, we successfully determined the redshift for 26, including 15 SNe Ia at z > 0.97. We show that even in passive environments, it is possible to recover secure redshifts for the majority of SN hosts out to z = 1.5. We find that with typical exposure times of 3-4 h on an 8-m-class telescope we can recover ~75 per cent of SN Ia redshifts in the range of 0.97 < z < 1.5. Furthermore, we show that the combination of HST photometry and VLT spectroscopy is able to provide estimates of host galaxy stellar mass that are sufficiently accurate for use in a mass-step correction in the cosmological analysis.
- Published
- 2020
50. The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA
- Author
-
Australian Research Council, Ministerio de Economía y Competitividad (España), European Commission, California Institute of Technology, Centre National D'Etudes Spatiales (France), Sorbonne Université, Chinese Academy of Sciences, Agence Nationale de la Recherche (France), Shota Rustaveli National Science Foundation, Antier, S., Agayeva, S., Aivazyan, V., Alishov, S., Arbouch, E., Baransky, A., Barynova, K., Bai, J. M., Basa, S., Beradze, S., Bertin, E., Berthier, J., Blažek, M., Boer, M., Burkhonov, O., Burrell, A., Cailleau, A., Chabert, B., Chen, J. C., Christensen, N., Coleiro, A., Cordier, B., Corre, D., Coughlin, Michael W., Coward, D., Crisp, H., Delattre, C., Dietrich, T., Ducoin, J. -G., Duverne, P. -A., Marchal-Duval, G., Gendre, B., Eymar, L., Fock-Hang, P., Han, X., Hello, P., Howell, E. J., Inasaridze, R., Ismailov, N., Kann, D.A., Kapanadze, G., Klotz, A., Kochiashvili, N., Lachaud, C., Leroy, N., Le Van Su, A., Lin, W. L., Li, W. X., Lognonné, P., Marron, R., Mo, J., Moore, J., Natsvlishvili, R., Noysena, K., Perrigault, S., Peyrot, A., Samadov, D., Sadibekova, T., Simon, A., Stachie, C., Teng, J. P., Thierry, P., Thöne, Cristina Carina, Tillayev, Y., Turpin, D., Ugarte Postigo, Antonio de, Vachier, F., Vardosanidze, M., Vasylenko, V., Vidadi, Z., Wang, X. F., Wang, C. J., Wei, J., Yan, S. Y., Zhang, J. C., Zhang, J. J., Zhang, X. H., Australian Research Council, Ministerio de Economía y Competitividad (España), European Commission, California Institute of Technology, Centre National D'Etudes Spatiales (France), Sorbonne Université, Chinese Academy of Sciences, Agence Nationale de la Recherche (France), Shota Rustaveli National Science Foundation, Antier, S., Agayeva, S., Aivazyan, V., Alishov, S., Arbouch, E., Baransky, A., Barynova, K., Bai, J. M., Basa, S., Beradze, S., Bertin, E., Berthier, J., Blažek, M., Boer, M., Burkhonov, O., Burrell, A., Cailleau, A., Chabert, B., Chen, J. C., Christensen, N., Coleiro, A., Cordier, B., Corre, D., Coughlin, Michael W., Coward, D., Crisp, H., Delattre, C., Dietrich, T., Ducoin, J. -G., Duverne, P. -A., Marchal-Duval, G., Gendre, B., Eymar, L., Fock-Hang, P., Han, X., Hello, P., Howell, E. J., Inasaridze, R., Ismailov, N., Kann, D.A., Kapanadze, G., Klotz, A., Kochiashvili, N., Lachaud, C., Leroy, N., Le Van Su, A., Lin, W. L., Li, W. X., Lognonné, P., Marron, R., Mo, J., Moore, J., Natsvlishvili, R., Noysena, K., Perrigault, S., Peyrot, A., Samadov, D., Sadibekova, T., Simon, A., Stachie, C., Teng, J. P., Thierry, P., Thöne, Cristina Carina, Tillayev, Y., Turpin, D., Ugarte Postigo, Antonio de, Vachier, F., Vardosanidze, M., Vasylenko, V., Vidadi, Z., Wang, X. F., Wang, C. J., Wei, J., Yan, S. Y., Zhang, J. C., Zhang, J. J., and Zhang, X. H.
- Abstract
We present the Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA). The network consists of 21 telescopes with both photometric and spectroscopic facilities. They are connected together thanks to a dedicated infrastructure. The network aims at coordinating the observations of large sky position estimates of transient events to enhance their follow-up and reduce the delay between the initial detection and optical confirmation. The GRANDMA programme mainly focuses on follow-up of gravitational-wave alerts to find and characterize the electromagnetic counterpart during the third observational campaign of the Advanced LIGO and Advanced Virgo detectors. But it allows for follow-up of any transient alerts involving neutrinos or gamma-ray bursts, even those with poor spatial localization. We present the different facilities, tools, and methods we developed for this network and show its efficiency using observations of LIGO/Virgo S190425z, a binary neutron star merger candidate.We furthermore report on allGRANDMAfollow-up observations performed during the first six months of the LIGO-Virgo observational campaign, and we derive constraints on the kilonova properties assuming that the events' locations were imaged by our telescopes. © 2019 The Author(s).
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.