3 results on '"Camargo, J.L.C."'
Search Results
2. The global abundance of tree palms
- Author
-
Muscarella, R., Emilio, T., Phillips, O.L., Lewis, S.L., Slik, F., Baker, W.J., Couvreur, T.L.P., Eiserhardt, W.L., Svenning, J.-C., Affum-Baffoe, K., Aiba, S.-I., de Almeida, E.C., de Almeida, S.S., de Oliveira, E.A., Álvarez-Dávila, E., Alves, L.F., Alvez-Valles, C.M., Carvalho, F.A., Guarin, F.A., Andrade, A., Aragão, L.E.O.C., Murakami, A.A., Arroyo, L., Ashton, P.S., Corredor, G.A.A., Baker, T.R., de Camargo, P.B., Barlow, J., Bastin, J.-F., Bengone, N.N., Berenguer, E., Berry, N., Blanc, L., Böhning-Gaese, K., Bonal, D., Bongers, F., Bradford, M., Brambach, F., Brearley, F.Q., Brewer, S.W., Camargo, J.L.C., Campbell, D.G., Castilho, C.V., Castro, W., Catchpole, D., Cerón Martínez, C.E., Chen, S., Chhang, P., Cho, P., Chutipong, W., Clark, C., Collins, M., Comiskey, J.A., Medina, M.N.C., Costa, F.R.C., Culmsee, H., David-Higuita, H., Davidar, P., del Aguila-Pasquel, J., Derroire, G., Di Fiore, A., Van Do, T., Doucet, J.-L., Dourdain, A., Drake, D.R., Ensslin, A., Erwin, T., Ewango, C.E.N., Ewers, R.M., Fauset, S., Feldpausch, T.R., Ferreira, J., Ferreira, L.V., Fischer, M., Franklin, J., Fredriksson, G.M., Gillespie, T.W., Gilpin, M., Gonmadje, C., Gunatilleke, A.U.N., Hakeem, K.R., Hall, J.S., Hamer, K.C., Harris, D.J., Harrison, R.D., Hector, A., Hemp, A., Herault, B., Pizango, C.G.H., Coronado, E.N.H., Hubau, W., Hussain, M.S., Ibrahim, F.-H., Imai, N., Joly, C.A., Joseph, S., Anitha, K., Kartawinata, K., Kassi, J., Killeen, T.J., Kitayama, K., Klitgård, B.B., Kooyman, R., Labrière, N., Larney, E., Laumonier, Y., Laurance, S.G., Laurance, W.F., Lawes, M.J., Levesley, A., Lisingo, J., Lovejoy, T., Lovett, J.C., Lu, X., Lykke, A.M., Magnusson, W.E., Mahayani, N.P.D., Malhi, Y., Mansor, A., Peña, J.L.M., Marimon-Junior, B.H., Marshall, A.R., Melgaco, K., Bautista, C.M., Mihindou, V., Millet, J., Milliken, W., Mohandass, D., Mendoza, A.L.M., Mugerwa, B., Nagamasu, H., Nagy, L., Seuaturien, N., Nascimento, M.T., Neill, D.A., Neto, L.M., Nilus, R., Vargas, M.P.N., Nurtjahya, E., de Araújo, R.N.O., Onrizal, O., Palacios, W.A., Palacios-Ramos, S., Parren, M., Paudel, E., Morandi, P.S., Pennington, R.T., Pickavance, G., Pipoly J.J., III, Pitman, N.C.A., Poedjirahajoe, E., Poorter, L., Poulsen, J.R., Rama Chandra Prasad, P., Prieto, A., Puyravaud, J.-P., Qie, L., Quesada, C.A., Ramírez-Angulo, H., Razafimahaimodison, J.C., Reitsma, J.M., Requena-Rojas, E.J., Correa, Z.R., Rodriguez, C.R., Roopsind, A., Rovero, F., Rozak, A., Lleras, A.R., Rutishauser, E., Rutten, G., Punchi-Manage, R., Salomão, R.P., Van Sam, H., Sarker, S.K., Satdichanh, M., Schietti, J., Schmitt, C.B., Marimon, B.S., Senbeta, F., Nath Sharma, L., Sheil, D., Sierra, R., Silva-Espejo, J.E., Silveira, M., Sonké, B., Steininger, M.K., Steinmetz, R., Stévart, T., Sukumar, R., Sultana, A., Sunderland, T.C.H., Suresh, H.S., Tang, J., Tanner, E., ter Steege, H., Terborgh, J.W., Theilade, I., Timberlake, J., Torres-Lezama, A., Umunay, P., Uriarte, M., Gamarra, L.V., van de Bult, M., van der Hout, P., Martinez, R.V., Vieira, I.C.G., Vieira, S.A., Vilanova, E., Cayo, J.V., Wang, O., Webb, C.O., Webb, E.L., White, L., Whitfeld, T.J.S., Wich, S., Willcock, S., Wiser, S.K., Young, K.R., Zakaria, R., Zang, R., Zartman, C.E., Zo-Bi, I.C., Balslev, H., Muscarella, R., Emilio, T., Phillips, O.L., Lewis, S.L., Slik, F., Baker, W.J., Couvreur, T.L.P., Eiserhardt, W.L., Svenning, J.-C., Affum-Baffoe, K., Aiba, S.-I., de Almeida, E.C., de Almeida, S.S., de Oliveira, E.A., Álvarez-Dávila, E., Alves, L.F., Alvez-Valles, C.M., Carvalho, F.A., Guarin, F.A., Andrade, A., Aragão, L.E.O.C., Murakami, A.A., Arroyo, L., Ashton, P.S., Corredor, G.A.A., Baker, T.R., de Camargo, P.B., Barlow, J., Bastin, J.-F., Bengone, N.N., Berenguer, E., Berry, N., Blanc, L., Böhning-Gaese, K., Bonal, D., Bongers, F., Bradford, M., Brambach, F., Brearley, F.Q., Brewer, S.W., Camargo, J.L.C., Campbell, D.G., Castilho, C.V., Castro, W., Catchpole, D., Cerón Martínez, C.E., Chen, S., Chhang, P., Cho, P., Chutipong, W., Clark, C., Collins, M., Comiskey, J.A., Medina, M.N.C., Costa, F.R.C., Culmsee, H., David-Higuita, H., Davidar, P., del Aguila-Pasquel, J., Derroire, G., Di Fiore, A., Van Do, T., Doucet, J.-L., Dourdain, A., Drake, D.R., Ensslin, A., Erwin, T., Ewango, C.E.N., Ewers, R.M., Fauset, S., Feldpausch, T.R., Ferreira, J., Ferreira, L.V., Fischer, M., Franklin, J., Fredriksson, G.M., Gillespie, T.W., Gilpin, M., Gonmadje, C., Gunatilleke, A.U.N., Hakeem, K.R., Hall, J.S., Hamer, K.C., Harris, D.J., Harrison, R.D., Hector, A., Hemp, A., Herault, B., Pizango, C.G.H., Coronado, E.N.H., Hubau, W., Hussain, M.S., Ibrahim, F.-H., Imai, N., Joly, C.A., Joseph, S., Anitha, K., Kartawinata, K., Kassi, J., Killeen, T.J., Kitayama, K., Klitgård, B.B., Kooyman, R., Labrière, N., Larney, E., Laumonier, Y., Laurance, S.G., Laurance, W.F., Lawes, M.J., Levesley, A., Lisingo, J., Lovejoy, T., Lovett, J.C., Lu, X., Lykke, A.M., Magnusson, W.E., Mahayani, N.P.D., Malhi, Y., Mansor, A., Peña, J.L.M., Marimon-Junior, B.H., Marshall, A.R., Melgaco, K., Bautista, C.M., Mihindou, V., Millet, J., Milliken, W., Mohandass, D., Mendoza, A.L.M., Mugerwa, B., Nagamasu, H., Nagy, L., Seuaturien, N., Nascimento, M.T., Neill, D.A., Neto, L.M., Nilus, R., Vargas, M.P.N., Nurtjahya, E., de Araújo, R.N.O., Onrizal, O., Palacios, W.A., Palacios-Ramos, S., Parren, M., Paudel, E., Morandi, P.S., Pennington, R.T., Pickavance, G., Pipoly J.J., III, Pitman, N.C.A., Poedjirahajoe, E., Poorter, L., Poulsen, J.R., Rama Chandra Prasad, P., Prieto, A., Puyravaud, J.-P., Qie, L., Quesada, C.A., Ramírez-Angulo, H., Razafimahaimodison, J.C., Reitsma, J.M., Requena-Rojas, E.J., Correa, Z.R., Rodriguez, C.R., Roopsind, A., Rovero, F., Rozak, A., Lleras, A.R., Rutishauser, E., Rutten, G., Punchi-Manage, R., Salomão, R.P., Van Sam, H., Sarker, S.K., Satdichanh, M., Schietti, J., Schmitt, C.B., Marimon, B.S., Senbeta, F., Nath Sharma, L., Sheil, D., Sierra, R., Silva-Espejo, J.E., Silveira, M., Sonké, B., Steininger, M.K., Steinmetz, R., Stévart, T., Sukumar, R., Sultana, A., Sunderland, T.C.H., Suresh, H.S., Tang, J., Tanner, E., ter Steege, H., Terborgh, J.W., Theilade, I., Timberlake, J., Torres-Lezama, A., Umunay, P., Uriarte, M., Gamarra, L.V., van de Bult, M., van der Hout, P., Martinez, R.V., Vieira, I.C.G., Vieira, S.A., Vilanova, E., Cayo, J.V., Wang, O., Webb, C.O., Webb, E.L., White, L., Whitfeld, T.J.S., Wich, S., Willcock, S., Wiser, S.K., Young, K.R., Zakaria, R., Zang, R., Zartman, C.E., Zo-Bi, I.C., and Balslev, H.
- Abstract
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neot
- Published
- 2020
3. Degradation exposure scenario in the Brazilian Amazon: Edge effect on hyperdominant C-cycle tree species.
- Author
-
Giancola, D.T., Escada, M.I.S., Rosa, M.G.B., Andrade, A.C., Laurance, S., Laurance, W.F., Vicentini, A., and Camargo, J.L.C.
- Subjects
CARBON sequestration in forests ,DEFORESTATION ,CARBON cycle ,TREE mortality ,DEAD trees ,TREE growth ,FOREST degradation ,BOTANICAL specimens - Abstract
The Amazon basin strongly influences the global carbon cycle, storing billions of tonnes of carbon in a relatively small number of 'hyperdominant' tree species. However, the Amazon carbon stock is threatened by land-use change. In the remaining forest patches, trees close to the forest border bear various physical and biotic edge effects that alter plant growth and survival. To assess how edge effects influence tree mortality and carbon storage, we investigated the occurrence of hyperdominant tree species in the Brazilian Amazon between 1988 and 2021. Evaluating tree records from a network of permanent plots and herbarium collections, we found that 22 % of tree occurrence records were in deforested areas, 35% within 1 km of the forest edge, and 43 % in continuous forest. At the local scale in Central Amazonia, tree monitoring data over 30 years revealed that forest fragments hyperdominant trees had twice the mortality rate of continuous forest ones due to edge effects during the 15 years following edge establishment. Although trees in fragments had higher initial growth, this pattern declined over the years and eventually resulted in significant carbon loss, mainly from tree mortality. Edge effects have led to annual declines in the biomass of forest remnants, suggesting that hyperdominant species are also susceptible to disturbances that lead to degradation and forest losses. Conservation of the Amazon forests requires an approach that considers the effects of local disturbances on carbon stocks in the region. • In recent decades, deforestation has lost 22 % of historical records of hyperdominant tree species in the Brazilian Amazon. • 35 % of occurrence data are on forest edges, susceptible to the negative impacts caused by fragmentation and deforestation. • Hyperdominant populations in Central Amazon edges showed twice the mortality rate in the first 15 years after edge creation. • The unbalanced tree mortality directly affects the Carbon cycle, representing losses, even in forested areas. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.