19 results on '"Cash, James M"'
Search Results
2. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition
- Author
-
Drewer, Julia, Leduning, Melissa M., Purser, Gemma, Cash, James M., Sentian, Justin, and Skiba, Ute M.
- Published
- 2021
- Full Text
- View/download PDF
3. Evaluation of isoprene light response curves for bryophyte-dominated ecosystems and implications for atmospheric composition
- Author
-
Langford, Ben, primary, Cash, James M, additional, Vieno, Massimo, additional, Heal, Mathew R, additional, Drewer, Julia, additional, Jones, Matthew R, additional, Leeson, Sarah R, additional, Simmons, Ivan, additional, Braban, Christine F, additional, and Nemitz, Eiko, additional
- Published
- 2022
- Full Text
- View/download PDF
4. Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India
- Author
-
Bryant, Daniel J., Nelson, Beth S., Swift, Stefan J., Budisulistiorini, Sri Hapsari, Drysdale, Will S., Vaughan, Adam R., Newland, Mike J., Hopkins, James R., Cash, James M., Langford, Ben, Nemitz, Eiko, Acton, W. Joe F., Hewitt, C. Nicholas, Mandal, Tuhin, Gurjar, Bhola R., Shivani, Gadi, Ranu, Lee, James D., Rickard, Andrew R., and Hamilton, Jacqueline F.
- Subjects
Atmospheric Science ,Atmospheric Sciences - Abstract
Isoprene and monoterpene emissions to the atmosphere are generally dominated by biogenic sources. The oxidation of these compounds can lead to the production of secondary organic aerosol; however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene and monoterpenes can form secondary organic aerosol (SOA) heterogeneously via anthropogenic–biogenic interactions, resulting in the formation of organosulfate (OS) and nitrooxy-organosulfate (NOS) species. Delhi, India, is one of the most polluted cities in the world, but little is known about the emissions of biogenic volatile organic compounds (VOCs) or the sources of SOA. As part of the DELHI-FLUX project, gas-phase mixing ratios of isoprene and speciated monoterpenes were measured during pre- and post-monsoon measurement campaigns in central Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon (isoprene: (0.65±0.43) ppbv; limonene: (0.59±0.11) ppbv; α-pinene: (0.13±0.12) ppbv) than the pre-monsoon (isoprene: (0.13±0.18) ppbv; limonene: 0.011±0.025 (ppbv); α-pinene: 0.033±0.009) period. At night, isoprene and monoterpene concentrations correlated strongly with CO during the post-monsoon period. Filter samples of particulate matter less than 2.5 µm in diameter (PM2.5) were collected and the OS and NOS content analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS2). Inorganic sulfate was shown to facilitate the formation of isoprene OS species across both campaigns. Sulfate contained within OS and NOS species was shown to contribute significantly to the sulfate signal measured via AMS. Strong nocturnal enhancements of NOS species were observed across both campaigns. The total concentration of OS and NOS species contributed an average of (2.0±0.9) % and (1.8±1.4) % to the total oxidized organic aerosol and up to a maximum of 4.2 % and 6.6 % across the pre- and post-monsoon periods, respectively. Overall, this study provides the first molecular-level measurements of SOA derived from isoprene and monoterpene in Delhi and demonstrates that both biogenic and anthropogenic sources of these compounds can be important in urban areas.
- Published
- 2022
5. Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India.
- Author
-
Bryant, Daniel J., Nelson, Beth S., Swift, Stefan J., Budisulistiorini, Sri Hapsari, Drysdale, Will S., Vaughan, Adam R., Newland, Mike J., Hopkins, James R., Cash, James M., Langford, Ben, Nemitz, Eiko, Acton, W. Joe F., Hewitt, C. Nicholas, Mandal, Tuhin, Gurjar, Bhola R., Shivani, Gadi, Ranu, Lee, James D., Rickard, Andrew R., and Hamilton, Jacqueline F.
- Subjects
CARBONACEOUS aerosols ,LIQUID chromatography-mass spectrometry ,ISOPRENE ,MICROBIOLOGICAL aerosols ,MONOTERPENES ,ACCELERATOR mass spectrometry ,VOLATILE organic compounds ,AEROSOLS - Abstract
Isoprene and monoterpene emissions to the atmosphere are generally dominated by biogenic sources. The oxidation of these compounds can lead to the production of secondary organic aerosol; however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene and monoterpenes can form secondary organic aerosol (SOA) heterogeneously via anthropogenic–biogenic interactions, resulting in the formation of organosulfate (OS) and nitrooxy-organosulfate (NOS) species. Delhi, India, is one of the most polluted cities in the world, but little is known about the emissions of biogenic volatile organic compounds (VOCs) or the sources of SOA. As part of the DELHI-FLUX project, gas-phase mixing ratios of isoprene and speciated monoterpenes were measured during pre- and post-monsoon measurement campaigns in central Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon (isoprene: (0.65±0.43) ppbv; limonene: (0.59±0.11) ppbv; α -pinene: (0.13±0.12) ppbv) than the pre-monsoon (isoprene: (0.13±0.18) ppbv; limonene: 0.011±0.025 (ppbv); α -pinene: 0.033±0.009) period. At night, isoprene and monoterpene concentrations correlated strongly with CO during the post-monsoon period. Filter samples of particulate matter less than 2.5 µm in diameter (PM 2.5) were collected and the OS and NOS content analysed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS 2). Inorganic sulfate was shown to facilitate the formation of isoprene OS species across both campaigns. Sulfate contained within OS and NOS species was shown to contribute significantly to the sulfate signal measured via AMS. Strong nocturnal enhancements of NOS species were observed across both campaigns. The total concentration of OS and NOS species contributed an average of (2.0±0.9) % and (1.8±1.4) % to the total oxidized organic aerosol and up to a maximum of 4.2 % and 6.6 % across the pre- and post-monsoon periods, respectively. Overall, this study provides the first molecular-level measurements of SOA derived from isoprene and monoterpene in Delhi and demonstrates that both biogenic and anthropogenic sources of these compounds can be important in urban areas. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. PM1 composition and source apportionment at two sites in Delhi, India, across multiple seasons
- Author
-
Reyes-Villegas, Ernesto, Panda, Upasana, Darbyshire, Eoghan, Cash, James M., Joshi, Rutambhara, Langford, Ben, Di Marco, Chiara F., Mullinger, Neil J., Alam, Mohammed S., Crilley, Leigh R., Rooney, Daniel J., Acton, W. Joe F., Drysdale, Will, Nemitz, Eiko, Flynn, Michael, Voliotis, Aristeidis, McFiggans, Gordon, Coe, Hugh, Lee, James, Hewitt, C. Nicholas, Heal, Mathew R., Gunthe, Sachin S., Mandal, Tuhin K., Gurjar, Bhola R., Shivani, Gadi, Ranu, Singh, Siddhartha, Soni, Vijay, and Allan, James D.
- Subjects
aerosol mass spectrometry ,Source apportionment ,urban air quality ,air pollution ,positive matrix factorization ,megacities ,atmospheric aerosol ,Atmospheric Sciences ,PM1 - Abstract
Air pollution in urban environments has been shown to have a negative impact on air quality and human health, particularly in megacities. Over recent decades, Delhi, India, has suffered high atmospheric pollution, with significant particulate matter (PM) concentrations as a result of anthropogenic activities. Organic aerosols (OAs) are composed of thousands of different chemical species and are one of the main constituents of submicron particles. However, quantitative knowledge of OA composition, their sources and their processes in urban environments is still limited. This is important particularly in India, as Delhi is a massive, inhomogeneous conurbation, where we would expect the apportionment and concentrations to vary depending on where in Delhi the measurements/source apportionment is performed, indicating the need for multisite measurements. This study presents the first multisite analysis carried out in India over different seasons, with a focus on identifying OA sources. The measurements were taken during 2018 at two sites in Delhi, India. One site was located at the India Meteorological Department, New Delhi (ND). The other site was located at the Indira Gandhi Delhi Technical University for Women, Old Delhi (OD). Non-refractory submicron aerosol (NR-PM1) concentrations (ammonium, nitrate, sulfate, chloride and organic aerosols) of four aerosol mass spectrometers were analysed. Collocated measurements of volatile organic compounds, black carbon, NOx and CO were performed. Positive matrix factorisation (PMF) analysis was performed to separate the organic fraction, identifying a number of conventional factors: hydrocarbon-like OAs (HOAs) related to traffic emissions, biomass burning OAs (BBOAs), cooking OAs (COAs) and secondary OAs (SOAs). A composition-based estimate of PM1 is defined by combining black carbon (BC) and NR-PM1 (C-PM1= BC + NR-PM1). No significant difference was observed in C-PM1 concentrations between sites, OD (142 ± 117 µg m−3) compared to ND (123 ± 71 µg m3), from post-monsoon measurements. A wider variability was observed between seasons, where pre-monsoon and monsoon showed C-PM1 concentrations lower than 60 µg m−3. A seasonal variation in C-PM1 composition was observed; SO42- showed a high contribution over pre-monsoon and monsoon seasons, while NO3- and Cl− had a higher contribution in winter and post-monsoon. The main primary aerosol source was from traffic, which is consistent with the PMF analysis and Aethalometer model analysis. Thus, in order to reduce PM1 concentrations in Delhi through local emission controls, traffic emission control offers the greatest opportunity. PMF–aerosol mass spectrometer (AMS) mass spectra will help to improve future aerosol source apportionment studies. The information generated in this study increases our understanding of PM1 composition and OA sources in Delhi, India. Furthermore, the scientific findings provide significant information to strengthen legislation that aims to improve air quality in India.
- Published
- 2021
7. Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification
- Author
-
Cash, James M., Langford, Ben, Di Marco, Chiara, Mullinger, Neil J., Allan, James, Reyes-Villegas, Ernesto, Joshi, Ruthambara, Heal, Mathew R., Acton, W. Joe F., Hewitt, C. Nicholas, Misztal, Pawel K., Drysdale, Will, Mandal, Tuhin K., Shivani, Shivani, Gadi, Ranu, Gurjar, Bhola Ram, Nemitz, Eiko, Cash, James M., Langford, Ben, Di Marco, Chiara, Mullinger, Neil J., Allan, James, Reyes-Villegas, Ernesto, Joshi, Ruthambara, Heal, Mathew R., Acton, W. Joe F., Hewitt, C. Nicholas, Misztal, Pawel K., Drysdale, Will, Mandal, Tuhin K., Shivani, Shivani, Gadi, Ranu, Gurjar, Bhola Ram, and Nemitz, Eiko
- Abstract
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry (HR-AMS). Old Delhi is one of the most polluted locations in the world, and PM1 concentrations reached ∼ 750 µg m−3 during the most polluted period, the post-monsoon period, where PM1 increased by 188 % over the pre-monsoon period. Sulfate contributes the largest inorganic PM1 mass fraction during the pre-monsoon (24 %) and monsoon (24 %) periods, with nitrate contributing most during the post-monsoon period (8 %). The organics dominate the mass fraction (54 %–68 %) throughout the three periods, and, using positive matrix factorisation (PMF) to perform source apportionment analysis of organic mass, two burning-related factors were found to contribute the most (35 %) to the post-monsoon increase. The first PMF factor, semi-volatility biomass burning organic aerosol (SVBBOA), shows a high correlation with Earth observation fire counts in surrounding states, which links its origin to crop residue burning. The second is a solid fuel OA (SFOA) factor with links to local open burning due to its high composition of polyaromatic hydrocarbons (PAHs) and novel AMS-measured marker species for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Two traffic factors were resolved: one hydrocarbon-like OA (HOA) factor and another nitrogen-rich HOA (NHOA) factor. The N compounds within NHOA were mainly nitrile species which have not previously been identified within AMS measurements. Their PAH composition suggests that NHOA is linked to diesel and HOA to compressed natural gas and petrol. These factors combined make the largest relative contribution to primary PM1 mass during the pre-monsoon and monsoon periods while contributing the second highest in the post-monsoon period. A cooking OA (COA) factor shows strong links to the secondary factor, semi-volatility oxygenated OA (SVOOA). Correlations with co-located v
- Published
- 2021
8. In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India
- Author
-
Nelson, Beth S., Stewart, Gareth J., Drysdale, Will S., Newland, Mike J., Vaughan, Adam R., Dunmore, Rachel E., Edwards, Pete M., Lewis, Alastair C., Hamilton, Jacqueline F., Acton, W. Joe, Hewitt, C. Nicholas, Crilley, Leigh R., Alam, Mohammed S., Şahin, Ülkü A., Beddows, David C.S., Bloss, William J., Slater, Eloise, Whalley, Lisa K., Heard, Dwayne E., Cash, James M., Langford, Ben, Nemitz, Eiko, Sommariva, Roberto, Cox, Sam, Gadi, Ranu, Gurjar, Bhola R., Hopkins, James R., Rickard, Andrew R., Lee, James D., Nelson, Beth S., Stewart, Gareth J., Drysdale, Will S., Newland, Mike J., Vaughan, Adam R., Dunmore, Rachel E., Edwards, Pete M., Lewis, Alastair C., Hamilton, Jacqueline F., Acton, W. Joe, Hewitt, C. Nicholas, Crilley, Leigh R., Alam, Mohammed S., Şahin, Ülkü A., Beddows, David C.S., Bloss, William J., Slater, Eloise, Whalley, Lisa K., Heard, Dwayne E., Cash, James M., Langford, Ben, Nemitz, Eiko, Sommariva, Roberto, Cox, Sam, Gadi, Ranu, Gurjar, Bhola R., Hopkins, James R., Rickard, Andrew R., and Lee, James D.
- Abstract
The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground-level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage and agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbon volatile organic compounds (C2–C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed; thus, VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 %, and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the Emissions Database for Global Atmospheric Research (EDGAR) v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to inc
- Published
- 2021
9. Seasonal analysis of submicron aerosol in Old Delhi using high resolution aerosol mass spectrometry: Chemical characterisation, source apportionment and new marker identification
- Author
-
Cash, James M., Langford, Ben, Marco, Chiara, Mullinger, Neil, Allan, James, Reyes-Villegas, Ernesto, Joshi, Ruthambara, Heal, Mathew R., Acton, W. Joe F., Hewitt, Nick, Misztal, Pawel, Drysdale, Will, Mandal, Tuhin K., Shivani, Gadi, Ranu, and Nemitz, Eiko
- Subjects
aerosol mass spectrometry ,Source apportionment ,010504 meteorology & atmospheric sciences ,air pollution ,positive matrix factorization ,megacities ,Delhi ,PM composition ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high resolution aerosol mass spectrometry (HR-AMS). Old Delhi is one of the most polluted locations in the world, and PM1 concentrations reached ~ 600 µg m−3 during the most polluted period, the post-monsoon, where PM1 increased by 178 % over the pre-monsoon period. Using positive matrix factorisation (PMF) to perform source apportionment analysis, two burning-related factors contribute the most (35 %) to the post-monsoon increase. The first PMF factor, semi-volatility biomass burning organic aerosol (SVBBOA), shows a high correlation with earth observation fire counts in surrounding states which links its origin to crop residue burning. The second is a solid-fuel OA (SFOA) factor with links to local open burning due to its high composition of polyaromatic hydrocarbons (PAH) and novel AMS measured marker species for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Two traffic factors were resolved, one hydrocarbon-like OA (HOA) factor and another nitrogen-rich HOA (NHOA) factor. The N compounds within NHOA were mainly nitrile species which have not previously been identified within AMS measurements. Their PAH composition suggests that NHOA is linked to diesel, and HOA to compressed natural gas and gasoline. These factors combined make the largest relative contribution to primary PM1 mass during the pre-monsoon and monsoon periods, while contributing the second highest in the post-monsoon. A cooking OA (COA) factor shows strong links to the secondary factor, semi-volatility oxygenated OA (SVOOA). Correlations with co-located volatile organic compound (VOC) measurements and AMS measured organic nitrogen oxides (OrgNO) suggest SVOOA is formed from aged COA. It is also found that a significant increase in chloride concentrations (488 %) from pre-monsoon to post-monsoon correlates well with SVBBOA and SFOA suggesting that crop residue burning and open waste burning are responsible. A reduction in traffic emissions would effectively reduce concentrations across most of the year. In order to reduce the post-monsoon peak, sources such as funeral pyres, solid waste burning and crop residue burning should be considered when developing new air quality policy.
- Published
- 2020
10. PM1 composition and source apportionment at two sites in Delhi, India across multiple seasons
- Author
-
Reyes Villegas, Ernesto, Panda, Upasana, Darbyshire, Eoghan, Cash, James M, Joshi, Rutambhara, Langford, Ben, Di Marco, Chiara F, Mullinger, Neil, Acton, W Joe F, Drysdale, Will, Nemitz, Eiko, Flynn, Michael, Voliotis, Aristeidis, McFiggans, Gordon, Coe, Hugh, Lee, James, Hewitt, C Nicholas, Heal, Mathew R, Gunthe, Sachin S, Shivani, Gadi, Ranu, Singh, Siddhartha, Soni, Vijay, and Allan, James
- Abstract
Air pollution in urban environments has been shown to have a negative impact on air quality and human health, particularly in megacities. Over recent decades, Delhi, India has suffered high atmospheric pollution, with significant particulate matter (PM) concentrations as result of anthropogenic activities. Organic aerosols (OA) are composed of thousands of different chemical species and are one of the main constituents of submicron particles. However, quantitative knowledge of OA composition, their sources and processes in urban environments is still limited. This is important particularly in India, as Delhi is a massive, inhomogeneous conurbation, which we would expect that the apportionment and concentrations will vary depending on where in Delhi the measurements/source apportionment is performed, indicating the need of multi-site measurements. This study presents the first multisite analysis carried out in India over different seasons, with a focus on identifying OA sources. The measurements were taken during 2018 at two sites in Delhi, India. One site was located at the India Meteorological Department, New Delhi (ND). The other site was located at the Indira Gandhi Delhi Technical University for Women, Old Delhi (OD). Non-refractory submicron aerosol (NR-PM1) concentrations (ammonium, nitrate, sulphate, chloride and organic aerosols) of four aerosol mass spectrometers were analysed. Collocated measurements of VOC, black carbon, NOx and CO were performed. Positive matrix factorization (PMF) analysis was performed to separate the organic fraction, identifying a number of conventional factors: hydrocarbon-like OA (HOA) related to traffic emissions, biomass burning OA (BBOA), cooking OA (COA) and secondary OA (SOA). A composition-based estimate of PM1 is defined by combining BC and NR-PM1 (C-PM1 = BC + NR-PM1). No significant difference was observed on C-PM1 concentrations between sites; OD (142 ± 117 µg m−3) compared to ND (123 ± 71 µg m−3), from post-monsoon measurements. A wider variability was observed between seasons, where pre-monsoon and monsoon showed C-PM1 concentrations lower than 60 µg m−3. A seasonal variation in C-PM1 composition was observed; SO42− showed a high contribution over pre-monsoon and monsoon seasons while NO3− and Cl− had a higher contribution in winter and post-monsoon. The main primary aerosol source was from traffic, which is consistent with the PMF analysis and aethalometer model analysis. Thus, in order to reduce PM1 concentrations in Delhi through local emission controls traffic emissions control offers the greatest opportunity. PMF-AMS mass spectra will help to improve future aerosol source apportionment studies. The information generated in this study increases our understanding of PM1 composition and OA sources in Delhi, India. Furthermore, the scientific findings provide significant information to strengthen legislation that aims to improve air quality in India.
- Published
- 2020
11. Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification.
- Author
-
Cash, James M., Langford, Ben, Di Marco, Chiara, Mullinger, Neil J., Allan, James, Reyes-Villegas, Ernesto, Joshi, Ruthambara, Heal, Mathew R., Acton, W. Joe F., Hewitt, C. Nicholas, Misztal, Pawel K., Drysdale, Will, Mandal, Tuhin K., Shivani, Gadi, Ranu, Gurjar, Bhola Ram, and Nemitz, Eiko
- Subjects
INCINERATION ,MASS spectrometry ,POLLUTION source apportionment ,AEROSOL analysis ,SEASONS ,CARBONACEOUS aerosols ,NITROGEN oxides ,COMPRESSED natural gas - Abstract
We present the first real-time composition of submicron particulate matter (PM 1) in Old Delhi using high-resolution aerosol mass spectrometry (HR-AMS). Old Delhi is one of the most polluted locations in the world, and PM 1 concentrations reached ∼ 750 µ g m -3 during the most polluted period, the post-monsoon period, where PM 1 increased by 188 % over the pre-monsoon period. Sulfate contributes the largest inorganic PM 1 mass fraction during the pre-monsoon (24 %) and monsoon (24 %) periods, with nitrate contributing most during the post-monsoon period (8 %). The organics dominate the mass fraction (54 %–68 %) throughout the three periods, and, using positive matrix factorisation (PMF) to perform source apportionment analysis of organic mass, two burning-related factors were found to contribute the most (35 %) to the post-monsoon increase. The first PMF factor, semi-volatility biomass burning organic aerosol (SVBBOA), shows a high correlation with Earth observation fire counts in surrounding states, which links its origin to crop residue burning. The second is a solid fuel OA (SFOA) factor with links to local open burning due to its high composition of polyaromatic hydrocarbons (PAHs) and novel AMS-measured marker species for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Two traffic factors were resolved: one hydrocarbon-like OA (HOA) factor and another nitrogen-rich HOA (NHOA) factor. The N compounds within NHOA were mainly nitrile species which have not previously been identified within AMS measurements. Their PAH composition suggests that NHOA is linked to diesel and HOA to compressed natural gas and petrol. These factors combined make the largest relative contribution to primary PM 1 mass during the pre-monsoon and monsoon periods while contributing the second highest in the post-monsoon period. A cooking OA (COA) factor shows strong links to the secondary factor, semi-volatility oxygenated OA (SVOOA). Correlations with co-located volatile organic compound (VOC) measurements and AMS-measured organic nitrogen oxides (OrgNO) suggest SVOOA is formed from aged COA. It is also found that a significant increase in chloride concentrations (522 %) from pre-monsoon to post-monsoon correlates well with SVBBOA and SFOA, suggesting that crop residue burning and open waste burning are responsible. A reduction in traffic emissions would effectively reduce concentrations across most of the year. In order to reduce the post-monsoon peak, sources such as funeral pyres, solid waste burning and crop residue burning should be considered when developing new air quality policy. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
12. In situ Ozone Production is highly sensitive to Volatile Organic Compounds in the Indian Megacity of Delhi.
- Author
-
Nelson, Beth S., Stewart, Gareth J., Drysdale, Will S., Newland, Mike J., Vaughan, Adam R., Dunmore, Rachel E., Edwards, Pete M., Lewis, Alastair C., Hamilton, Jacqueline F., Acton, W. Joe, Hewitt, C. Nicholas, Crilley, Leigh R., Alam, Mohammed S., §ahin, Ülkü A., Beddows, David C. S., Bloss, William J., Slater, Eloise, Whalley, Lisa K., Heard, Dwayne E., and Cash, James M.
- Abstract
The Indian megacity of Delhi suffers from some of the poorest air quality in the world. While ambient NO2 and particulate matter (PM) concentrations have received considerable attention in the city, high ground level ozone (O3) concentrations are an often overlooked component of pollution. O3 can lead to significant ecosystem damage, agricultural crop losses, and adversely affect human health. During October 2018, concentrations of speciated non-methane hydrocarbons volatile organic compounds (C2 -- C13), oxygenated volatile organic compounds (o-VOCs), NO, NO2, HONO, CO, SO2, O3, and photolysis rates, were continuously measured at an urban site in Old Delhi. These observations were used to constrain a detailed chemical box model utilising the Master Chemical Mechanism v3.3.1. VOCs and NOx (NO + NO2) were varied in the model to test their impact on local O3 production rates, P(O3), which revealed a VOC-limited chemical regime. When only NOx concentrations were reduced, a significant increase in P(O3) was observed, thus VOC co-reduction approaches must also be considered in pollution abatement strategies. Of the VOCs examined in this work, mean morning P(O3) rates were most sensitive to monoaromatic compounds, followed by monoterpenes and alkenes, where halving their concentrations in the model led to a 15.6 %, 13.1 % and 12.9 % reduction in P(O3), respectively. P(O3) was not sensitive to direct changes in aerosol surface area but was very sensitive to changes in photolysis rates, which may be influenced by future changes in PM concentrations. VOC and NOx concentrations were divided into emission source sectors, as described by the EDGAR v5.0 Global Air Pollutant Emissions and EDGAR v4.3.2_VOC_spec inventories, allowing for the impact of individual emission sources on P(O3) to be investigated. Reducing road transport emissions only, a common strategy in air pollution abatement strategies worldwide, was found to increase P(O3), even when the source was removed in its entirety. Effective reduction in P(O3) was achieved by reducing road transport along with emissions from combustion for manufacturing and process emissions. Modelled P(O3) reduced by ~ 20 ppb h-1 when these combined sources were halved. This study highlights the importance of reducing VOCs in parallel with NOx and PM in future pollution abatement strategies in Delhi. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
13. PM1 composition and source apportionment at two sites in Delhi, India across multiple seasons.
- Author
-
Reyes-Villegas, Ernesto, Panda, Upasana, Darbyshire, Eoghan, Cash, James M., Joshi, Rutambhara, Langford, Ben, Marco, Chiara F. Di, Mullinger, Neil, Acton, W. Joe F., Drysdale, Will, Nemitz, Eiko, Flynn, Michael, Voliotis, Aristeidis, McFiggans, Gordon, Coe, Hugh, Lee, James, Hewitt, C. Nicholas, Heal, Mathew R., Gunthe, Sachin S, and Shivani
- Abstract
Air pollution in urban environments has been shown to have a negative impact on air quality and human health, particularly in megacities. Over recent decades, Delhi, India has suffered high atmospheric pollution, with significant particulate matter (PM) concentrations as result of anthropogenic activities. Organic aerosols (OA) are composed of thousands of different chemical species and are one of the main constituents of submicron particles. However, quantitative knowledge of OA composition, their sources and processes in urban environments is still limited. This is important particularly in India, as Delhi is a massive, inhomogeneous conurbation, which we would expect that the apportionment and concentrations will vary depending on where in Delhi the measurements/source apportionment is performed, indicating the need of multi-site measurements. This study presents the first multisite analysis carried out in India over different seasons, with a focus on identifying OA sources. The measurements were taken during 2018 at two sites in Delhi, India. One site was located at the India Meteorological Department, New Delhi (ND). The other site was located at the Indira Gandhi Delhi Technical University for Women, Old Delhi (OD). Non-refractory submicron aerosol (NR-PM1) concentrations (ammonium, nitrate, sulphate, chloride and organic aerosols) of four aerosol mass spectrometers were analysed. Collocated measurements of VOC, black carbon, NOx and CO were performed. Positive matrix factorization (PMF) analysis was performed to separate the organic fraction, identifying a number of conventional factors: hydrocarbon-like OA (HOA) related to traffic emissions, biomass burning OA (BBOA), cooking OA (COA) and secondary OA (SOA). A composition-based estimate of PMi is defined by combining BC and NR-PMi (C-PMi = BC + NR-PM1). No significant difference was observed on C-PMi concentrations between sites; OD (142 +/- 117 ^g.m
-3 ) compared to ND (123 +/- 71 ^g.m-3 ), from post-monsoon measurements. A wider variability was observed between seasons, where pre-monsoon and monsoon showed C-PM1 concentrations lower than 60 ^g.m-3 . A seasonal variation in C-PM1 composition was observed; SO42- showed a high contribution over pre-monsoon and monsoon seasons while NO3- and Cl- had a higher contribution in winter and post- monsoon. The main primary aerosol source was from traffic, which is consistent with the PMF analysis and aethalometer model analysis. Thus, in order to reduce PM1 concentrations in Delhi through local emission controls traffic emissions control offers the greatest opportunity. PMF-AMS mass spectra will help to improve future aerosol source apportionment studies. The information generated in this study increases our understanding of PM1 composition and OA sources in Delhi, India. Furthermore, the scientific findings provide significant information to strengthen legislation that aims to improve air quality in India. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
14. A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation
- Author
-
Cash, James M., Heal, Mathew R., Langford, Ben, Drewer, Julia, Cash, James M., Heal, Mathew R., Langford, Ben, and Drewer, Julia
- Abstract
The atmospheric reactions leading to the generation of secondary organic aerosol (SOA) from the oxidation of isoprene are generally assumed to produce only racemic mixtures, but aspects of the chemical reactions suggest this may not be the case. In this review, the stereochemical outcomes of published isoprene-degradation mechanisms contributing to high amounts of SOA are evaluated. Despite evidence suggesting isoprene first-generation oxidation products do not contribute to SOA directly, this review suggests the stereochemistry of first-generation products may be important because their stereochemical configurations may be retained through to the second-generation products which form SOA. Specifically, due to the stereochemistry of epoxide ring-opening mechanisms, the outcome of the reactions involving epoxydiols of isoprene (IEPOX), methacrylic acid epoxide (MAE) and hydroxymethylmethyl-α-lactone (HMML) are, in principle, stereospecific which indicates the stereochemistry is predefined from first-generation precursors. The products from these three epoxide intermediates oligomerise to form macromolecules which are proposed to form chiral structures within the aerosol and are considered to be the largest contributors to SOA. If conditions in the atmosphere such as pH, aerosol water content, relative humidity, pre-existing aerosol, aerosol coatings and aerosol cation/anion content (and other) variables acting on the reactions leading to SOA affect the tacticity (arrangement of chiral centres) in the SOA then they may influence its physical properties, for example its hygroscopicity. Chamber studies of SOA formation from isoprene encompass particular sets of controlled conditions of these variables. It may therefore be important to consider stereochemistry when upscaling from chamber study data to predictions of SOA yields across the range of ambient atmospheric conditions. Experiments analysing the stereochemistry of the reactions under varying conditions of the abo
- Published
- 2016
15. A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation
- Author
-
Cash, James M., primary, Heal, Mathew R., additional, Langford, Ben, additional, and Drewer, Julia, additional
- Published
- 2016
- Full Text
- View/download PDF
16. Big and blue.
- Author
-
Cash, James M.
- Subjects
INVESTMENTS ,EXECUTIVES ,BUSINESS planning ,FINANCE - Abstract
The article presents information on money and investments for the week of June 2, 1997 with emphasis on Merrill Lynch & Co. Inc. Merrill Lynch basic value is a moderately large fund with $4.6 billion in retail assets. Given its performance record, there is only one reason it's not a bigger fund and that is that a lot of people have never heard about it. Manager Paul Hoffman goes to great lengths to hide his light under a bushel. Hoffmann has been running the fund ever since it opened, a shy over 20 years ago.
- Published
- 1997
17. Dr. Biotech.
- Author
-
Cash, James M.
- Subjects
MUTUAL funds - Abstract
Spotlights Apollo Medical Partners L.P., a biotechnology hedge fund run by Brandon Fradd. Fradd's medical and business training; How he became involved in mutual fund management; Companies in which is fund is or was invested; Biotechnology stocks he recommends.
- Published
- 1997
18. Into Thin Air.
- Author
-
Cash, James M. and Munk, Nina
- Subjects
- INTO Thin Air (Book)
- Abstract
Reviews the book `Into Thin Air,' by Jon Krakauer.
- Published
- 1997
19. Passive breath monitoring of livestock: using factor analysis to deconvolve the cattle shed.
- Author
-
Langford B, Cash JM, Beel G, Di Marco C, Duthie CA, Haskell M, Miller G, Nicoll L, Roberts SC, and Nemitz E
- Subjects
- Animals, Breath Tests methods, Cattle, Factor Analysis, Statistical, Livestock, Body Fluids chemistry, Volatile Organic Compounds analysis
- Abstract
Respiratory and metabolic diseases in livestock cost the agriculture sector billions each year, with delayed diagnosis a key exacerbating factor. Previous studies have shown the potential for breath analysis to successfully identify incidence of disease in a range of livestock. However, these techniques typically involve animal handling, the use of nasal swabs or fixing a mask to individual animals to obtain a sample of breath. Using a cohort of 26 cattle as an example, we show how the breath of individual animals within a herd can be monitored using a passive sampling system, where no such handling is required. These benefits come at the cost of the desired breath samples unavoidably mixed with the complex cocktail of odours that are present within the cattle shed. Data were analysed using positive matrix factorisation (PMF) to identify and remove non-breath related sources of volatile organic compounds. In total three breath factors were identified (endogenous-, non-endogenous breath and rumen) and seven factors related to other sources within and around the cattle shed (e.g. cattle feed, traffic, urine and faeces). Simulation of a respiratory disease within the herd showed that the abnormal change in breath composition was captured in the residuals of the ten factor PMF solution, highlighting the importance of their inclusion as part of the breath fraction. Increasing the number of PMF factors to 17 saw the identification of a 'diseased' factor, which coincided with the visits of the three 'diseased' cattle to the breath monitor platform. This work highlights the important role that factor analysis techniques can play in analysing passive breath monitoring data., (Creative Commons Attribution license.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.