Cantó Colomina, Begoña, Pagán Moreno, Mª Jesús, Sánchez Juan, Elena, Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament, Poveda Giner, Joan Josep, Cantó Colomina, Begoña, Pagán Moreno, Mª Jesús, Sánchez Juan, Elena, Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament, and Poveda Giner, Joan Josep
[ES] Actualmente existe una clara concienciación de la población por la sostenibilidad, el cuidado del medio ambiente y el bienestar animal. Pero, además los consumidores exigen alimentos seguros lo que implica a toda la cadena productiva empezando por la producción primaria. Un adecuado control de las enfermedades transmisibles a este nivel es uno de los pilares fundamentales de la seguridad alimentaria junto con el control en el momento del sacrificio, procesado y distribución. En esta tesis se plantea la utilización de herramientas matemáticas que permitan optimizar el uso de las medidas de bioseguridad, de implantación general en granjas de aves, como son la vacunación, la limpieza y desinfección, y la detección y eliminación de animales infectados. Esto con la fi nalidad de lograr una producción libre de infección y por lo tanto evitar el sacrificio temprano de los animales. De esta forma, se puede contribuir a la sostenibilidad de las granjas. Además, de garantizar la inocuidad de los alimentos a nivel de la producción primaria. Así se ha estudiado el comportamiento de un modelo matemático estructurado que incorpora la contaminación del medio ambiente como un modo indirecto de transmisión de la enfermedad, centrándose en el análisis de un brote de Salmonella en una granja de pollos. Las variables consideradas han sido: individuos susceptibles e infectados y la cantidad de bacterias acumuladas en el recinto (sistema (SIB), y se considera la reposición de los individuos muertos de forma que el tamaño de la población es el mismo en cualquier etapa. El sistema se considera dinámico y no lineal, en tiempo discreto y por ello su modelización se basa en ecuaciones en diferencias. Se ha analizado el comportamiento del sistema alrededor de los puntos de equilibrio a) libre de enfermedad y b) endémico. Tras el análisis del proceso se ha obtenido el número reproductivo básico R0. Este número indica el comportamiento de la enfermedad, ya que si R0 es menor que la unidad, [CA] Actualment existeix una clara conscienciacio de la poblacio per la sostenibilitat, la cura del medi ambient i el benestar animal. Pero, a mes els consumidors exigeixen aliments segurs el que implica a tota la cadena productiva comencant per la produccio primaria. Un adequat control de les malalties transmissibles a aquest nivell es un dels pilars fonamentals de la seguretat alimentaria juntament amb el control en el moment del sacri ci, processament i distribucio. En aquesta tesi es planteja la utilitzacio d'eines matematiques que permeten optimitzar l'us de les mesures de bioseguretat, d'implantacio general en granges d'ocells, com son la vacunacio, la neteja i desinfeccio, i la deteccio i eliminaci o d'animals infectats. Aixo amb la nalitat d'aconseguir una produccio lliure d'infeccio i per tant evitar el sacri ci primerenc dels animals. D'aquesta manera, es pot contribuir a la sostenibilitat de les granges. A mes, de garantir la innocu tat dels aliments a nivell de la produccio primaria. Aix, s'ha estudiat el comportament d'un model matematic estructurat que incorpora la contaminacio del medi ambient com una manera indirecta de transmissio de la malaltia, centrant-se en l'analisi d'un brot de Salmonella en una granja de pollastres. Les variables considerades han sigut: individus susceptibles i infectats i la quantitat de bacteris acumulats en el recinte (sistema SIB), i, a mes, es considera reposicio dels individus morts de manera que la grandaria de la poblacio es el mateix en qualsevol etapa. El sistema es considera dinamic i no lineal, en temps discret i per aixo la seua modelitzacio es basa en equacions en diferencies. S'ha analitzat el comportament del sistema al voltant dels punts d'equilibri a) lliure de malaltia i b) endemic. Despres de l'analisi del proces s'ha obtingut el numero reproductiu basic R0. Aquest numero indica el comportament de la malaltia, ja ix que si R0. es menor que la unitat, la malaltia tendeix a desapareixer pero en cas contrari, [EN] There is currently a clear awareness of the population for sustainability, care for the environment and animal welfare. But in addition, consumers demand safe food, which involves the entire production chain, starting with primary production. Adequate control of communicable diseases at this level is one of the fundamental pillars of food security along with control at the time of slaughter, processing and distribution. This thesis proposes the use of mathematical tools to optimize the use of biosafety measures, general implementation in bird farms, such as vaccination, cleaning and disinfection, and the detection and elimination of infected animals. This in order to achieve an infection free production and therefore avoid early slaughter of animals. In this way, it can contribute to the sustainability of farms. In addition, to ensure food safety at the level of primary production. Thus, the behavior of a structured mathematical model that incorporates environmental pollution as an indirect mode of disease transmission has been studied, focusing on the analysis of a Salmonella outbreak on a farm. chickens. The variables considered were susceptible and infected individuals and the amount of bacteria accumulated in the enclosure (SIB system), and, in addition, replacement of dead individuals is considered so that the size of the population is the same at any stage. The system is considered dynamic and nonlinear, in discrete time and therefore its modeling is based on equations in dierences. The behavior of the system around the equilibrium points a) free of disease and b) endemic has been analyzed. After the analysis of the process the basic reproductive number R0. was obtained. This number indicates the behavior of the disease, as if R0 is less than unity, the disease tends to disappear but otherwise the disease remains xiii endemic or may grow. The result obtained from the model indicates that R0 is less than one, if and only if, the population remains below a