23 results on '"Castellanos-Uribe, M."'
Search Results
2. Changes in nutrient composition and gene expression in growing mealworms (Tenebrio molitor)
- Author
-
Lopez-Viso, C., primary, Castellanos-Uribe, M., additional, May, T., additional, Brameld, J., additional, Salter, A., additional, and Parr, T., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Distinct Idiopathic Pulmonary Fibrosis Associated Transcriptome and Methylome Changes in Airway and Parenchymal Fibroblasts
- Author
-
Rajasekar, P., primary, Lagan, A., additional, Patel, J., additional, Barksby, B., additional, Burgoyne, R.A., additional, MacIssac, J.L., additional, Lin, D.T.S., additional, May, S.T., additional, Castellanos-Uribe, M., additional, Kobor, M.S., additional, Hackett, T.-L., additional, Halayko, A.J., additional, Knox, A., additional, Fisher, A.J., additional, Borthwick, L., additional, and Clifford, R.L., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Differential IPF Associated Gene Expression and DNA Methylation Changes in Human Airway and Parenchymal Fibroblasts
- Author
-
Rajasekar, P., primary, Lagan, A.L., additional, Patel, J., additional, Barksby, B., additional, Burgoyne, R.A., additional, MacIsaac, J., additional, Lin, D.T.S., additional, May, S.T., additional, Castellanos-Uribe, M., additional, Kobor, M.S., additional, Hackett, T.-L., additional, Halayko, A.J., additional, Knox, A., additional, Fisher, A., additional, Borthwick, L., additional, and Clifford, R.L., additional
- Published
- 2022
- Full Text
- View/download PDF
5. Using phenomics and genomics to unlock landrace and wild relative diversity for crop improvement.
- Author
-
Vosman, B., primary, Pelgrom, K., additional, Sharma, G., additional, Voorrips, R., additional, Broekgaarden, C., additional, Pritchard, J., additional, May, S., additional, Adobor, S., additional, Castellanos-Uribe, M., additional, Kaauwen, M. van, additional, Finkers, R., additional, Janssen, B., additional, Workum, W. T. van, additional, and Ford-Lloyd, B. V., additional
- Published
- 2016
- Full Text
- View/download PDF
6. P–366 MicroRNAs at the embryo-maternal interface have effects on endometrial cell proliferation
- Author
-
Makri, D, primary, Castellanos-Uribe, M, additional, May, S, additional, and Maalouf, W, additional
- Published
- 2021
- Full Text
- View/download PDF
7. Current status of the multinational Arabidopsis community
- Author
-
Parry, Geraint, Provart, Nicholas J., Brady, Siobhan M., Uzilday, Baris, Adams, K., Araújo, W., Aubourg, S., Baginsky, S., Bakker, E., Bärenfaller, K., Batley, J., Beale, M., Beilstein, M., Belkhadir, Y., Berardini, T., Bergelson, J., Blanco-Herrera, F., Brady, S., Braun, Hans-Peter, Briggs, S., Brownfield, L., Cardarelli, M., Castellanos-Uribe, M., Coruzzi, G., Dassanayake, M., Jaeger, G.D., Dilkes, B., Doherty, C., Ecker, J., Edger, P., Edwards, D., Kasmi, F.E., Eriksson, M., Exposito-Alonso, M., Falter-Braun, P., Fernie, A., Ferro, M., Fiehn, O., Friesner, J., Greenham, K., Guo, Y., Hamann, T., Hancock, A., Hauser, M.-T., Heazlewood, J., Ho, C.-H., Hõrak, H., Huala, E., Hwang, I., Iuchi, S., Jaiswal, P., Jakobson, L., Jiang, Y., Jiao, Y., Jones, A., Kadota, Y., Khurana, J., Kliebenstein, D., Knee, E., Kobayashi, M., Koch, M., Krouk, G., Larson, T., Last, R., Lepiniec, L., Li, S., Lurin, C., Lysak, M., Maere, S., Malinowski, R., Maumus, F., May, S., Mayer, K., Mendoza-Cozatl, D., Mendoza-Poudereux, I., Meyers, B., Micol, J.L., Millar, H., Mock, H.-P., Mukhtar, K., Mukhtar, S., Murcha, M., Nakagami, H., Nakamura, Y., Nicolov, L., Nikolau, B., Nowack, M., Nunes-Nesi, A., Palmgren, M., Parry, G., Patron, N., Peck, S., Pedmale, U., Perrot-Rechenmann, C., Pieruschka, R., Pío-Beltrán, J., Pires, J.C., Provart, N., Rajjou, L., Reiser, L., Reumann, S., Rhee, S., Rigas, S., Rolland, N., Romanowski, A., Santoni, V., Savaldi-Goldstein, S., Schmitz, R., Schulze, W., Seki, M., Shimizu, K.K., Slotkin, K., Small, I., Somers, D., Sozzani, R., Spillane, C., Srinivasan, R., Taylor, N., Tello-Ruiz, M.-K., Thelen, J., Tohge, T., Town, C., Toyoda, T., Uzilday, B., Peer, Y.V.D., Wijk, K., Gillhaussen, P.V., Walley, J., Ware, D., Weckwerth, W., Whitelegge, J., Wienkoop, S., Wright, C., Wrzaczek, M., Yamazaki, M., Yanovsky, M., Žárský, V., Zhong, X., Biological Systems Engineering, Organisms and Environment Research Division, Cardiff School of Biosciences, Cardiff University, University of Toronto, University of California [Davis] (UC Davis), University of California, Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany, Department of Ecology and Evolution [Chicago], University of Chicago, Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Unité de recherche en génomique végétale (URGV), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Rothamsted Research, Biotechnology and Biological Sciences Research Council (BBSRC), University of Arizona, Gregor Mendel Institute (GMI) - Vienna Biocenter (VBC), Austrian Academy of Sciences (OeAW), University of California (UC), Center for Genomics and Systems Biology, Department of Biology [New York], New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU)-New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Flanders Institute for Biotechnology, National Center for Atmospheric Research [Boulder] (NCAR), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Agricultural Sustainability Institute and Department of Neurobiology, Physiology, and Behavior, Norwegian University of Science and Technology (NTNU), University of Melbourne, King Abdullah University of Science and Technology (KAUST), University of Chinese Academy of Sciences [Beijing] (UCAS), The Sainsbury Laboratory [Norwich] (TSL), IBM Research – Tokyo, University Medical Center Groningen [Groningen] (UMCG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre for Novel Agricultural Products, Department of Biology, University of York [York, UK], Biologie des Semences (LBS), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), Sichuan University [Chengdu] (SCU), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Plant Systems Biology, Unité de Recherche Génomique Info (URGI), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Nottingham, UK (UON), Institute of Bioinformatics and System Biology (IBIS), Helmholtz Zentrum München = German Research Center for Environmental Health, Saint Mary's University [Halifax], Max Planck Institute for Plant Breeding Research (MPIPZ), National Institute of Genetics (NIG), University of Copenhagen = Københavns Universitet (UCPH), Division of Biology [La Jolla], University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Earlham Institute [Norwich], Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, University of Missouri [Columbia] (Mizzou), University of Missouri System, Institut Jean-Pierre Bourgin (IJPB), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Department of Plant Biology, Carnegie Institution for Science, Dynamique du protéome et biogenèse du chloroplaste (ChloroGenesis), Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Plateforme de Spectrométrie de Masse Protéomique - Mass Spectrometry Proteomics Platform (MSPP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Plant Systems Biology, Institute of Physiology and Biotechnology of plants, RIKEN Center for Sustainable Resource Science [Yokohama] (RIKEN CSRS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Unité de recherche Génétique et amélioration des plantes (GAP), Institut National de la Recherche Agronomique (INRA), Department of Biology, Duke University, Genetics and Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland [Galway] (NUI Galway), Universidade Federal de São Paulo, RIKEN Plant Science Center and RIKEN Bioinformatics and Systems Engineering Division, Cold Spring Harbor Laboratory (CSHL), University of Vienna [Vienna], University of California [Los Angeles] (UCLA), Department of Plant Molecular Biology, Université de Lausanne = University of Lausanne (UNIL), UKRI-BBSRC grant BB/M004376/1, HHMI Faculty Scholar Fellowship, Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 118Z137, UK Research & Innovation (UKRI) Biotechnology and Biological Sciences Research Council (BBSRC) BB/M004376/1, Sainsbury Lab, Norwich Research Park, Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Helmholtz-Zentrum München (HZM), University of Copenhagen = Københavns Universitet (KU), University of California-University of California, Carnegie Institution for Science [Washington], Université de Lausanne (UNIL), Ege Üniversitesi, Organismal and Evolutionary Biology Research Programme, Plant Biology, Viikki Plant Science Centre (ViPS), Receptor-Ligand Signaling Group, University of Zurich, Parry, Geraint, Provart, Nicholas J, and Brady, Siobhan M
- Subjects
0106 biological sciences ,Arabidopsis thaliana ,[SDV]Life Sciences [q-bio] ,White Paper ,Genetics and Molecular Biology (miscellaneous) ,Plant Science ,Biochemistry ,01 natural sciences ,Dewey Decimal Classification::500 | Naturwissenschaften::580 | Pflanzen (Botanik) ,Research community ,Arabidopsis ,1110 Plant Science ,0303 health sciences ,Ecology ,biology ,1184 Genetics, developmental biology, physiology ,ddc:580 ,Multinational corporation ,MAP ,590 Animals (Zoology) ,Life Sciences & Biomedicine ,Arabidopsis research community ,Evolution ,Steering committee ,Multinational Arabidopsis Steering Committee ,Library science ,1301 Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Business and Economics ,10127 Institute of Evolutionary Biology and Environmental Studies ,03 medical and health sciences ,Behavior and Systematics ,Political science ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MASC ,roadmap ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Plant Sciences ,Botany ,15. Life on land ,11831 Plant biology ,biology.organism_classification ,White Papers ,collaboration ,1105 Ecology, Evolution, Behavior and Systematics ,QK1-989 ,Arabidopsis Thaliana ,Collaboration ,Research Network ,Roadmap ,570 Life sciences ,1182 Biochemistry, cell and molecular biology ,2303 Ecology ,010606 plant biology & botany - Abstract
The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plantArabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the "fourth decadal roadmap," which will advise and coordinate the global activities of the Arabidopsis research community., UKRI-BBSRC grant [BB/M004376/1]; HHMI Faculty Scholar Fellowship; Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [118Z137], UKRI-BBSRC grant, Grant/Award Number: BB/M004376/1; HHMI Faculty Scholar Fellowship; the Scientific and Technological Research Council of Turkey, Grant/Award Number: 118Z137
- Published
- 2020
8. Differential Methylation of TWIST1 Is a Biomarker of Airway Versus Parenchymal Fibroblasts Within the Lung: Relevance to Asthma Pathogenesis
- Author
-
Clifford, R.L., primary, Yang, C.X., additional, Fishbane, N., additional, Patel, J., additional, MacIsaac, J., additional, McEwen, L., additional, Castellanos-Uribe, M., additional, May, S., additional, Nair, P.K., additional, Kobor, M., additional, Knox, A., additional, and Hackett, T.-L., additional
- Published
- 2020
- Full Text
- View/download PDF
9. Phenomics and genomics tools for facilitating brassica crop improvement
- Author
-
Vosman, B.J., Pelgrom, K.T.B., Sharma, G., Voorrips, R.E., Broekgaarden, C., Pritchard, J., May, S., Adobor, S., Castellanos-Uribe, M., van Kaauwen, M.P.W., Janssen, B., van Workum, W., and Ford-Lloyd, B.
- Subjects
PRI Biodiversity and Breeding ,PBR Non host and insect resistance ,Plant Breeding ,PRI Biodiversiteit en Veredeling ,Life Science ,PBR Non host en Insectenresistentie - Published
- 2015
10. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner
- Author
-
Kroes A, Broekgaarden C, Castellanos Uribe M, Sean May, Jj, Loon, and Dicke M
11. Adaptive resistance is not responsible for long-term drug resistance in a cellular model of triple negative breast cancer.
- Author
-
Kumar U, Castellanos-Uribe M, May ST, and Yagüe E
- Subjects
- Humans, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Cell Line, Tumor, Gene Expression Regulation, Neoplastic, Doxorubicin pharmacology, Doxorubicin therapeutic use, Drug Resistance, Neoplasm genetics, Triple Negative Breast Neoplasms drug therapy, Triple Negative Breast Neoplasms genetics, Triple Negative Breast Neoplasms metabolism
- Abstract
Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisomerase IIα). As expected, CALDOX cells have a signature characterized, in addition to down-regulation of TOP2A, by genes and pathways associated with drug resistance, metastasis and stemness. Both CAL51 and CALDOX stress signatures share 12 common genes (TRIM22, FAS, SPATA18, SULF2, CDKN1A, GDF15, MYO6, CXCL5, CROT, EPPK1, ZMAT3 and CD44), with roles in the above-mentioned pathways, indicating that these cells have similar functional responses to doxorubicin relaying on the p53 control of apoptosis. Eight genes are shared by both drug stress signatures (in CAL51 and CALDOX cells) and CALDOX resistant cells (FAS, SULF2, CDKN1A, CXCL5, CD44, SPATA18, TRIM22 and CROT), many of them targets of p53. This corroborates experimental data indicating that CALDOX cells, even in the absence of drug, have activated, at least partially, the p53-p21 axis and DNA damage response. Although this eight-gene signature might be an indicator of adaptive resistance, as this transient phenomenon due to short-term stress may not revert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. Lipoprotein Deprivation Reveals a Cholesterol-Dependent Therapeutic Vulnerability in Diffuse Glioma Metabolism.
- Author
-
Wood J, Abdelrazig S, Evseev S, Ortori C, Castellanos-Uribe M, May ST, Barrett DA, Diksin M, Chakraborty S, Kim DH, Grundy RG, and Rahman R
- Abstract
Poor outcomes associated with diffuse high-grade gliomas occur in both adults and children, despite substantial progress made in the molecular characterisation of the disease. Targeting the metabolic requirements of cancer cells represents an alternative therapeutic strategy to overcome the redundancy associated with cell signalling. Cholesterol is an integral component of cell membranes and is required by cancer cells to maintain growth and may also drive transformation. Here, we show that removal of exogenous cholesterol in the form of lipoproteins from culture medium was detrimental to the growth of two paediatric diffuse glioma cell lines, KNS42 and SF188, in association with S-phase elongation and a transcriptomic program, indicating dysregulated cholesterol homeostasis. Interrogation of metabolic perturbations under lipoprotein-deficient conditions revealed a reduced abundance of taurine-related metabolites and cholesterol ester species. Pharmacological reduction in intracellular cholesterol via decreased uptake and increased export was simulated using the liver X receptor agonist LXR-623, which reduced cellular viability in both adult and paediatric models of diffuse glioma, although the mechanism appeared to be cholesterol-independent in the latter. These results provide proof-of-principle for further assessment of liver X receptor agonists in paediatric diffuse glioma to complement the currently approved therapeutic regimens and expand the options available to clinicians to treat this highly debilitating disease.
- Published
- 2022
- Full Text
- View/download PDF
13. Whole blood transcriptomic profiling identifies molecular pathways related to cardiovascular mortality in heart failure.
- Author
-
Nath M, Romaine SPR, Koekemoer A, Hamby S, Webb TR, Nelson CP, Castellanos-Uribe M, Papakonstantinou M, Anker SD, Lang CC, Metra M, Zannad F, Filippatos G, van Veldhuisen DJ, Cleland JG, Ng LL, May ST, Marelli-Berg F, Voors AA, Timmons JA, and Samani NJ
- Subjects
- Biomarkers, Chronic Disease, Humans, Prognosis, Transcriptome, Heart Failure
- Abstract
Aims: Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF., Methods and Results: Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF., Conclusion: Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets., (© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.)
- Published
- 2022
- Full Text
- View/download PDF
14. Genome-Wide Expression and Anti-Proliferative Effects of Electric Field Therapy on Pediatric and Adult Brain Tumors.
- Author
-
Branter J, Estevez-Cebrero M, Diksin M, Griffin M, Castellanos-Uribe M, May S, Rahman R, Grundy R, Basu S, and Smith S
- Subjects
- Cell Line, Tumor, Cell Survival genetics, Child, Combined Modality Therapy methods, Electric Stimulation Therapy methods, Endoplasmic Reticulum Stress genetics, G2 Phase genetics, Glioblastoma genetics, Glioblastoma therapy, Humans, Mitochondria genetics, Resting Phase, Cell Cycle genetics, Brain pathology, Brain Neoplasms genetics, Brain Neoplasms therapy, Cell Proliferation genetics
- Abstract
The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.
- Published
- 2022
- Full Text
- View/download PDF
15. MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells.
- Author
-
Kumar U, Hu Y, Masrour N, Castellanos-Uribe M, Harrod A, May ST, Ali S, Speirs V, Coombes RC, and Yagüe E
- Subjects
- Antineoplastic Agents pharmacology, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Dose-Response Relationship, Drug, Drug Resistance, Multiple drug effects, Drug Resistance, Neoplasm drug effects, Female, Humans, MCF-7 Cells, Tumor Cells, Cultured, Breast Neoplasms metabolism, Drug Resistance, Multiple physiology, Drug Resistance, Neoplasm physiology, Forkhead Transcription Factors metabolism, MicroRNAs metabolism, Transforming Growth Factor beta2 metabolism
- Abstract
Triple-negative metaplastic breast carcinoma (MBC) poses a significant treatment challenge due to lack of targeted therapies and chemotherapy resistance. We isolated a novel MBC cell line, BAS, which showed a molecular and phenotypic profile different from the only other metaplastic cell model, HS578T cells. To gain insight behind chemotherapeutic resistance, we generated doxorubicin (HS-DOX, BAS-DOX) and paclitaxel (HS-TX, BAS-TX) resistant derivatives of both cell lines. Drug sensitivity assays indicated a truly multidrug resistant (MDR) phenotype. Both BAS-DOX and BAS-TX showed up-regulation of FOXC1 and its experimental down-regulation re-sensitized cells to doxorubicin and paclitaxel. Experimental modulation of FOXC1 expression in MCF-7 and MDA-MB-231 cells corroborated its role in MDR. Genome-wide expression analyses identified gene expression signatures characterized by up-regulation of TGFB2, which encodes cytokine TGF-β2, in both BAS-DOX and BAS-TX cells. Pharmacological inhibition of the TGF-β pathway with galunisertib led to down-regulation of FOXC1 and increase in drug sensitivity in both BAS-DOX and BAS-TX cells. MicroRNA (miR) expression analyses identified high endogenous miR-495-3p levels in BAS cells that were downregulated in both BAS MDR cells. Transient expression of miR-495-3p mimic in BAS-DOX and BAS-TX cells caused downregulation of TGFB2 and FOXC1 and re-sensitized cells to doxorubicin and paclitaxel, whereas miR-495-3p inhibition in BAS cells led to increase in resistance to both drugs and up-regulation of TGFB2 and FOXC1. Together, these data suggest interplay between miR-495-3p, TGF-β2 and FOXC1 regulating MDR in MBC and open the exploration of novel therapeutic strategies., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
16. Mast-Cell Tryptase Release Contributes to Disease Progression in Lymphangioleiomyomatosis.
- Author
-
Babaei-Jadidi R, Dongre A, Miller S, Castellanos Uribe M, Stewart ID, Thompson ZM, Nateri AS, Bradding P, May ST, Clements D, and Johnson SR
- Subjects
- Adult, Animals, Biomarkers, Tumor genetics, Chemokines metabolism, Disease Progression, Fibroblasts pathology, Gene Expression Regulation, Neoplastic, Humans, Lung Neoplasms genetics, Lung Neoplasms pathology, Lymphangioleiomyomatosis genetics, Lymphangioleiomyomatosis pathology, Mast Cells pathology, Mice, Mice, Inbred C57BL, Middle Aged, Spheroids, Cellular, Tumor Cells, Cultured, Biomarkers, Tumor metabolism, Fibroblasts metabolism, Lung Neoplasms metabolism, Lymphangioleiomyomatosis metabolism, Mast Cells metabolism, Tryptases metabolism
- Abstract
Rationale: Lymphangioleiomyomatosis (LAM) is a multisystem disease that causes lung cysts and respiratory failure. Loss of TSC (tuberous sclerosis complex) gene function results in a clone of "LAM cells" with dysregulated mTOR (mechanistic target of rapamycin) activity. LAM cells and fibroblasts form lung nodules that also contain mast cells, although their significance is unknown. Objectives: To understand the mechanism of mast-cell accumulation and the role of mast cells in the pathogenesis of LAM. Methods: Gene expression was examined using transcriptional profiling and qRT-PCR. Mast cell/LAM nodule interactions were examined in vitro using spheroid TSC2-null cell/fibroblast cocultures and in vivo using an immunocompetent Tsc2-null murine homograft model. Measurements and Main Results: LAM-derived cell/fibroblast cocultures induced multiple CXC chemokines in fibroblasts. LAM lungs had increased tryptase-positive mast cells expressing CXCRs (CXC chemokine receptors) ( P < 0.05). Mast cells located around the periphery of LAM nodules were positively associated with the rate of lung function loss ( P = 0.016). LAM spheroids attracted mast cells, and this process was inhibited by pharmacologic and CRISPR/cas9 inhibition of CXCR1 and CXCR2. LAM spheroids caused mast-cell tryptase release, which induced fibroblast proliferation and increased LAM-spheroid size (1.36 ± 0.24-fold; P = 0.0019). The tryptase inhibitor APC366 and sodium cromoglycate (SCG) inhibited mast cell-induced spheroid growth. In vivo , SCG reduced mast-cell activation and Tsc2-null lung tumor burden (vehicle: 32.5.3% ± 23.6%; SCG: 5.5% ± 4.3%; P = 0.0035). Conclusions: LAM-cell/fibroblast interactions attract mast cells where tryptase release contributes to disease progression. Repurposing SCG for use in LAM should be studied as an alternative or adjunct to mTOR inhibitor therapy.
- Published
- 2021
- Full Text
- View/download PDF
17. TWIST1 DNA methylation is a cell marker of airway and parenchymal lung fibroblasts that are differentially methylated in asthma.
- Author
-
Clifford RL, Yang CX, Fishbane N, Patel J, MacIsaac JL, McEwen LM, May ST, Castellanos-Uribe M, Nair P, Obeidat M, Kobor MS, Knox AJ, and Hackett TL
- Subjects
- Aged, Airway Remodeling genetics, Asthma pathology, Biomarkers metabolism, Case-Control Studies, CpG Islands genetics, Female, Gene Expression, Genome-Wide Association Study methods, Humans, Lung pathology, Male, Middle Aged, Predictive Value of Tests, Asthma genetics, DNA Methylation genetics, Fibroblasts metabolism, Nuclear Proteins metabolism, Parenchymal Tissue cytology, Twist-Related Protein 1 metabolism
- Abstract
Background: Mesenchymal fibroblasts are ubiquitous cells that maintain the extracellular matrix of organs. Within the lung, airway and parenchymal fibroblasts are crucial for lung development and are altered with disease, but it has been difficult to understand their roles due to the lack of distinct molecular markers. We studied genome-wide DNA methylation and gene expression in airway and parenchymal lung fibroblasts from healthy and asthmatic donors, to identify a robust cell marker and to determine if these cells are molecularly distinct in asthma., Results: Airway (N = 8) and parenchymal (N = 15) lung fibroblasts from healthy individuals differed in the expression of 158 genes, and DNA methylation of 3936 CpGs (Bonferroni adjusted p value < 0.05). Differential DNA methylation between cell types was associated with differential expression of 42 genes, but no single DNA methylation CpG feature (location, effect size, number) defined the interaction. Replication of gene expression and DNA methylation in a second cohort identified TWIST1 gene expression, DNA methylation and protein expression as a cell marker of airway and parenchymal lung fibroblasts, with DNA methylation having 100% predictive discriminatory power. DNA methylation was differentially altered in parenchymal (112 regions) and airway fibroblasts (17 regions) with asthmatic status, with no overlap between regions., Conclusions: Differential methylation of TWIST1 is a robust cell marker of airway and parenchymal lung fibroblasts. Airway and parenchymal fibroblast DNA methylation are differentially altered in individuals with asthma, and the role of both cell types should be considered in the pathogenesis of asthma.
- Published
- 2020
- Full Text
- View/download PDF
18. A Genetic Analysis of Tumor Progression in Drosophila Identifies the Cohesin Complex as a Suppressor of Individual and Collective Cell Invasion.
- Author
-
Canales Coutiño B, Cornhill ZE, Couto A, Mack NA, Rusu AD, Nagarajan U, Fan YN, Hadjicharalambous MR, Castellanos Uribe M, Burrows A, Lourdusamy A, Rahman R, May ST, and Georgiou M
- Abstract
Metastasis is the leading cause of death for patients with cancer. Consequently it is imperative that we improve our understanding of the molecular mechanisms that underlie progression of tumor growth toward malignancy. Advances in genome characterization technologies have been very successful in identifying commonly mutated or misregulated genes in a variety of human cancers. However, the difficulty in evaluating whether these candidates drive tumor progression remains a major challenge. Using the genetic amenability of Drosophila melanogaster we generated tumors with specific genotypes in the living animal and carried out a detailed systematic loss-of-function analysis to identify conserved genes that enhance or suppress epithelial tumor progression. This enabled the discovery of functional cooperative regulators of invasion and the establishment of a network of conserved invasion suppressors. This includes constituents of the cohesin complex, whose loss of function either promotes individual or collective cell invasion, depending on the severity of effect on cohesin complex function., Competing Interests: Declaration of Interests The authors declare no competing interests., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
19. Proteasome Inhibition in Brassica napus Roots Increases Amino Acid Synthesis to Offset Reduced Proteolysis.
- Author
-
Pereksta D, King D, Saki F, Maroli A, Leonard E, Suseela V, May S, Castellanos Uribe M, Tharayil N, and Van Hoewyk D
- Subjects
- Adenosine Triphosphate metabolism, Brassica napus drug effects, Brassica napus growth & development, Cell Respiration, Dimethyl Sulfoxide pharmacology, Glutamate-Ammonia Ligase metabolism, Oxygen Consumption, Plant Proteins metabolism, Proteasome Endopeptidase Complex drug effects, Reactive Oxygen Species metabolism, Stress, Physiological, Amino Acids biosynthesis, Brassica napus metabolism, Plant Roots metabolism, Proteasome Endopeptidase Complex metabolism, Proteolysis
- Abstract
Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants., (© The Author(s) 2020. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
20. Biobanking Education.
- Author
-
Castellanos-Uribe M, Gormally E, Zhou H, Matzke E, and H Watson P
- Subjects
- Curriculum, Education, Graduate economics, Humans, Biological Specimen Banks, Biomedical Research education
- Published
- 2020
- Full Text
- View/download PDF
21. Integrated BioBank of Luxembourg-University of Luxembourg: University Biobanking Certificate.
- Author
-
Castellanos-Uribe M, May ST, and Betsou F
- Subjects
- Curriculum, Education, Graduate economics, Humans, Luxembourg, Universities, Biological Specimen Banks organization & administration, Biomedical Research education, Certification methods
- Published
- 2020
- Full Text
- View/download PDF
22. Repurposing Antibacterial AM404 as a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells.
- Author
-
Ahmed M, Jinks N, Babaei-Jadidi R, Kashfi H, Castellanos-Uribe M, May ST, Mukherjee A, and Nateri AS
- Abstract
Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5 -knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent., Competing Interests: The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
23. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner.
- Author
-
Kroes A, Broekgaarden C, Castellanos Uribe M, May S, van Loon JJA, and Dicke M
- Subjects
- Animals, Feeding Behavior, Gene Expression Regulation, Plant, Herbivory, Transcriptome, Aphids, Arabidopsis
- Abstract
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory., Competing Interests: Compliance with ethical standards Funding This work was supported by a TOP GO grant (Grant No. 854.10.010 to MD) from The Netherlands Organization for Scientific Research (NWO). CB was supported by the Dutch Technology Foundation STW, part of NWO (VENI Grant No. 13087).
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.