1. Theoretical and numerical comparison between the pseudopotential and the free energy lattice Boltzmann methods
- Author
-
Czelusniak, L. E., Martins, I. T., Cabezas-Gómez, L., Bulgarelli, N. A. V., Verde, W. Monte, and de Castro, M. S.
- Subjects
Physics - Computational Physics - Abstract
The pseudopotential and free energy models are two popular extensions of the lattice Boltzmann method for multiphase flows. Until now, they have been developed apart from each other in the literature. However, important questions about whether each method performs better needs to be solved. In this work, we perform a theoretical and numerical comparison between both methods. This comparison is only possible because we developed a novel approach for controlling the interface thickness in the pseudopotential method independently on the equation of state. In this way, it is possible to compare both methods maintaining the same equilibrium densities, interface thickness, surface tension and equation of state parameters. The well-balanced approach was selected to represent the free energy. We found that the free energy one is more practical to use, as it is not necessary to carry out previous simulations to determine simulation parameters (interface thickness, surface tension, etc). In addition, the tests proofed that the free energy model is more accurate than the pseudopotential model. Furthermore, the pseudopotential method suffers from a lack of thermodynamic consistency even when applying the corrections proposed in the literature. On the other hand, for both static and dynamic tests we verified that the pseudopotential method is more stable than the free energy one, allowing simulations with lower reduced temperatures. We hope that these results will guide authors in the use of each method., Comment: 20 pages, 9 figures
- Published
- 2024