105 results on '"Castro-Nallar E"'
Search Results
2. List of Contributors
- Author
-
Abdelbary, M.M.H., primary, Aguileta, G., additional, Alout, H., additional, Andam, C.P., additional, Arenas, M., additional, Azarian, T., additional, Baquero, F., additional, Basset, P., additional, Billmyre, R.B., additional, Biron, D.G., additional, Blanc, D.S., additional, Broset, E., additional, Byrnes, E.J., additional, Castro-Nallar, E., additional, Challagundla, L., additional, Cochran, G., additional, Cohan, F.M., additional, Comas, I., additional, Cornel, A.J., additional, D'arc, M., additional, David, J.-P., additional, Delaporte, E., additional, de Meeûs, T., additional, Djogbénou, L., additional, Dorn, P.L., additional, Dujardin, J.-P., additional, Elliot, E., additional, Etienne, L., additional, Feil, E.J., additional, Fisher, M., additional, Fouchier, R.A.M., additional, Galán, J.C., additional, Gibson, W., additional, Gilabert, A., additional, Giraud, T., additional, Gladieux, P., additional, González-Candelas, F., additional, Gonzalo-Asensio, J., additional, Hanage, W.P., additional, Harpending, H., additional, Heitman, J., additional, Hill, C.A., additional, Holzmuller, P., additional, Hurt, A.C., additional, Justi, S., additional, Kopac, Sarah, additional, Koskella, B., additional, Krafsur, E.S., additional, Labbé, P., additional, Lanzaro, G.C., additional, Lee, Y., additional, Lewis, M.D., additional, Liu, Y.-T., additional, Mahungu, T., additional, Martínez, J.L., additional, Miles, M.A., additional, Milesi, P., additional, Missé, D., additional, Morgan, A.D., additional, Morrison, D.A., additional, Nedelkov, D., additional, Owen, A., additional, Pasteur, N., additional, Peeters, M., additional, Pérez-Losada, M., additional, Polley, S.D., additional, Prugnolle, F., additional, Rasigade, J.-P., additional, Robinson, D.A., additional, Shaw, M.A., additional, Shi, Z., additional, Sutherland, C.J., additional, Tibayrenc, M., additional, van Aerle, R., additional, van der Giezen, M., additional, Van Regenmortel, M.H.V., additional, Vernet, G., additional, Vijaykrishna, D., additional, Wang, L.-F., additional, Weill, M., additional, Wirth, T., additional, and Yeo, M., additional
- Published
- 2017
- Full Text
- View/download PDF
3. Multilocus Sequence Typing of Pathogens
- Author
-
Pérez-Losada, M., primary, Arenas, M., additional, and Castro-Nallar, E., additional
- Published
- 2017
- Full Text
- View/download PDF
4. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
- Author
-
Chng K. R., Li C., Bertrand D., Ng A. H. Q., Kwah J. S., Low H. M., Tong C., Natrajan M., Zhang M. H., Xu L., Ko K. K. K., Ho E. X. P., Av-Shalom T. V., Teo J. W. P., Khor C. C., Danko D., Bezdan D., Afshinnekoo E., Ahsanuddin S., Bhattacharya C., Butler D. J., De Filippis F., Hecht J., Kahles A., Karasikov M., Kyrpides N. C., Leung M. H. Y., Meleshko D., Mustafa H., Mutai B., Neches R. Y., Ng A., Nieto-Caballero M., Nikolayeva O., Nikolayeva T., Png E., Sanchez J. L., Shaaban H., Sierra M. A., Tong X., Young B., Alicea J., Bhattacharyya M., Blekhman R., Castro-Nallar E., Canas A. M., Chatziefthimiou A. D., Crawford R. W., Deng Y., Desnues C., Dias-Neto E., Donnellan D., Dybwad M., Elhaik E., Ercolini D., Frolova A., Graf A. B., Green D. C., Hajirasouliha I., Hernandez M., Iraola G., Jang S., Jones A., Kelly F. J., Knights K., Labaj P. P., Lee P. K. H., Shawn L., Ljungdahl P., Lyons A., Mason-Buck G., McGrath K., Mongodin E. F., Moraes M. O., Nagarajan N., Noushmehr H., Oliveira M., Ossowski S., Osuolale O. O., Ozcan O., Paez-Espino D., Rascovan N., Richard H., Ratsch G., Schriml L. M., Semmler T., Sezerman O. U., Shi L., Song L. H., Suzuki H., Court D. S., Thomas D., Tighe S. W., Udekwu K. I., Ugalde J. A., Valentine B., Vassilev D. I., Vayndorf E., Velavan T. P., Zambrano M. M., Zhu J., Zhu S., Mason C. E., Chen S. L., Ng O. T., Marimuthu K., Ang B., Genome Institute of Singapore (GIS), Singapore University of Technology and Design (SUTD), Singapore General Hospital, National University Hospital [Singapore] (NUH), Weill Cornell Medicine [Cornell University], Cornell University [New York], Nanyang Technological University [Singapour], Tan Tock Seng Hospital, Department of Computational and Systems Biology [Singapore], Funding for this work was provided by A*STAR (N.N.), and we are grateful for support from NMRC (NMRC CGAug16C005: O.T.N. and K.M.). C.E.M. acknowledges support from the WorldQuant Foundation, the Bill and Melinda Gates Foundation (OPP1151054) and the Alfred P. Sloan Foundation (G-2015-13964). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We would like to thank J. Gilbert for insightful comments and feedback on this work., MetaSUB Consortium: David Danko, Daniela Bezdan, Ebrahim Afshinnekoo, Sofia Ahsanuddin, Chandrima Bhattacharya, Daniel J. Butler, Kern Rei Chng, Francesca De Filippis, Jochen Hecht, Andre Kahles, Mikhail Karasikov, Nikos C. Kyrpides, Marcus H. Y. Leung, Dmitry Meleshko, Harun Mustafa, Beth Mutai, Russell Y. Neches, Amanda Ng, Marina Nieto-Caballero, Olga Nikolayeva, Tatyana Nikolayeva, Eileen Png, Jorge L. Sanchez, Heba Shaaban, Maria A. Sierra, Xinzhao Tong, Ben Young, Josue Alicea, Malay Bhattacharyya, Ran Blekhman, Eduardo Castro-Nallar, Ana M. Cañas, Aspassia D. Chatziefthimiou, Robert W. Crawford, Youping Deng, Christelle Desnues, Emmanuel Dias-Neto, Daisy Donnellan, Marius Dybwad, Eran Elhaik, Danilo Ercolini, Alina Frolova, Alexandra B. Graf, David C. Green, Iman Hajirasouliha, Mark Hernandez, Gregorio Iraola, Soojin Jang, Angela Jones, Frank J. Kelly, Kaymisha Knights, Paweł P. Łabaj, Patrick K. H. Lee, Levy Shawn, Per Ljungdahl, Abigail Lyons, Gabriella Mason-Buck, Ken McGrath, Emmanuel F. Mongodin, Milton Ozorio Moraes, Niranjan Nagarajan, Houtan Noushmehr, Manuela Oliveira, Stephan Ossowski, Olayinka O. Osuolale, Orhan Özcan, David Paez-Espino, Nicolas Rascovan, Hugues Richard, Gunnar Rätsch, Lynn M. Schriml, Torsten Semmler, Osman U. Sezerman, Leming Shi, Le Huu Song, Haruo Suzuki, Denise Syndercombe Court, Dominique Thomas, Scott W. Tighe, Klas I. Udekwu, Juan A. Ugalde, Brandon Valentine, Dimitar I. Vassilev, Elena Vayndorf, Thirumalaisamy P. Velavan, María M. Zambrano, Jifeng Zhu, Sibo Zhu & Christopher E. Mason, Weill Cornell Medicine [New York], Chng, K. R., Li, C., Bertrand, D., Ng, A. H. Q., Kwah, J. S., Low, H. M., Tong, C., Natrajan, M., Zhang, M. H., Xu, L., Ko, K. K. K., Ho, E. X. P., Av-Shalom, T. V., Teo, J. W. P., Khor, C. C., Danko, D., Bezdan, D., Afshinnekoo, E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., De Filippis, F., Hecht, J., Kahles, A., Karasikov, M., Kyrpides, N. C., Leung, M. H. Y., Meleshko, D., Mustafa, H., Mutai, B., Neches, R. Y., Ng, A., Nieto-Caballero, M., Nikolayeva, O., Nikolayeva, T., Png, E., Sanchez, J. L., Shaaban, H., Sierra, M. A., Tong, X., Young, B., Alicea, J., Bhattacharyya, M., Blekhman, R., Castro-Nallar, E., Canas, A. M., Chatziefthimiou, A. D., Crawford, R. W., Deng, Y., Desnues, C., Dias-Neto, E., Donnellan, D., Dybwad, M., Elhaik, E., Ercolini, D., Frolova, A., Graf, A. B., Green, D. C., Hajirasouliha, I., Hernandez, M., Iraola, G., Jang, S., Jones, A., Kelly, F. J., Knights, K., Labaj, P. P., Lee, P. K. H., Shawn, L., Ljungdahl, P., Lyons, A., Mason-Buck, G., Mcgrath, K., Mongodin, E. F., Moraes, M. O., Nagarajan, N., Noushmehr, H., Oliveira, M., Ossowski, S., Osuolale, O. O., Ozcan, O., Paez-Espino, D., Rascovan, N., Richard, H., Ratsch, G., Schriml, L. M., Semmler, T., Sezerman, O. U., Shi, L., Song, L. H., Suzuki, H., Court, D. S., Thomas, D., Tighe, S. W., Udekwu, K. I., Ugalde, J. A., Valentine, B., Vassilev, D. I., Vayndorf, E., Velavan, T. P., Zambrano, M. M., Zhu, J., Zhu, S., Mason, C. E., Chen, S. L., Ng, O. T., Marimuthu, K., Ang, B., and Acibadem University Dspace
- Subjects
0301 basic medicine ,Disease prevention ,030106 microbiology ,Geographic Mapping ,Drug resistance ,Beds ,Biology ,Opportunistic Infections ,Genome ,General Biochemistry, Genetics and Molecular Biology ,Article ,Tertiary Care Centers ,03 medical and health sciences ,Plasmid ,Antibiotic resistance ,Spatio-Temporal Analysis ,Drug Resistance, Multiple, Bacterial ,Drug Resistance, Bacterial ,Patients' Rooms ,Humans ,Microbiome ,Equipment and Supplies, Hospital ,Genetics ,Cross Infection ,Infection Control ,Singapore ,Microbiota ,General Medicine ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,3. Good health ,Resistome ,Disinfection ,030104 developmental biology ,Metagenomics ,Biofilms ,Equipment Contamination ,Mobilome ,Microbial genetics - Abstract
Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections., Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.
- Published
- 2020
5. Geoquímica y comunidades microbianas en los salares de Pajonales y de Gorbea (Chile): Influencia en la formación de microbialitos de yeso
- Author
-
Tebes-Cayo, C., Demergasso, C., Chong, G., Cabestrero, Óscar, Sanz Montero, M. Esther, Castro-Nallar, E., and Cabrol, N.
- Subjects
Geoquímica ,Mineralogía - Abstract
Pajonales y Gorbea son dos salares andinos de Chile, compuestos mayoritariamente de yeso, y poseen lagunas de un amplio rango de salinidades, índices de saturación (IS) de yeso y pH. Hay varios estudios que han abordado la geología de los salares de forma general, pero la geoquímica, petrografía y mineralogía de estos depósitos salinos han sido poco estudiado. El objetivo es comparar la información geoquímica de las aguas de las lagunas subsaturadas y sobresaturadas de yeso de ambos salares para identificar correlaciones entre la mineralogía de las comunidades microbianas y la hidroquímica que permitan desvelar el origen del yeso. En Pajonales, el yeso precipita: en lagunas subsaturadas con pH (7,4-8,1), salinidad (1,9-4,8 %) y predominancia de α-Proteobacteria (64%) en tapices microbianos. De otra manera, en Gorbea no se reconoce una relación significativa entre la precipitación de yeso, pH (1,8 a 4,5), salinidad (0,6-15 %) y predominancia de α+γ-Proteobacteria (90%). Cabe destacar que en aguas sobresaturadas se observó que los microbialitos de yeso están colonizados por fotótrofos en Pajonales (Cianobacterias) y en Gorbea (Diatomeas). Estos resultados sugieren que las comunidades de α-Proteobacteria en aguas subsaturadas y de fotótrofos en aguas sobresaturadas pueden jugar un papel en la precipitación de yeso.
- Published
- 2021
6. Living to the high extreme: unraveling the composition, structure, and functional insights of bacterial communities thriving in the arsenic-rich Salar de Huasco – Altiplanic ecosystem
- Author
-
Castro-Severyn, J, primary, Pardo-Esté, C, additional, Mendez, KN, additional, Fortt, J, additional, Marquez, S, additional, Molina, F, additional, Castro-Nallar, E, additional, Remonsellez, F, additional, and Saavedra, CP, additional
- Published
- 2021
- Full Text
- View/download PDF
7. Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean Microbial Ecosystems
- Author
-
Saona, L.A., primary, Valenzuela-Diaz, S., additional, Kurth, D., additional, Contreras, M., additional, Meneses, C., additional, Castro-Nallar, E., additional, and Farías, M.E., additional
- Published
- 2019
- Full Text
- View/download PDF
8. 16 - Multilocus Sequence Typing of Pathogens: Methods, Analyses, and Applications
- Author
-
Pérez-Losada, M., Arenas, M., and Castro-Nallar, E.
- Published
- 2017
- Full Text
- View/download PDF
9. Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile
- Author
-
Undabarrena, A., primary, Salvà-Serra, F., additional, Jaén-Luchoro, D., additional, Castro-Nallar, E., additional, Mendez, K.N., additional, Valencia, R., additional, Ugalde, J.A., additional, Moore, E.R.B., additional, Seeger, M., additional, and Cámara, B., additional
- Published
- 2018
- Full Text
- View/download PDF
10. Draft genome sequence of a multi-metal resistant bacterium Pseudomonas putida ATH-43 isolated from Greenwich Island, Antarctica
- Author
-
Rodríguez-Rojas, F., Tapia, P., Castro-Nallar, E., Undabarrena, A., Muñoz-Díaz, P., Arenas-Salinas, M., Díaz-Vásquez, W., Valdés, J., Vásquez, C., and Publica
- Published
- 2016
11. Population Genomics and Phylogeography of an Australian Dairy Factory Derived Lytic Bacteriophage
- Author
-
Castro-Nallar, E, Chen, H, Gladman, S, Moore, SC, Seemann, T, Powell, IB, Hillier, A, Crandall, KA, Chandry, PS, Castro-Nallar, E, Chen, H, Gladman, S, Moore, SC, Seemann, T, Powell, IB, Hillier, A, Crandall, KA, and Chandry, PS
- Abstract
In this study, we present the full genomic sequences and evolutionary analyses of a serially sampled population of 28 Lactococcus lactis-infecting phage belonging to the 936-like group in Australia. Genome sizes were consistent with previously available genomes ranging in length from 30.9 to 32.1 Kbp and consisted of 55-65 open reading frames. We analyzed their genetic diversity and found that regions of high diversity are correlated with high recombination rate regions (P value = 0.01). Phylogenetic inference showed two major clades that correlate well with known host range. Using the extended Bayesian Skyline model, we found that population size has remained mostly constant through time. Moreover, the dispersion pattern of these genomes is in agreement with human-driven dispersion as suggested by phylogeographic analysis. In addition, selection analysis found evidence of positive selection on codon positions of the Receptor Binding Protein (RBP). Likewise, positively selected sites in the RBP were located within the neck and head region in the crystal structure, both known determinants of host range. Our study demonstrates the utility of phylogenetic methods applied to whole genome data collected from populations of phage for providing insights into applied microbiology.
- Published
- 2012
12. Population Genomics and Phylogeography of an Australian Dairy Factory Derived Lytic Bacteriophage
- Author
-
Castro-Nallar, E., primary, Chen, H., additional, Gladman, S., additional, Moore, S. C., additional, Seemann, T., additional, Powell, I. B., additional, Hillier, A., additional, Crandall, K. A., additional, and Chandry, P. S., additional
- Published
- 2012
- Full Text
- View/download PDF
13. Androgen Receptor Gene CAG and GGN Repeat Polymorphisms in Chilean Men With Primary Severe Spermatogenic Failure
- Author
-
Castro-Nallar, E., primary, Bacallao, K., additional, Parada-Bustamante, A., additional, Lardone, M. C., additional, Lopez, P. V., additional, Madariaga, M., additional, Valdevenito, R., additional, Piottante, A., additional, Ebensperger, M., additional, and Castro, A., additional
- Published
- 2010
- Full Text
- View/download PDF
14. tat Exon 1 Exhibits Functional Diversity during HIV-1 Subtype C Primary Infection
- Author
-
Rossenkhan, R., MacLeod, Iain James, Sebunya, T. K., Castro-Nallar, E., McLane, Mary Frances, Musonda, Rosemary Mubanga, Gashe, B. A., Novitsky, Vladimir A., and Essex, Myron Elmer
- Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala21 substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (±1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln35/Lys39 double mutant that resulted in an additional 49% (±14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.
- Published
- 2013
- Full Text
- View/download PDF
15. Molecular phylodynamics and protein modeling of infectious salmon anemia virus (ISAV)
- Author
-
Castro-Nallar Eduardo, Cortez-San Martín Marcelo, Mascayano Carolina, Molina Cristian, and Crandall Keith A
- Subjects
Evolution ,QH359-425 - Abstract
Abstract Background ISAV is a member of the Orthomyxoviridae family that affects salmonids with disastrous results. It was first detected in 1984 in Norway and from then on it has been reported in Canada, United States, Scotland and the Faroe Islands. Recently, an outbreak was recorded in Chile with negative consequences for the local fishing industry. However, few studies have examined available data to test hypotheses associated with the phylogeographic partitioning of the infecting viral population, the population dynamics, or the evolutionary rates and demographic history of ISAV. To explore these issues, we collected relevant sequences of genes coding for both surface proteins from Chile, Canada, and Norway. We addressed questions regarding their phylogenetic relationships, evolutionary rates, and demographic history using modern phylogenetic methods. Results A recombination breakpoint was consistently detected in the Hemagglutinin-Esterase (he) gene at either side of the Highly Polymorphic Region (HPR), whereas no recombination breakpoints were detected in Fusion protein (f) gene. Evolutionary relationships of ISAV revealed the 2007 Chilean outbreak group as a monophyletic clade for f that has a sister relationship to the Norwegian isolates. Their tMRCA is consistent with epidemiological data and demographic history was successfully recovered showing a profound bottleneck with further population expansion. Finally, selection analyses detected ongoing diversifying selection in f and he codons associated with protease processing and the HPR region, respectively. Conclusions Our results are consistent with the Norwegian origin hypothesis for the Chilean outbreak clade. In particular, ISAV HPR0 genotype is not the ancestor of all ISAV strains, although SK779/06 (HPR0) shares a common ancestor with the Chilean outbreak clade. Our analyses suggest that ISAV shows hallmarks typical of RNA viruses that can be exploited in epidemiological and surveillance settings. In addition, we hypothesized that genetic diversity of the HPR region is governed by recombination, probably due to template switching and that novel fusion gene proteolytic sites confer a selective advantage for the isolates that carry them. Additionally, protein modeling allowed us to relate the results of phylogenetic studies with the predicted structures. This study demonstrates that phylogenetic methods are important tools to predict future outbreaks of ISAV and other salmon pathogens.
- Published
- 2011
- Full Text
- View/download PDF
16. A global metagenomic map of urban microbiomes and antimicrobial resistance
- Author
-
Nadine Farhat, Tomoki Takeda, Astred Castro, Ken McGrath, Khaliun Sanchir, Iman Hajirasouliha, Eunice So, Laraib Zafar, Diana N. Nunes, Harun Mustafa, Amy Zhang, Priscilla Lisboa, Christian Schori, Marisano James, Jasna Chalangal, Sebastien Halary, Shahryar Rana, Yunmi Lee, Oli Schacher, Liliana Godoy, David A. Coil, Phanthira Pugdeethosal, Michelle D. Williams, German Marchandon, Angela Cantillo, Naoya Takahashi, Christopher Mozsary, Juana Gonzalez, Patrick K. H. Lee, Gerardo de Lamotte, Alessandro Robertiello, Steven Du, Fabienne Velter, Stefan G. Stark, Miguel Carbajo, Vincent Matthys, David A. Westfall, Julia Boeri, Irène Mauricette Mendy, Jonathan Cedillo, Francesco Oteri, Robert W. Crawford, Takayuki Ito, Tina Wunderlin, Maureen Muscat, David Paez-Espino, Carmen Urgiles, Aida Nesimi, Steffen Schaaf, Adan Ramirez-Rojas, Kunihiko Miyake, Christopher E. Mason, Anais Cardenas, Sharah Islam, Diego Benítez, Melissa Pool Pizzi, Kianna Ciaramella, Ciro Borrelli, Riham Islam, Dorottya Nagy-Szakal, Abd-Manaaf Bakere, Ait-hamlat Adel, Olha Lakhneko, Badamnyambuu Iderzorig, Ana Valeria Castro, Adam Phillips, Robert A. Petit, Flavia Corsi, Romain Conte, Krista Ryon, Soojin Jang, Joseph Benson, Fernanda de Souza Gomes Kehdy, Cindy Wang, Nicole Mathews, Jenn-Wei Chen, Rachel Paras, Paulina Pastuszek, Abigail Lyons, Paul Roldán, Muntaha Munia, Pierre Nicolas, Cassie L. Ettinger, Kyrylo Pyrshev, Katterinne N. Mendez, Eduardo Castro-Nallar, Valeriia Dotsenko, Michelle Tuz, Krizzy Mallari, Eileen Png, Yuya Sonohara, Tanja Miketic, Stéphane Delmas, Shu Zhang, Masaki Sato, Yuanting Zheng, Jifeng Zhu, Roland Häusler, Lucie Bittner, Savlatjon Rahmatulloev, Jonathan Foox, Bruno D'Alessandro, Alketa Plaku, Faisal Alquaddoomi, Yang Zhang, Kern Rei Chng, Juliana Lago, Allaeddine Chettouh, Tamera Henry, Houtan Noushmehr, Tranette Gregory, Sara Abdul Majid, Frank J. Kelly, Benjamin Pulatov, Laurie Casalot, Takema Kajita, Lennard Epping, Thais Fernanda Bartelli, Eftar Moniruzzaman, Renee Vivancos-Koopman, Thirumalaisamy P. Velavan, Tracy W. Liu, Yelyzaveta Tymoshenko, Alma Plaku, Nika Gurianova, Ambar Mendez, Anna Tomaselli, Sonia Dorado, Donato Giovannelli, Hira Choudhry, Synti Ng, Sheelta S. Kumar, Jennifer Q. Lu, Weijun Liang, Ellen Koag, Dennis Gankin, Maria João Amorim, Gwenola Simon, Kiyoshi Suganuma, Mikhail Karasikov, Christos A. Ouzounis, Madelyn May, Eran Elhaik, Stephan Ossowski, Kevin Bolzli, Matthew Arthur, Yuya Oto, Jananan Pathmanathan, Salah Mahmoud, Kou Takahashi, Brunna Marques, Kelly French, Felipe Sepúlveda, Shusei Yoshikawa, Paulo Thiago de Souza Santos, Andrew N. Gray, Juliana S Bernardes, Felipe Segato, Björn Brindefalk, George C. Yeh, Jhovana L. Velasco Flores, Jill Sullivan, Silva Baburyan, Denisse Flores, Russell Y. Neches, Sabrina Persaud, Rasheena Wright, Takumi Togashi, Verónica Antelo, Nao Kato, Skye Felice, Tatjana Mustac, Daisy Donnellan, Katerine Carrillo, Anna Litskevitch, Catalina García, Sota Ito, Naya Eady, Andrew Wan, Irene Meng, Sophie Guasco, Danilo Ercolini, Francesca De Filippis, Vincent Lemaire, Luice Fan, Lothar H. Wieler, Mariia Rybak, Jorge Sanchez, Jonathan S. Gootenberg, Itsuki Tomita, Maritza S Mosella, Laura Garcia, Natalka Makogon, Daisy Cheung, Hitler Francois Vasquez Arevalo, Freddy Asenjo, Gabriela P. Branco, Erika Cifuentes, Chloé Dequeker, Aspassia D. Chatziefthimiou, Alexis Terrero, Roy Meoded, Isabelle de Oliveira Moraes, Shaleni K. Singh, Orgil-Erdene Molomjamts, Karishma Miah, Laurent David, Wolfgang Haehr, Dao Phuong Giang, Romain Lannes, Prashanthi Ratnanandan, Ryota Yamanaka, Riccardo Vicedomini, Sadaf Ayaz, Oluwatosin M. Osuolale, Laura E. Vann, Gregory Chem, Andrea Gonzalez, Aszia Burrell, Ariel Chernomoretz, Sakura Ishizuka, Michelle Rivera, Avigdor Nosrati, Michelle B. Chen, Juliette Auvinet, Nils Ordioni, Tomoro Warashina, Guillaume Blanc, Tomislav Ivankovic, Christina Black, Lauren E. Hittle, David Hess-Homeier, Michael Kozhar, Hamood Suliman, Karobi Moitra, Saher Rahiel, Spyridon Gkotzis, Jenny Arevalo, Shaikh B. Iqbal, Beth Mutai, Mohammed Mohsin, Scott Tighe, Sylvie Collin, Yoshitaka Saito, Wayne Menary, Youping Deng, Lucy Lee, Esmeralda Jiminez, Ayuki Watanabe, Nikos C. Kyrpides, Natasha Mohan, Angelika Pupiec, Dedan Githae, Simone Cawthorne, Jonathan A. Eisen, Tomoki Iwashiro, Chiaki Homma, Thomas Saw Aung, Laura Molina, Marcus H. Y. Leung, Ophélie Da Silva, Yan Ling Wong, Hosna Noorzi, Mario Moreno, Alina Butova, Leming Shi, Brian W. Wong, Sarah S. Jackson, Moses Lin, Annabelle Meagher, Pujita Das, Catherine Burke, Mitsuki Ota, Maria Domenica Moccia, Nicolas Sprinsky, Catherine E. Pugh, David C. Green, Fazlina Fauzi, Erdenetsetseg Batdelger, Annie Geiger, Valeria Ventorino, Tolulope Oluwadare, Delisia Cuebas, Catalina Truong, Leonardo Posada, Michael Angelov, Tathiane M. Malta, Amanda Ng, Francesca Nadalin, Arya Hawkins-Zafarnia, Yuh Shiwa, Athena Mitsios, Milton Ozório Moraes, Manolo Laiola, Kalyn Ali, Jaden J.A. Hastings, Ikuto Saito, Maheen Shakil, Chisato Suzuki, Elena M. Vayndorf, Hubert Rehrauer, Ajay Menon, Kaitlan Russell, Aliyah Shari, Rebecca Smith, Gregorio Iraola, Max Priestman, Alan Briones, Silver A. Wolf, Camila Gonzalez-Poblete, Eleonora De Lazzari, Shirley Chiu, Michelle Ki, Irene Hoxie, Marianne Jaubert, Ayantu Jinfessa, Ryan J. King, Nghiem Xuan Hoan, Jalia Bynoe, Jacob Friedman, Aneisa Ramcharan, Pablo Fresia, Cristina Muñoz, Muhammad Afaq, Anyi Tang, Médine Benchouaia, Isabella Kuniko T. Takenaka, Anastasia Chasapi, Areeg Naeem, Hannah Benisty, Cecilia N. Cossio, Nathalie Hüsser, Mahfuza Sabina, Thais S. Sabedot, JoAnn Jacobs, Camila P. E. de Souza, Manuela Oliveira, Jean-Pierre Bouly, Mariko Usui, Wilson Miranda, Natalia Marciniak, Hiram Caballero, Samuel Weekes, Alexandra B. Graf, Emily Leong, Tatyana Nikolayeva, Dominique Thomas, Charlotte Greselle, Cecilia Salazar, Sreya Ray Chaudhuri, Kevin Becher, Sandra Roth, Ryusei Miura, Kari Oline Bøifot, Dimitri Manoir, Oliver Toth, Chandrima Bhattacharya, Manuel Perez, Isha Lamba, Takafumi Tsurumaki, Timothy D. Read, Anna-Lena M. Schinke, Ryan Sankar, Le Huu Song, Narasimha Rao Nedunuri, Emmanuel Dias-Neto, Ana Flávia Costa, Adiell Melamed, Christelle Desnues, Natalie R. Davidson, Aaron E. Darling, Hyung Jun Kim, Josephine Galipon, Jacqueline Orrego, Dimitar Vassilev, Michael Huber, Nur Hazlin Hazrin-Chong, Gaston H. Gonnet, Kaymisha Knights, Osman U. Sezerman, Dmitry Meleshko, Eunice Thambiraja, Jingcheng Yang, Aubin Fleiss, Gloria Nguyen, Katelyn Jackson, Nuria Aventin, Stephanie L. Hyland, Andrea Hässig, Catharine Aquino, Simona Lysakova, Israel O. Osuolale, Kasia Sluzek, Rania Siam, Alina Frolova, Samuel Hernandez, Yui Him Lo, Bazartseren Boldgiv, Ben Young, Maryna Korshevniuk, Majelia Ampadu, Yuk Man Tang, Amanda L. Muehlbauer, Sade Thomas, Gabriel Figueroa, Alexis Rivera, Lisbeth Pineda, Alexandra Dutan, Jennifer M. Tran, Chris K. Deng, Vedbar S. Khadka, Paola Florez de Sessions, Elizabeth Humphries, Hugues Richard, Hiba Naveed, Nora C. Toussaint, Mahshid Khavari, Maria del Mar Vivanco Ruiz, Antonin Thiébaut, Nicolás Rascovan, Marius Dybwad, Orhan Özcan, Lawrence Kwong, David Danko, Shaira Khan, Andrea Tassinari, Silvia Beurmann, Tsoi Ying Lai, Nanami Kubota, Tieliu Shi, Diana Chicas, Evan E. Afshin, Hirokazu Yano, Jonas Krebs, Mayuko Nakagawa, Hyun Jung Lee, Irene González Navarrete, Rachid Ounit, Lucia E. Alvarado-Arnez, Masaki Nasu, Allison Chan, Harilanto Andrianjakarivony, Jennifer Amachee, Mahdi Taye, Wan Chiew Ng, Kathryn O’Brien, Shino Ishikawa, Tristan Bitard-Feildel, Sora Takagi, Felix Hartkopf, Niamh B. O’Hara, Marcos A. S. Fonseca, Subhamitra Pakrashi, Amrit Kaur, Eva Hell, Patricia Vera-Wolf, Naimah Munim, Luiza Ferreira de Araújo, Mizuki Igarashi, Brianna Pompa-Hogan, Alessandra Carbone, Anne-Sophie Benoiston, Eric Helfrich, Michael A. Suarez-Villamil, Omar O. Abudayyeh, Natasha Abdullah, Jaime J. Fuentes, Juan Carlos Forero, Tetiana Yeskova, Denis Bertrand, Sambhawa Priya, Denisse Maldonado, Agier Nicolas, Ana Valeria B Castro, Starr Chatziefthimiou, André Kahles, Aaishah Francis, Fernanda Arredondo, Emilio Tarcitano, Irvind Buttar, Alex Alexiev, Jennifer Molinet, Sarah Shalaby, Itunu A. Oluwadare, Jason Sperry, Katrin Bakhl, Ana M. Cañas, Sofia Ahsanuddin, Miar Elaskandrany, Elodie Laine, Sven Bönigk, Johannes Werner, Stephen Eduard Boja Ruiz, Gargi Dayama, Paulina Buczansla, Brandon Valentine, Bharath Prithiviraj, Toni Bode, Stas Zubenko, Jake Cohen, Guilllaume Jospin, Zulena Saravi, Per O. Ljungdahl, Inderjit Kaur, Mauricio Moldes, Giuseppe KoLoMonaco, Denise Syndercombe Court, Sonia Bouchard, Sonia Losim, Sookwon Moon, Heba Shaaban, Suraj Patel, Sibo Zhu, Sarh Aly, Arif Asyraf Md Supie, LaShonda Dorsey, Juan Guerra, François Baudon, Rantimi A. Olawoyin, Alexia Bordigoni, Iqra Faiz, Mathilde Garcia, Gabriella Mason-Buck, María Gabriela Portilla, Niranjan Nagarajan, Fumie Takahara, Nancy Merino, Watson Andrew, Gina Kim, Yuma Sato, Hyenah Shim, Marie-Laure Jerier, Affifah Saadah Ahmad Kassim, Katerina Kuchin, Daniel Butler, Paweł P. Łabaj, Nadezhda Kobko-Litskevitch, Emmanuel F. Mongodin, Yuto Togashi, Paula Rodríguez, Pilar Lopez Hernandez, Xiaoqing Chen, Maria A. Sierra, Olga Nikolayeva, Manon Loubens, Colleen Conger, Hikaru Shirahata, Chenhao Li, Timothy Donahoe, Youngja Park, Lucia Elena Alvarado Arnez, Salama Chaker, Francisco Chavez, Alessandra Breschi, Jorge L. Sanchez, Kaung Myat San, Nayra Aguilar Rojas, Marcos Abraao, Kai Sasaki, Bryan Nazario, Olena Yemets, Klas I. Udekwu, Lynn M. Schriml, Anisia Peters, Aliaksei Holik, Mark Hernandez, Emile Faure, Malay Bhattacharyya, Josef W. Moser, Núria Andreu Somavilla, María Mercedes Zambrano, Kannan Rajendran, Gabriela E. Albuquerque, Tao Qing, Kazutoshi Tsuda, Ymke De Jong, Princess Osma, Mayra Arauco Livia, Javier Quilez Oliete, Carl Chrispin, Hyun Woo Joo, Ingrid Lafontaine, Nala An, Seisuke Sato, Felipe Segato Dezem, Andrew Maltez Thomas, Alexandre Desert, Xiao Wen Cai, O. Osuolale, Jun Wu, Coral Pardo-Esté, Courtney Robinson, Yuri Matsuzaki, Marina Nieto-Caballero, Cem Meydan, Ralph Schlapbach, Mark Menor, Sofia Castro, Rachel Kwong, Brittany Blyther, Olexandr Lykhenko, Jason R. Schriml, Christian Brion, Jenessa Orpilla, Juan A. Ugalde, Elsy Mankah Ngwa, Álvaro Aranguren, Lauren Mak, Matías Giménez, Ashanti Narce, Torsten Semmler, Stefan I. Tsonev, Abdollahi Nika, Katherine E. Dahlhausen, Monika Devi, Gunnar Rätsch, Oasima Muner, Carla Bello, Muhammad Al-Fath Amran, Anyelic Rosario, Melissa Ortega, Andrea Patrignani, Ante Peros, Elias McComb, Ryo Sato, Ireen Alam, Clara N. Dias, Soma Tanaka, Dayana Calderon, Ran Blekhman, Mathilde Mignotte, Alicia Boyd, Jochen Hecht, Thomas Neff, Xinzhao Tong, Josue Alicea, Kiara Olmeda, Sonia Marinovic, Carme Arnan, Kohei Ito, Samantha L. Goldman, Marianna S. Serpa, Renee Richer, Kaisei Sato, Jordana M. Silva, Akash Keluth Chavan, Sangwan Kim, Laís Pereira Ferreira, Sophie Vacant, Nowshin Sayara, Haruo Suzuki, Madeline Leahy, Juan C. Severyn, Sierra Vincent, Masaru Tomita, Maliha Mamun, Lucinda B. Davenport, Gabriella Oken, Dagmara Lewandowska, Gustavo Adolfo Malca Salas, Andrii Kuklin, Tyler Wong, Charlie Feigin, Eric Minwei Liu, Sonia L. Ghose, Daniela Bezdan, Antonietta La Storia, Juan P. Escalera-Antezana, Nuno Rufino de Sousa, Samuel M. Gerner, Weill Cornell Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), Genome Institute of Singapore (GIS), Centre for Genomic Regulation [Barcelona] (CRG), Universitat Pompeu Fabra [Barcelona] (UPF)-Centro Nacional de Analisis Genomico [Barcelona] (CNAG), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), AUTRES, Massachusetts Institute of Technology (MIT), Indian Statistical Institute [Kolkata], University of Minnesota System, Universidad Andrés Bello [Santiago] (UNAB), California State University [Sacramento], University of Naples Federico II, University of Hawaii, Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN), Medical Genomics Group, University College of London [London] (UCL)-UCL Cancer Institute, Norwegian Defence Research Establishment (FFI), Lund University [Lund], Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, University of Vienna [Vienna], King‘s College London, University of Colorado [Boulder], Institut Pasteur de Montevideo, Réseau International des Instituts Pasteur (RIIP), Institut Pasteur Korea - Institut Pasteur de Corée, Fudan University [Shanghai], City University of Hong Kong [Hong Kong] (CUHK), Stockholm University, University of Maryland School of Medicine, University of Maryland System, Fundação Oswaldo Cruz (FIOCRUZ), University of São Paulo (USP), Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Barcelona Institute of Science and Technology (BIST), Elizade University, Acibadem Mehmet Ali Aydınlar University, Paléogénomique microbienne - Microbial paleogenomics, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Robert Koch Institute [Berlin] (RKI), East China Normal University [Shangaï] (ECNU), Cairo University, Vietnamese-German Center for Medical Research, Keio University, Université du Vermont, Universidad del Desarrollo, University of Sofia, University of Alaska [Fairbanks] (UAF), Universitätsklinikum Tübingen - University Hospital of Tübingen, Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, Corporación Corpogen-Research Center, Biologie Computationnelle et Quantitative = Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Weill Cornell Medicine [Cornell University], Cornell University [New York], University of Naples Federico II = Università degli studi di Napoli Federico II, Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), Universidade de São Paulo = University of São Paulo (USP), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Софийски университет = Sofia University, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Universidad Andrés Bello - UNAB (CHILE), Acibadem University Dspace, Danko, D., Bezdan, D., Afshin, E. E., Ahsanuddin, S., Bhattacharya, C., Butler, D. J., Chng, K. R., Donnellan, D., Hecht, J., Jackson, K., Kuchin, K., Karasikov, M., Lyons, A., Mak, L., Meleshko, D., Mustafa, H., Mutai, B., Neches, R. Y., Ng, A., Nikolayeva, O., Nikolayeva, T., Png, E., Ryon, K. A., Sanchez, J. L., Shaaban, H., Sierra, M. A., Thomas, D., Young, B., Abudayyeh, O. O., Alicea, J., Bhattacharyya, M., Blekhman, R., Castro-Nallar, E., Canas, A. M., Chatziefthimiou, A. D., Crawford, R. W., De Filippis, F., Deng, Y., Desnues, C., Dias-Neto, E., Dybwad, M., Elhaik, E., Ercolini, D., Frolova, A., Gankin, D., Gootenberg, J. S., Graf, A. B., Green, D. C., Hajirasouliha, I., Hastings, J. J. A., Hernandez, M., Iraola, G., Jang, S., Kahles, A., Kelly, F. J., Knights, K., Kyrpides, N. C., Labaj, P. P., Lee, P. K. H., Leung, M. H. Y., Ljungdahl, P. O., Mason-Buck, G., Mcgrath, K., Meydan, C., Mongodin, E. F., Moraes, M. O., Nagarajan, N., Nieto-Caballero, M., Noushmehr, H., Oliveira, M., Ossowski, S., Osuolale, O. O., Ozcan, O., Paez-Espino, D., Rascovan, N., Richard, H., Ratsch, G., Schriml, L. M., Semmler, T., Sezerman, O. U., Shi, L., Shi, T., Siam, R., Song, L. H., Suzuki, H., Court, D. S., Tighe, S. W., Tong, X., Udekwu, K. I., Ugalde, J. A., Valentine, B., Vassilev, D. I., Vayndorf, E. M., Velavan, T. P., Wu, J., Zambrano, M. M., Zhu, J., Zhu, S., Mason, C. E., Abdullah, N., Abraao, M., Adel, A. -H., Afaq, M., Al-Quaddoomi, F. S., Alam, I., Albuquerque, G. E., Alexiev, A., Ali, K., Alvarado-Arnez, L. E., Aly, S., Amachee, J., Amorim, M. G., Ampadu, M., Amran, M. A. -F., An, N., Andrew, W., Andrianjakarivony, H., Angelov, M., Antelo, V., Aquino, C., Aranguren, A., Araujo, L. F., Vasquez Arevalo, H. F., Arevalo, J., Arnan, C., Alvarado Arnez, L. E., Arredondo, F., Arthur, M., Asenjo, F., Aung, T. S., Auvinet, J., Aventin, N., Ayaz, S., Baburyan, S., Bakere, A. -M., Bakhl, K., Bartelli, T. F., Batdelger, E., Baudon, F., Becher, K., Bello, C., Benchouaia, M., Benisty, H., Benoiston, A. -S., Benson, J., Benitez, D., Bernardes, J., Bertrand, D., Beurmann, S., Bitard-Feildel, T., Bittner, L., Black, C., Blanc, G., Blyther, B., Bode, T., Boeri, J., Boldgiv, B., Bolzli, K., Bordigoni, A., Borrelli, C., Bouchard, S., Bouly, J. -P., Boyd, A., Branco, G. P., Breschi, A., Brindefalk, B., Brion, C., Briones, A., Buczansla, P., Burke, C. M., Burrell, A., Butova, A., Buttar, I., Bynoe, J., Bonigk, S., Boifot, K. O., Caballero, H., Cai, X. W., Calderon, D., Cantillo, A., Carbajo, M., Carbone, A., Cardenas, A., Carrillo, K., Casalot, L., Castro, S., Castro, A. V., Castro, A., Castro, A. V. B., Cawthorne, S., Cedillo, J., Chaker, S., Chalangal, J., Chan, A., Chasapi, A. I., Chatziefthimiou, S., Chaudhuri, S. R., Chavan, A. K., Chavez, F., Chem, G., Chen, X., Chen, M., Chen, J. -W., Chernomoretz, A., Chettouh, A., Cheung, D., Chicas, D., Chiu, S., Choudhry, H., Chrispin, C., Ciaramella, K., Cifuentes, E., Cohen, J., Coil, D. A., Collin, S., Conger, C., Conte, R., Corsi, F., Cossio, C. N., Costa, A. F., Cuebas, D., D'Alessandro, B., Dahlhausen, K. E., Darling, A. E., Das, P., Davenport, L. B., David, L., Davidson, N. R., Dayama, G., Delmas, S., Deng, C. K., Dequeker, C., Desert, A., Devi, M., Dezem, F. S., Dias, C. N., Donahoe, T. R., Dorado, S., Dorsey, L., Dotsenko, V., Du, S., Dutan, A., Eady, N., Eisen, J. A., Elaskandrany, M., Epping, L., Escalera-Antezana, J. P., Ettinger, C. L., Faiz, I., Fan, L., Farhat, N., Faure, E., Fauzi, F., Feigin, C., Felice, S., Ferreira, L. P., Figueroa, G., Fleiss, A., Flores, D., Velasco Flores, J. L., Fonseca, M. A. S., Foox, J., Forero, J. C., Francis, A., French, K., Fresia, P., Friedman, J., Fuentes, J. J., Galipon, J., Garcia, M., Garcia, L., Garcia, C., Geiger, A., Gerner, S. M., Ghose, S. L., Giang, D. P., Gimenez, M., Giovannelli, D., Githae, D., Gkotzis, S., Godoy, L., Goldman, S., Gonnet, G. H., Gonzalez, J., Gonzalez, A., Gonzalez-Poblete, C., Gray, A., Gregory, T., Greselle, C., Guasco, S., Guerra, J., Gurianova, N., Haehr, W., Halary, S., Hartkopf, F., Hawkins-Zafarnia, A., Hazrin-Chong, N. H., Helfrich, E., Hell, E., Henry, T., Hernandez, S., Hernandez, P. L., Hess-Homeier, D., Hittle, L. E., Hoan, N. X., Holik, A., Homma, C., Hoxie, I., Huber, M., Humphries, E., Hyland, S., Hassig, A., Hausler, R., Husser, N., Petit, R. A., Iderzorig, B., Igarashi, M., Iqbal, S. B., Ishikawa, S., Ishizuka, S., Islam, S., Islam, R., Ito, K., Ito, S., Ito, T., Ivankovic, T., Iwashiro, T., Jackson, S., Jacobs, J., James, M., Jaubert, M., Jerier, M. -L., Jiminez, E., Jinfessa, A., De Jong, Y., Joo, H. W., Jospin, G., Kajita, T., Ahmad Kassim, A. S., Kato, N., Kaur, A., Kaur, I., de Souza Gomes Kehdy, F., Khadka, V. S., Khan, S., Khavari, M., Ki, M., Kim, G., Kim, H. J., Kim, S., King, R. J., Kolomonaco, G., Koag, E., Kobko-Litskevitch, N., Korshevniuk, M., Kozhar, M., Krebs, J., Kubota, N., Kuklin, A., Kumar, S. S., Kwong, R., Kwong, L., Lafontaine, I., Lago, J., Lai, T. Y., Laine, E., Laiola, M., Lakhneko, O., Lamba, I., de Lamotte, G., Lannes, R., De Lazzari, E., Leahy, M., Lee, H., Lee, Y., Lee, L., Lemaire, V., Leong, E., Lewandowska, D., Li, C., Liang, W., Lin, M., Lisboa, P., Litskevitch, A., Liu, E. M., Liu, T., Livia, M. A., Lo, Y. H., Losim, S., Loubens, M., Lu, J., Lykhenko, O., Lysakova, S., Mahmoud, S., Majid, S. A., Makogon, N., Maldonado, D., Mallari, K., Malta, T. M., Mamun, M., Manoir, D., Marchandon, G., Marciniak, N., Marinovic, S., Marques, B., Mathews, N., Matsuzaki, Y., Matthys, V., May, M., Mccomb, E., Meagher, A., Melamed, A., Menary, W., Mendez, K. N., Mendez, A., Mendy, I. M., Meng, I., Menon, A., Menor, M., Meoded, R., Merino, N., Miah, K., Mignotte, M., Miketic, T., Miranda, W., Mitsios, A., Miura, R., Miyake, K., Moccia, M. D., Mohan, N., Mohsin, M., Moitra, K., Moldes, M., Molina, L., Molinet, J., Molomjamts, O. -E., Moniruzzaman, E., Moon, S., de Oliveira Moraes, I., Moreno, M., Mosella, M. S., Moser, J. W., Mozsary, C., Muehlbauer, A. L., Muner, O., Munia, M., Munim, N., Muscat, M., Mustac, T., Munoz, C., Nadalin, F., Naeem, A., Nagy-Szakal, D., Nakagawa, M., Narce, A., Nasu, M., Navarrete, I. G., Naveed, H., Nazario, B., Nedunuri, N. R., Neff, T., Nesimi, A., Ng, W. C., Ng, S., Nguyen, G., Ngwa, E., Nicolas, A., Nicolas, P., Nika, A., Noorzi, H., Nosrati, A., Nunes, D. N., O'Brien, K., O'Hara, N. B., Oken, G., Olawoyin, R. A., Oliete, J. Q., Olmeda, K., Oluwadare, T., Oluwadare, I. A., Ordioni, N., Orpilla, J., Orrego, J., Ortega, M., Osma, P., Osuolale, I. O., Osuolale, O. M., Ota, M., Oteri, F., Oto, Y., Ounit, R., Ouzounis, C. A., Pakrashi, S., Paras, R., Pardo-Este, C., Park, Y. -J., Pastuszek, P., Patel, S., Pathmanathan, J., Patrignani, A., Perez, M., Peros, A., Persaud, S., Peters, A., Phillips, A., Pineda, L., Pizzi, M. P., Plaku, A., Pompa-Hogan, B., Portilla, M. G., Posada, L., Priestman, M., Prithiviraj, B., Priya, S., Pugdeethosal, P., Pugh, C. E., Pulatov, B., Pupiec, A., Pyrshev, K., Qing, T., Rahiel, S., Rahmatulloev, S., Rajendran, K., Ramcharan, A., Ramirez-Rojas, A., Rana, S., Ratnanandan, P., Read, T. D., Rehrauer, H., Richer, R., Rivera, A., Rivera, M., Robertiello, A., Robinson, C., Rodriguez, P., Rojas, N. A., Roldan, P., Rosario, A., Roth, S., Ruiz, M., Boja Ruiz, S. E., Russell, K., Rybak, M., Sabedot, T. S., Sabina, M., Saito, I., Saito, Y., Malca Salas, G. A., Salazar, C., San, K. M., Sanchez, J., Sanchir, K., Sankar, R., de Souza Santos, P. T., Saravi, Z., Sasaki, K., Sato, Y., Sato, M., Sato, S., Sato, R., Sato, K., Sayara, N., Schaaf, S., Schacher, O., Schinke, A. -L. M., Schlapbach, R., Schori, C., Schriml, J. R., Segato, F., Sepulveda, F., Serpa, M. S., De Sessions, P. F., Severyn, J. C., Shakil, M., Shalaby, S., Shari, A., Shim, H., Shirahata, H., Shiwa, Y., Da Silva, O., Silva, J. M., Simon, G., Singh, S. K., Sluzek, K., Smith, R., So, E., Andreu Somavilla, N., Sonohara, Y., Rufino de Sousa, N., Souza, C., Sperry, J., Sprinsky, N., Stark, S. G., La Storia, A., Suganuma, K., Suliman, H., Sullivan, J., Supie, A. A. M., Suzuki, C., Takagi, S., Takahara, F., Takahashi, N., Takahashi, K., Takeda, T., Takenaka, I. K., Tanaka, S., Tang, A., Man Tang, Y., Tarcitano, E., Tassinari, A., Taye, M., Terrero, A., Thambiraja, E., Thiebaut, A., Thomas, S., Thomas, A. M., Togashi, Y., Togashi, T., Tomaselli, A., Tomita, M., Tomita, I., Toth, O., Toussaint, N. C., Tran, J. M., Truong, C., Tsonev, S. I., Tsuda, K., Tsurumaki, T., Tuz, M., Tymoshenko, Y., Urgiles, C., Usui, M., Vacant, S., Vann, L. E., Velter, F., Ventorino, V., Vera-Wolf, P., Vicedomini, R., Suarez-Villamil, M. A., Vincent, S., Vivancos-Koopman, R., Wan, A., Wang, C., Warashina, T., Watanabe, A., Weekes, S., Werner, J., Westfall, D., Wieler, L. H., Williams, M., Wolf, S. A., Wong, B., Wong, Y. L., Wong, T., Wright, R., Wunderlin, T., Yamanaka, R., Yang, J., Yano, H., Yeh, G. C., Yemets, O., Yeskova, T., Yoshikawa, S., Zafar, L., Zhang, Y., Zhang, S., Zhang, A., Zheng, Y., and Zubenko, S.
- Subjects
Urban Population ,Drug Resistance ,Sequence assembly ,Microbiologia ,microbiome ,global health ,computer.software_genre ,Medical and Health Sciences ,shotgun sequencing ,BGC ,0302 clinical medicine ,Databases, Genetic ,11. Sustainability ,Global health ,AMR ,11 Medical and Health Sciences ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,built environment ,metagenome ,antimicrobial resistance ,NGS ,de novo assembly ,biology ,Shotgun sequencing ,Microbiota ,built Environment ,Bacterial ,Biodiversity ,Biological Sciences ,3. Good health ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Infection ,Biotechnology ,Geospatial analysis ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,Article ,General Biochemistry, Genetics and Molecular Biology ,Databases ,03 medical and health sciences ,Antibiotic resistance ,Genetic ,Drug Resistance, Bacterial ,International MetaSUB Consortium ,Genetics ,Humans ,Microbiome ,030304 developmental biology ,Human Genome ,06 Biological Sciences ,15. Life on land ,biology.organism_classification ,Resistènica als medicaments antiinfecciosos ,SAÚDE PÚBLICA ,Genòmica ,13. Climate action ,Evolutionary biology ,Metagenomics ,Antimicrobial Resistance ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,computer ,030217 neurology & neurosurgery ,Archaea ,Developmental Biology - Abstract
Summary We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities., Graphical abstract, Highlights • Cities possess a consistent “core” set of non-human microbes • Urban microbiomes echo important features of cities and city-life • Antimicrobial resistance genes are widespread in cities • Cities contain many novel bacterial and viral species, This systematic, worldwide catalog of urban microbiomes represents a metagenomic atlas important for understanding the ecology, virulence, and antibiotic resistance of city-specific microbial communities.
- Published
- 2021
17. Pediatric urinary tract infections caused by poultry-associated Escherichia coli .
- Author
-
Aziz M, Davis GS, Park DE, Idris AH, Sariya S, Wang Y, Zerbonne S, Nordstrom L, Weaver B, Statham S, Johnson TJ, Campos J, Castro-Nallar E, Crandall KA, Wu Z, Liu CM, DeBiasi RL, and Price LB
- Subjects
- Animals, Humans, Child, Adolescent, Child, Preschool, Infant, Male, Female, Multilocus Sequence Typing, Genome, Bacterial, Urinary Tract Infections microbiology, Urinary Tract Infections epidemiology, Escherichia coli Infections microbiology, Escherichia coli Infections veterinary, Escherichia coli Infections epidemiology, Poultry microbiology, Phylogeny, Escherichia coli genetics, Escherichia coli isolation & purification, Escherichia coli classification, Escherichia coli pathogenicity, Whole Genome Sequencing
- Abstract
Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli , which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCE Escherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli , characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
18. Microbiome alterations are associated with apolipoprotein E mutation in Octodon degus and humans with Alzheimer's disease.
- Author
-
Zampieri G, Cabrol L, Urra C, Castro-Nallar E, Schwob G, Cleary D, Angione C, Deacon RMJ, Hurley MJ, and Cogram P
- Abstract
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E ( APOE ) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae , mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk., Competing Interests: The authors declare no competing interests., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
19. Detection of SARS-CoV-2 in Wastewater Associated with Scientific Stations in Antarctica and Possible Risk for Wildlife.
- Author
-
González-Aravena M, Galbán-Malagón C, Castro-Nallar E, Barriga GP, Neira V, Krüger L, Adell AD, and Olivares-Pacheco J
- Abstract
Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.
- Published
- 2024
- Full Text
- View/download PDF
20. Occurrence and diffusive air-seawater exchanges of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Fildes Bay, King George Island, Antarctica.
- Author
-
Luarte T, Hirmas-Olivares A, Höfer J, Giesecke R, Mestre M, Guajardo-Leiva S, Castro-Nallar E, Pérez-Parada A, Chiang G, Lohmann R, Dachs J, Nash SB, Pulgar J, Pozo K, Přibylová PP, Martiník J, and Galbán-Malagón C
- Subjects
- Antarctic Regions, Hexachlorobenzene analysis, Bays, Environmental Monitoring, Seawater, Polychlorinated Biphenyls analysis, Air Pollutants analysis, Hydrocarbons, Chlorinated analysis, Pesticides analysis
- Abstract
We report the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seawater and air, and the air-sea dynamics through diffusive exchange analysis in Fildes Bay, King George Island, Antarctica, between November 2019 and January 30, 2020. Hexachlorobenzene (HCB) was the most abundant compound in both air and seawater with concentrations around 39 ± 2.1 pg m
-3 and 3.2 ± 2.4 pg L-1 respectively. The most abundant PCB congener was PCB 11, with a mean of 3.16 ± 3.7 pg m-3 in air and 2.0 ± 1.1 pg L-1 in seawater. The fugacity gradient estimated for the OCP compounds indicate a predominance of net atmospheric deposition for HCB, α-HCH, γ-HCH, 4,4'-DDT, 4,4'-DDE and close to equilibrium for the PeCB compound. The observed deposition of some OCs may be driven by high biodegradation rates and/or settling fluxes decreasing the concentration of these compounds in surface waters, which is supported by the capacity of microbial consortium to degrade some of these compounds. The estimated fugacity gradients for PCBs showed differences between congeners, with net volatilization predominating for PCB-9, a trend close to equilibrium for PCB congeners 11, 28, 52, 101, 118, 138, and 153, and deposition for PCB 180. Snow amplification may play an important role for less hydrophobic PCBs, with volatilization predominating after snow/glacier melting. As hydrophobicity increases, the biological pump decreases the concentration of PCBs in seawater, reversing the fugacity gradient to atmospheric deposition. This study highlights the potential impacts of climate change, through glacier retreat, on the biogeochemistry of POPs, remobilizing those compounds previously trapped within the cryosphere which in turn will transform the Antarctic cryosphere into a secondary source of the more volatile POPs in coastal areas, influenced by snow and ice melting., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
21. Metagenomic profiling pipelines improve taxonomic classification for 16S amplicon sequencing data.
- Author
-
Odom AR, Faits T, Castro-Nallar E, Crandall KA, and Johnson WE
- Subjects
- Humans, Metagenomics, RNA, Ribosomal, 16S genetics, Metagenome, Bone Plates, Microbiota, Cercozoa, Polyarteritis Nodosa
- Abstract
Most experiments studying bacterial microbiomes rely on the PCR amplification of all or part of the gene for the 16S rRNA subunit, which serves as a biomarker for identifying and quantifying the various taxa present in a microbiome sample. Several computational methods exist for analyzing 16S amplicon sequencing. However, the most-used bioinformatics tools cannot produce high quality genus-level or species-level taxonomic calls and may underestimate the potential accuracy of these calls. We used 16S sequencing data from mock bacterial communities to evaluate the sensitivity and specificity of several bioinformatics pipelines and genomic reference libraries used for microbiome analyses, concentrating on measuring the accuracy of species-level taxonomic assignments of 16S amplicon reads. We evaluated the tools DADA2, QIIME 2, Mothur, PathoScope 2, and Kraken 2 in conjunction with reference libraries from Greengenes, SILVA, Kraken 2, and RefSeq. Profiling tools were compared using publicly available mock community data from several sources, comprising 136 samples with varied species richness and evenness, several different amplified regions within the 16S rRNA gene, and both DNA spike-ins and cDNA from collections of plated cells. PathoScope 2 and Kraken 2, both tools designed for whole-genome metagenomics, outperformed DADA2, QIIME 2 using the DADA2 plugin, and Mothur, which are theoretically specialized for 16S analyses. Evaluations of reference libraries identified the SILVA and RefSeq/Kraken 2 Standard libraries as superior in accuracy compared to Greengenes. These findings support PathoScope and Kraken 2 as fully capable, competitive options for genus- and species-level 16S amplicon sequencing data analysis, whole genome sequencing, and metagenomics data tools., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
22. Characterization of the upper respiratory tract microbiota in Chilean asthmatic children reveals compositional, functional, and structural differences.
- Author
-
Ramos-Tapia I, Reynaldos-Grandón KL, Pérez-Losada M, and Castro-Nallar E
- Abstract
Around 155 million people worldwide suffer from asthma. In Chile, the prevalence of this disease in children is around 15% and has a high impact in the health system. Studies suggest that asthma is caused by multiple factors, including host genetics, antibiotic use, and the development of the airway microbiota. Here, we used 16S rRNA high-throughput sequencing to characterize the nasal and oral mucosae of 63 asthmatic and 89 healthy children (152 samples) from Santiago, Chile. We found that the nasal mucosa was dominated by a high abundance of Moraxella, Dolosigranulum, Haemophilus, Corynebacterium, Streptococcus, and Staphylococcus . In turn, the oral mucosa was characterized by a high abundance of Streptococcus , Haemophilus, Gemella, Veillonella, Neisseria , and Porphyromonas. Our results showed significantly ( P < 0.001) lower alpha diversity and an over-abundance of Streptococcus ( P < 0.01) in nasal samples from asthmatics compared to samples from healthy subjects. Community structure, as revealed by co-occurrence networks, showed different microbial interactions in asthmatic and healthy subjects, particularly in the nasal microbiota. The networks revealed keystone genera in each body site, including Prevotella, Leptotrichia, and Porphyromonas in the nasal microbiota, and Streptococcus, Granulicatella, and Veillonella in the oral microbiota. We also detected 51 functional pathways differentially abundant on the nasal mucosa of asthmatic subjects, although only 13 pathways were overrepresented in the asthmatic subjects ( P < 0.05). We did not find any significant differences in microbial taxonomic (composition and structure) and functional diversity between the oral mucosa of asthmatic and healthy subjects. This study explores for the first time the relationships between the upper respiratory airways bacteriome and asthma in Chile. It demonstrates that the nasal cavity of children from Santiago harbors unique bacterial communities and identifies potential taxonomic and functional biomarkers of pediatric asthma., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (© 2023 Ramos-Tapia, Reynaldos-Grandón, Pérez-Losada and Castro-Nallar.)
- Published
- 2023
- Full Text
- View/download PDF
23. Exploring the Influence of Small-Scale Geographical and Seasonal Variations Over the Microbial Diversity in a Poly-extreme Athalosaline Wetland.
- Author
-
Pardo-Esté C, Leiva SG, Remonsellez F, Castro-Nallar E, Castro-Severyn J, and Saavedra CP
- Subjects
- Seasons, Geography, Phenotype, Wetlands, Microbiota
- Abstract
Microorganisms are the most diverse life form on the planet and are critical for maintaining the geochemical cycles, especially in extreme environments. Bacterial communities are dynamic and respond directly to changes in abiotic conditions; among these communities, poly-extremophiles are particularly sensitive to perturbations due to their high specialization. Salar de Huasco is a high-altitude wetland located on the Chilean Altiplano exhibiting several conditions considered extreme for life, including negative water balance, extreme variations in temperature and pH values, high UV radiation, and the presence of various toxic metal(oids). However, previous reports have revealed a diverse bacterial community that has adapted to these conditions, here, we aimed to determine whether microbial community diversity and composition changed in response to geographical and seasonal variations. We found that there are significant differences in diversity, abundance, and composition in bacterial taxa that could be attributed to local geographical and seasonal variations, which in turn, can be associated with microbial traits. In conclusion, in this poly-extreme environment, small-scale changes can trigger significant changes in the microbial communities that maintain basic biogeochemical cycles. Further in depth analysis of microbial functionality and geo-ecological dynamics are necessary to better understand the relationships between seasonal changes and bacterial communities., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
24. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review.
- Author
-
Egas C, Galbán-Malagón C, Castro-Nallar E, and Molina-Montenegro MA
- Subjects
- Humans, Ecosystem, Biodiversity, Environmental Pollution, Bioaccumulation, Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons analysis
- Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level., Competing Interests: Declaration of competing interest No potential conflict of interest was reported by the authors., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
25. Spatially and Temporally Explicit Metagenomes and Metagenome-Assembled Genomes from the Comau Fjord (42°S), Patagonia.
- Author
-
Castro-Nallar E, Berríos-Farías V, Díez B, and Guajardo-Leiva S
- Abstract
Microbes play an important role in coastal and estuarine waters. We present 93 metagenomes and 677 metagenome-assembled genomes (MAGs) from Comau Fjord, Patagonia (42°S), to further understand the microbial dynamics and their response to anthropogenic disturbances. These data represent a spatially (35-km transect) and temporally (2016 to 2019) explicit data set., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
26. The oral bacteriomes of patients with allergic rhinitis and asthma differ from that of healthy controls.
- Author
-
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, and Oliveira M
- Abstract
Allergic rhinitis and asthma are two of the most common chronic respiratory diseases in developed countries and have become a major public health concern. Substantial evidence has suggested a strong link between respiratory allergy and upper airway dysbacteriosis, but the role of the oral bacteriota is still poorly understood. Here we used 16S rRNA massive parallel sequencing to characterize the oral bacteriome of 344 individuals with allergic rhinitis (AR), allergic rhinitis with asthma (ARAS), asthma (AS) and healthy controls (CT). Four of the most abundant (>2%) phyla (Actinobacteriota, Firmicutes, Fusobacteriota, and Proteobacteria) and 10 of the dominant genera ( Actinomyces, Fusobacterium, Gemella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Streptococcus, and Veillonella ) in the oral cavity differed significantly ( p ≤ 0.03) between AR, ARAS or AS and CT groups. The oral bacteriome of ARAS patients showed the highest intra-group diversity, while CT showed the lowest. All alpha-diversity indices of microbial richness and evenness varied significantly ( p ≤ 0.022) in ARAS vs. CT and ARAS vs. AR, but they were not significantly different in AR vs. CT. All beta-diversity indices of microbial structure (Unifrac, Bray-Curtis, and Jaccard distances) differed significantly ( p ≤ 0.049) between each respiratory disease group and controls. Bacteriomes of AR and ARAS patients showed 15 and 28 upregulated metabolic pathways (PICRUSt2) mainly related to degradation and biosynthesis ( p < 0.05). A network analysis (SPIEC-EASI) of AR and ARAS bacteriomes depicted simpler webs of interactions among their members than those observed in the bacteriome of CT, suggesting chronic respiratory allergic diseases may disrupt bacterial connectivity in the oral cavity. This study, therefore, expands our understanding of the relationships between the oral bacteriome and allergy-related conditions. It demonstrates for the first time that the mouth harbors distinct bacteriotas during health and allergic rhinitis (with and without comorbid asthma) and identifies potential taxonomic and functional microbial biomarkers of chronic airway disease., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Pérez-Losada, Castro-Nallar, Laerte Boechat, Delgado, Azenha Rama, Berrios-Farías and Oliveira.)
- Published
- 2023
- Full Text
- View/download PDF
27. Fecal Metagenomes and Metagenome-Assembled Genomes from the South American Sea Lion (Otaria flavescens) from the Comau Fjord (42°S), Patagonia.
- Author
-
Guajardo-Leiva S, Berríos-Farías V, Bermúdez FG, and Castro-Nallar E
- Abstract
Environmental disturbances can be monitored using sentinel species. We present 30 temporally explicit metagenomes and 166 metagenome-assembled genomes (MAGs) from the gut of the South American sea lion (Otaria flavescens) to further understanding of whether variations in the gut microbiome composition and gene content might reflect environmental disturbances from salmon farming., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
28. Seasonal and Spatially Distributed Viral Metagenomes from Comau Fjord (42°S), Patagonia.
- Author
-
Castro-Nallar E, Berríos-Farías V, Díez B, and Guajardo-Leiva S
- Abstract
Viruses are key players in marine environments, affecting food webs and biogeochemical cycles. We present 48 viral metagenomes and 5,656 viral operational taxonomic units (vOTUs) from Comau Fjord, Patagonia (42°S), to understand viral-mediated processes in coastal and estuarine waters. These data represent a spatial (35-km transect, two depths) and seasonal (winter and fall) data set.
- Published
- 2023
- Full Text
- View/download PDF
29. A First Insight into the Microbial and Viral Communities of Comau Fjord-A Unique Human-Impacted Ecosystem in Patagonia (42 ∘ S).
- Author
-
Guajardo-Leiva S, Mendez KN, Meneses C, Díez B, and Castro-Nallar E
- Abstract
While progress has been made in surveying the oceans to understand microbial and viral communities, the coastal ocean and, specifically, estuarine waters, where the effects of anthropogenic activity are greatest, remain partially understudied. The coastal waters of Northern Patagonia are of interest since this region experiences high-density salmon farming as well as other disturbances such as maritime transport of humans and cargo. Here, we hypothesized that viral and microbial communities from the Comau Fjord would be distinct from those collected in global surveys yet would have the distinctive features of microbes from coastal and temperate regions. We further hypothesized that microbial communities will be functionally enriched in antibiotic resistance genes (ARGs) in general and in those related to salmon farming in particular. Here, the analysis of metagenomes and viromes obtained for three surface water sites showed that the structure of the microbial communities was distinct in comparison to global surveys such as the Tara Ocean, though their composition converges with that of cosmopolitan marine microbes belonging to Proteobacteria, Bacteroidetes, and Actinobacteria. Similarly, viral communities were also divergent in structure and composition but matched known viral members from North America and the southern oceans. Microbial communities were functionally enriched in ARGs dominated by beta-lactams and tetracyclines, bacitracin, and the group macrolide-lincosamide-streptogramin (MLS) but were not different from other communities from the South Atlantic, South Pacific, and Southern Oceans. Similarly, viral communities were characterized by exhibiting protein clusters similar to those described globally (Tara Oceans Virome); however, Comau Fjord viromes displayed up to 50% uniqueness in their protein content. Altogether, our results indicate that microbial and viral communities from the Comau Fjord are a reservoir of untapped diversity and that, given the increasing anthropogenic impacts in the region, they warrant further study, specifically regarding resilience and resistance against antimicrobials and hydrocarbons.
- Published
- 2023
- Full Text
- View/download PDF
30. Continuous bioreactors enable high-level bioremediation of diesel-contaminated seawater at low and mesophilic temperatures using Antarctic bacterial consortia: Pollutant analysis and microbial community composition.
- Author
-
Sulbaran-Bracho Y, Orellana-Saez M, Castro-Severyn J, Galbán-Malagón C, Castro-Nallar E, and Poblete-Castro I
- Subjects
- Humans, Biodegradation, Environmental, Temperature, RNA, Ribosomal, 16S genetics, Gasoline, Bacteria metabolism, Seawater chemistry, Bioreactors, Soil Microbiology, Environmental Pollutants metabolism, Soil Pollutants metabolism, Microbiota
- Abstract
In 2020, more than 21,000 tons of diesel oil were released accidently into the environment with most of it contaminating water bodies. There is an urgent need for sustainable technologies to clean up rivers and oceans to protect wildlife and human health. One solution is harnessing the power of bacterial consortia; however isolated microbes from different environments have shown low diesel bioremediation rates in seawater thus far. An outstanding question is whether Antarctic microorganisms that thrive in environments polluted with hydrocarbons exhibit better diesel degrading activities when propagated at higher temperatures than those encountered in their natural ecosystems. Here, we isolated bacterial consortia, LR-30 (30 °C) and LR-10 (10 °C), from the Antarctic rhizosphere soil of Deschampsia antarctica (Livingston Island), that used diesel oil as the only carbon substrate. We found that LR-30 and LR-10 batch bioreactors metabolized nearly the entire diesel content when the initial concentration was 10 (g/L) in seawater. Increasing the initial diesel concentration to 50 gDiesel/L, LR-30 and LR-10 bioconverted 33.4 and 31.2 gDiesel/L in 7 days, respectively. The 16S rRNA gene sequencing profiles revealed that the dominant bacterial genera of the inoculated LR-30 community were Achromobacter (50.6%), Pseudomonas (25%) and Rhodanobacter (14.9%), whereas for LR-10 were Pseudomonas (58%), Candidimonas (10.3%) and Renibacterium (7.8%). We also established continuous bioreactors for diesel biodegradation where LR-30 bioremediated diesel at an unprecedent rate of (34.4 g/L per day), while LR-10 achieved (24.5 g/L per day) at 10 °C for one month. The abundance of each bacterial genera present significantly fluctuated at some point during the diesel bioremediation process, yet Achromobacter and Pseudomonas were the most abundant member at the end of the batch and continuous bioreactors for LR-30 and LR-10, respectively., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
31. Nasal Bacteriomes of Patients with Asthma and Allergic Rhinitis Show Unique Composition, Structure, Function and Interactions.
- Author
-
Pérez-Losada M, Castro-Nallar E, Laerte Boechat J, Delgado L, Azenha Rama T, Berrios-Farías V, and Oliveira M
- Abstract
Allergic rhinitis and asthma are major public health concerns and economic burdens worldwide. However, little is known about nasal bacteriome dysbiosis during allergic rhinitis, alone or associated with asthma comorbidity. To address this knowledge gap we applied 16S rRNA high-throughput sequencing to 347 nasal samples from participants with asthma (AS = 12), allergic rhinitis (AR = 53), allergic rhinitis with asthma (ARAS = 183) and healthy controls (CT = 99). One to three of the most abundant phyla, and five to seven of the dominant genera differed significantly ( p < 0.021) between AS, AR or ARAS and CT groups. All alpha-diversity indices of microbial richness and evenness changed significantly ( p < 0.01) between AR or ARAS and CT, while all beta-diversity indices of microbial structure differed significantly ( p < 0.011) between each of the respiratory disease groups and controls. Bacteriomes of rhinitic and healthy participants showed 72 differentially expressed ( p < 0.05) metabolic pathways each related mainly to degradation and biosynthesis processes. A network analysis of the AR and ARAS bacteriomes depicted more complex webs of interactions among their members than among those of healthy controls. This study demonstrates that the nose harbors distinct bacteriotas during health and respiratory disease and identifies potential taxonomic and functional biomarkers for diagnostics and therapeutics in asthma and rhinitis.
- Published
- 2023
- Full Text
- View/download PDF
32. Transcriptomic analyses reveal increased expression of dioxygenases, monooxygenases, and other metabolizing enzymes involved in anthracene degradation in the marine alga Ulva lactuca .
- Author
-
González A, Osorio H, Romero S, Méndez P, Sepúlveda M, Laporte D, Gutierrez-Cutiño M, Santander R, Castro-Nallar E, and Moenne A
- Abstract
To analyze the mechanisms involved in anthracene (ANT) degradation in the marine alga Ulva lactuca , total RNA was obtained from the alga cultivated without ANT and with 5 μM of ANT for 24 h, and transcriptomic analyses were performed. A de novo transcriptome was assembled, transcripts differentially expressed were selected, and those overexpressed were identified. Overexpressed transcripts potentially involved in ANT degradation were: one aromatic ring dioxygenase, three 2-oxoglutarate Fe (II) dioxygenases (2-OGDOs), and three dienelactone hydrolases that may account for anthraquinone, phthalic anhydride, salicylic acid, and phthalic acid production (pathway 1). In addition, two flavin adenine dinucleotide (FAD)-dependent monooxygenases, four cytP450 monooxygenases, two epoxide hydrolase, one hydroxyphenylpyruvic acid dioxygenase (HPPDO), and two homogentisic acid dioxygenases (HGDOs) were identified that may also participate in ANT degradation (pathway 2). Moreover, an alkane monooxygenase (alkB), two alcohol dehydrogenases, and three aldehyde dehydrogenases were identified, which may participate in linear hydrocarbon degradation (pathway 3). Furthermore, the level of transcripts encoding some of mentioned enzymes were quantified by qRT-PCR are in the alga cultivated with 5 μM of ANT for 0-48 h, and those more increased were 2-OGDO, HGDO, and alkB monooxygenase. Thus, at least three pathways for ANT and linear hydrocarbons degradation may be existed in U. lactuca . In addition, ANT metabolites were analyzed by gas chromatography and mass spectrometry (GC-MS), allowing the identification of anthraquinone, phthalic anhydride, salicylic acid, and phthalic acid, thus validating the pathway 1., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 González, Osorio, Romero, Méndez, Sepúlveda, Laporte, Gutierrez-Cutiño, Santander, Castro-Nallar and Moenne.)
- Published
- 2022
- Full Text
- View/download PDF
33. Source and acquisition of rhizosphere microbes in Antarctic vascular plants.
- Author
-
Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, and Castro-Nallar E
- Abstract
Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Guajardo-Leiva, Alarcón, Gutzwiller, Gallardo-Cerda, Acuña-Rodríguez, Molina-Montenegro, Crandall, Pérez-Losada and Castro-Nallar.)
- Published
- 2022
- Full Text
- View/download PDF
34. Nasopharyngeal metatranscriptome profiles of infants with bronchiolitis and risk of childhood asthma: a multicentre prospective study.
- Author
-
Raita Y, Pérez-Losada M, Freishtat RJ, Hahn A, Castro-Nallar E, Ramos-Tapia I, Stearrett N, Bochkov YA, Gern JE, Mansbach JM, Zhu Z, Camargo CA, and Hasegawa K
- Subjects
- Haemophilus influenzae, Humans, Infant, Nasopharynx, Prospective Studies, Streptococcus pneumoniae, Asthma etiology, Bronchiolitis, Respiratory Syncytial Virus Infections complications
- Abstract
Background: Bronchiolitis is not only the leading cause of hospitalisation in US infants but also a major risk factor for asthma development. Growing evidence supports clinical heterogeneity within bronchiolitis. Our objectives were to identify metatranscriptome profiles of infant bronchiolitis, and to examine their relationship with the host transcriptome and subsequent asthma development., Methods: As part of a multicentre prospective cohort study of infants (age <1 year) hospitalised for bronchiolitis, we integrated virus and nasopharyngeal metatranscriptome (species-level taxonomy and function) data measured at hospitalisation. We applied network-based clustering approaches to identify metatranscriptome profiles. We then examined their association with the host transcriptome at hospitalisation and risk for developing asthma., Results: We identified five metatranscriptome profiles of bronchiolitis (n=244): profile A: virus
RSV microbiomecommensals ; profile B: virusRSV/RV-A microbiomeH.influenzae ; profile C: virusRSV microbiomeS.pneumoniae ; profile D: virusRSV microbiomeM.nonliquefaciens ; and profile E: virusRSV/RV-C microbiomeM.catarrhalis . Compared with profile A, profile B infants were characterised by a high proportion of eczema, Haemophilus influenzae abundance and enriched virulence related to antibiotic resistance. These profile B infants also had upregulated T-helper 17 and downregulated type I interferon pathways (false discovery rate (FDR) <0.005), and significantly higher risk for developing asthma (17.9% versus 38.9%; adjusted OR 2.81, 95% CI 1.11-7.26). Likewise, profile C infants were characterised by a high proportion of parental asthma, Streptococcus pneumoniae dominance, and enriched glycerolipid and glycerophospholipid metabolism of the microbiome. These profile C infants had an upregulated RAGE signalling pathway (FDR <0.005) and higher risk of asthma (17.9% versus 35.6%; adjusted OR 2.49, 95% CI 1.10-5.87)., Conclusions: Metatranscriptome and clustering analysis identified biologically distinct metatranscriptome profiles that have differential risks of asthma., Competing Interests: Conflict of interest: Y. Raita has nothing to disclose. Conflict of interest: M. Pérez-Losada has nothing to disclose. Conflict of interest: R.J. Freishtat has nothing to disclose. Conflict of interest: A. Hahn has nothing to disclose. Conflict of interest: E. Castro-Nallar has nothing to disclose. Conflict of interest: I. Ramos-Tapia has nothing to disclose. Conflict of interest: N.l Stearrett has nothing to disclose. Conflict of interest: Y.A. Bochkov has patents on production methods of rhinoviruses. Conflict of interest: J.E. Gern is a paid consultant to AstraZeneca and Meissa Vaccines Inc., has stock options in Meissa Vaccines Inc., and has patents on production methods of rhinoviruses. Conflict of interest: J.M. Mansbach has nothing to disclose. Conflict of interest: Z. Zhu has nothing to disclose. Conflict of interest: C.A. Camargo has nothing to disclose. Conflict of interest: K. Hasegawa has nothing to disclose., (Copyright ©The authors 2022. For reproduction rights and permissions contact permissions@ersnet.org.)- Published
- 2022
- Full Text
- View/download PDF
35. The Genome of the Marine Alga Ulva compressa (Chlorophyta) Reveals Protein-Coding Genes with Similarity to Plants and Green Microalgae, but Also to Animal, Bacterial, and Fungal Genes.
- Author
-
Osorio H, Tapia-Reyes P, Espinoza D, Laporte D, González A, Castro-Nallar E, and Moenne A
- Subjects
- Animals, Copper metabolism, Ethylenes metabolism, Genes, Fungal, Transcription Factors metabolism, Chlorophyta genetics, Chlorophyta metabolism, Microalgae metabolism, Ulva
- Abstract
The genome of the marine alga Ulva compressa was assembled using long and short reads. The genome assembly was 80.8 Mb in size and encoded 19,207 protein-coding genes. Several genes encoding antioxidant enzymes and a few genes encoding enzymes that synthesize ascorbate and glutathione were identified, showing similarity to plant and bacterial enzymes. Additionally, several genes encoding signal transduction protein kinases, such as MAPKs, CDPKS, CBLPKs, and CaMKs, were also detected, showing similarity to plants, green microalgae, and bacterial proteins. Regulatory transcription factors, such as ethylene- and ABA-responsive factors, MYB, WRKY, and HSTF, were also present and showed similarity to plant and green microalgae transcription factors. Genes encoding enzymes that synthesize ACC and ABA-aldehyde were also identified, but oxidases that synthesize ethylene and ABA, as well as enzymes that synthesize other plant hormones, were absent. Interestingly, genes involved in plant cell wall synthesis and proteins related to animal extracellular matrix were also detected. Genes encoding cyclins and CDKs were also found, and CDKs showed similarity to animal and fungal CDKs. Few genes encoding voltage-dependent calcium channels and ionotropic glutamate receptors were identified as showing similarity to animal channels. Genes encoding Transient Receptor Potential (TRP) channels were not identified, even though TRPs have been experimentally detected, indicating that the genome is not yet complete. Thus, protein-coding genes present in the genome of U. compressa showed similarity to plant and green microalgae, but also to animal, bacterial, and fungal genes.
- Published
- 2022
- Full Text
- View/download PDF
36. Long-Term Interactions of Salmonella Enteritidis With a Lytic Phage for 21 Days in High Nutrients Media.
- Author
-
Barron-Montenegro R, Rivera D, Serrano MJ, García R, Álvarez DM, Benavides J, Arredondo F, Álvarez FP, Bastías R, Ruiz S, Hamilton-West C, Castro-Nallar E, and Moreno-Switt AI
- Subjects
- Animals, Nutrients, Salmonella enteritidis, Bacteriophages genetics, Salmonella Phages genetics
- Abstract
Salmonella spp. is a relevant foodborne pathogen with worldwide distribution. To mitigate Salmonella infections, bacteriophages represent an alternative to antimicrobials and chemicals in food animals and food in general. Bacteriophages (phages) are viruses that infect bacteria, which interact constantly with their host. Importantly, the study of these interactions is crucial for the use of phages as a mitigation strategy. In this study, experimental coevolution of Salmonella Enteritidis ( S . Enteritidis) and a lytic phage was conducted in tryptic soy broth for 21 days. Transfer to fresh media was conducted daily and every 24 hours, 2 mL of the sample was collected to quantify Salmonella OD
600 and phage titter. Additionally, time-shift experiments were conducted on 20 colonies selected on days 1, 12, and 21 to evaluate the evolution of resistance to past (day 1), present (day 12), and future (day 21) phage populations. The behavior of the dynamics was modeled and simulated with mathematical mass-action models. Bacteria and phage from days 1 and 21 were sequenced to determine the emergence of mutations. We found that S . Enteritidis grew for 21 days in the presence and absence of the phage and developed resistance to the phage from day 1. Also, the phage was also able to survive in the media for 21 days, however, the phage titer decreased in approx. 3 logs PFU/mL. The stability of the lytic phage population was consistent with the leaky resistance model. The time-shift experiments showed resistance to phages from day 1 of at least 85% to the past, present, and future phages. Sequencing of S . Enteritidis showed mutations in genes involved in lipopolysaccharide biosynthesis genes rfbP and rfbN at day 21. The phage showed mutations in the tail phage proteins responsible for recognizing the cell surface receptors. These results suggest that interactions between bacteria and phage in a rich resource media generate a rapid resistance to the infective phage but a fraction of the population remains susceptible. Interactions between Salmonella and lytic phages are an important component for the rational use of phages to control this important foodborne pathogen., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Barron-Montenegro, Rivera, Serrano, García, Álvarez, Benavides, Arredondo, Álvarez, Bastías, Ruiz, Hamilton-West, Castro-Nallar and Moreno-Switt.)- Published
- 2022
- Full Text
- View/download PDF
37. Comparative Analysis of Metagenomics and Metataxonomics for the Characterization of Vermicompost Microbiomes.
- Author
-
Pérez-Losada M, Narayanan DB, Kolbe AR, Ramos-Tapia I, Castro-Nallar E, Crandall KA, and Domínguez J
- Abstract
The study of microbial communities or microbiotas in animals and environments is important because of their impact in a broad range of industrial applications, diseases and ecological roles. High throughput sequencing (HTS) is the best strategy to characterize microbial composition and function. Microbial profiles can be obtained either by shotgun sequencing of genomes, or through amplicon sequencing of target genes (e.g., 16S rRNA for bacteria and ITS for fungi). Here, we compared both HTS approaches at assessing taxonomic and functional diversity of bacterial and fungal communities during vermicomposting of white grape marc. We applied specific HTS workflows to the same 12 microcosms, with and without earthworms, sampled at two distinct phases of the vermicomposting process occurring at 21 and 63 days. Metataxonomic profiles were inferred in DADA2, with bacterial metabolic pathways predicted via PICRUSt2. Metagenomic taxonomic profiles were inferred in PathoScope, while bacterial functional profiles were inferred in Humann2. Microbial profiles inferred by metagenomics and metataxonomics showed similarities and differences in composition, structure, and metabolic function at different taxonomic levels. Microbial composition and abundance estimated by both HTS approaches agreed reasonably well at the phylum level, but larger discrepancies were observed at lower taxonomic ranks. Shotgun HTS identified ~1.8 times more bacterial genera than 16S rRNA HTS, while ITS HTS identified two times more fungal genera than shotgun HTS. This is mainly a consequence of the difference in resolution and reference richness between amplicon and genome sequencing approaches and databases, respectively. Our study also revealed great differences and even opposite trends in alpha- and beta-diversity between amplicon and shotgun HTS. Interestingly, amplicon PICRUSt2-imputed functional repertoires overlapped ~50% with shotgun Humann2 profiles. Finally, both approaches indicated that although bacteria and fungi are the main drivers of biochemical decomposition, earthworms also play a key role in plant vermicomposting. In summary, our study highlights the strengths and weaknesses of metagenomics and metataxonomics and provides new insights on the vermicomposting of white grape marc. Since both approaches may target different biological aspects of the communities, combining them will provide a better understanding of the microbiotas under study., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Pérez-Losada, Narayanan, Kolbe, Ramos-Tapia, Castro-Nallar, Crandall and Domínguez.)
- Published
- 2022
- Full Text
- View/download PDF
38. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association.
- Author
-
Wu J, Danko D, Afshinnekoo E, Bezdan D, Bhattacharyya M, Castro-Nallar E, Chmielarczyk A, Hazrin-Chong NH, Deng Y, Dias-Neto E, Frolova A, Mason-Buck G, Iraola G, Jang S, Łabaj P, Lee PKH, Nieto-Caballero M, Osuolale OO, Ouzounis CA, Perlin MH, Prithiviraj B, Rascovan N, Różańska A, Schriml LM, Semmler T, Suzuki H, Ugalde JA, Young B, Werner J, Zambrano MM, Zhao Y, Mason C, and Shi T
- Subjects
- Bacteria genetics, Humans, Metagenomics, Microbial Interactions, Metagenome, Microbiota genetics
- Abstract
In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF
39. Influence of Physical-Chemical Soil Parameters on Microbiota Composition and Diversity in a Deep Hyperarid Core of the Atacama Desert.
- Author
-
Fuentes B, Choque A, Gómez F, Alarcón J, Castro-Nallar E, Arenas F, Contreras D, Mörchen R, Amelung W, Knief C, Moradi G, Klumpp E, Saavedra CP, Prietzel J, Klysubun W, Remonsellez F, and Bol R
- Abstract
The extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay region in the Atacama Desert, and we related it to changes in soil physico-chemical characteristics. We found that the moisture content changed from 2 to 11% with depth and enabled the differentiation of three depth intervals: (i) surface zone A (0-60 cm), (ii) intermediate zone B (60-220 cm), and (iii) deep zone C (220-340 cm). Each zone showed further specific physicochemical and mineralogical features. Likewise, some bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota , Halobacterota , and Latescibacterota in zone A; Crenarchaeota , Fusobacteriota , and Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in the microbiota between the zones were rather abrupt, which is concomitant with abrupt changes in the physical-chemical parameters. Overall, moisture content, total carbon (TC), pH, and electric conductivity (EC) were most predictive of microbial richness and diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally predictive of community composition. We also found statistically significant associations between taxa and soil properties, most of which involved moisture and TC contents. Our findings show that under-explored habitats for microbial survival and existence may prevail at greater soil depths near water or within water-bearing layers, a valuable substantiation also for the ongoing search for biosignatures on other planets, such as Mars., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Fuentes, Choque, Gómez, Alarcón, Castro-Nallar, Arenas, Contreras, Mörchen, Amelung, Knief, Moradi, Klumpp, Saavedra, Prietzel, Klysubun, Remonsellez and Bol.)
- Published
- 2022
- Full Text
- View/download PDF
40. Genetic Characterization of Salmonella Infantis with Multiple Drug Resistance Profiles Isolated from a Poultry-Farm in Chile.
- Author
-
Pardo-Esté C, Lorca D, Castro-Severyn J, Krüger G, Alvarez-Thon L, Zepeda P, Sulbaran-Bracho Y, Hidalgo A, Tello M, Molina F, Molina L, Remonsellez F, Castro-Nallar E, and Saavedra C
- Abstract
Salmonella comprises over 2500 serotypes and foodborne contamination associated with this pathogen remains an important health concern worldwide. During the last decade, a shift in serotype prevalence has occurred as traditionally less prevalent serotypes are increasing in frequency of infections, especially those related to poultry meat contamination. S. Infantis is one of the major emerging serotypes, and these strains commonly display antimicrobial resistance and can persist despite cleaning protocols. Thus, this work aimed to isolate S . Infantis strains from a poultry meat farm in Santiago, Chile and to characterize genetic variations present in them. We determined their genomic and phenotypic profiles at different points along the production line. The results indicate that the strains encompass 853 polymorphic sites (core-SNPs) with isolates differing from one another by 0-347 core SNPs, suggesting variation among them; however, we found discrete correlations with the source of the sample in the production line. Furthermore, the pan-genome was composed of 4854 total gene clusters of which 2618 (53.9%) corresponds to the core-genome and only 181 (3.7%) are unique genes (those present in one particular strain). This preliminary analysis will enrich the surveillance of Salmonella , yet further studies are required to assess their evolution and phylogeny.
- Published
- 2021
- Full Text
- View/download PDF
41. Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem.
- Author
-
Castro-Severyn J, Pardo-Esté C, Mendez KN, Fortt J, Marquez S, Molina F, Castro-Nallar E, Remonsellez F, and Saavedra CP
- Subjects
- Bacteria classification, Bacteria genetics, Biodiversity, Chile, DNA, Bacterial, Metagenome, Phylogeny, RNA, Ribosomal, 16S genetics, Salinity, Arsenic metabolism, Bacteria metabolism, Ecosystem, Metagenomics, Microbiota genetics
- Abstract
Microbial communities inhabiting extreme environments such as Salar de Huasco (SH) in northern Chile are adapted to thrive while exposed to several abiotic pressures and the presence of toxic elements such as arsenic (As). Hence, we aimed to uncover the role of As in shaping bacterial composition, structure, and functional potential in five different sites in this altiplanic wetland using a shotgun metagenomic approach. The sites exhibit wide gradients of As (9 to 321 mg/kg), and our results showed highly diverse communities and a clear dominance exerted by the Proteobacteria and Bacteroidetes phyla. Functional potential analyses show broadly convergent patterns, contrasting with their great taxonomic variability. As-related metabolism, as well as other functional categories such as those related to the CH
4 and S cycles, differs among the five communities. Particularly, we found that the distribution and abundance of As-related genes increase as the As concentration rises. Approximately 75% of the detected genes for As metabolism belong to expulsion mechanisms; arsJ and arsP pumps are related to sites with higher As concentrations and are present almost exclusively in Proteobacteria . Furthermore, taxonomic diversity and functional potential are reflected in the 12 reconstructed high-quality metagenome assembled genomes (MAGs) belonging to the Bacteroidetes (5), Proteobacteria (5), Cyanobacteria (1), and Gemmatimonadetes (1) phyla. We conclude that SH microbial communities are diverse and possess a broad genetic repertoire to thrive under extreme conditions, including increasing concentrations of highly toxic As. Finally, this environment represents a reservoir of unknown and undescribed microorganisms, with great metabolic versatility, which needs further study. IMPORTANCE As microbial communities inhabiting extreme environments are fundamental for maintaining ecosystems, many studies concerning composition, functionality, and interactions have been carried out. However, much is still unknown. Here, we sampled microbial communities in the Salar de Huasco, an extreme environment subjected to several abiotic stresses (high UV radiation, salinity and arsenic; low pressure and temperatures). We found that although microbes are taxonomically diverse, functional potential seems to have an important degree of convergence, suggesting high levels of adaptation. Particularly, arsenic metabolism showed differences associated with increasing concentrations of the metalloid throughout the area, and it effectively exerts a significant pressure over these organisms. Thus, the significance of this research is that we describe highly specialized communities thriving in little-explored environments subjected to several pressures, considered analogous of early Earth and other planets, that have the potential for unraveling technologies to face the repercussions of climate change in many areas of interest.- Published
- 2021
- Full Text
- View/download PDF
42. Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii).
- Author
-
Toro-Valdivieso C, Toro F, Stubbs S, Castro-Nallar E, and Blacklaws B
- Subjects
- Actinobacteria classification, Actinobacteria genetics, Actinobacteria isolation & purification, Animals, Bacteria genetics, Bacteria isolation & purification, Bacteroidetes classification, Bacteroidetes genetics, Bacteroidetes isolation & purification, Biodiversity, Chile, DNA, Bacterial genetics, Firmicutes classification, Firmicutes genetics, Firmicutes isolation & purification, Fusobacteria classification, Fusobacteria genetics, Fusobacteria isolation & purification, Proteobacteria classification, Proteobacteria genetics, Proteobacteria isolation & purification, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Bacteria classification, Feces microbiology, Fur Seals microbiology, Gastrointestinal Microbiome genetics, Microbiota genetics
- Abstract
As apex predators, pinnipeds are considered to be useful bioindicators of marine and coastal environments. Endemic to a small archipelago in the South Pacific, the Juan Fernandez fur seal (JFFS) is one of the less-studied members of the pinniped family Otariidae. This study aimed to characterize the fecal microbiome of the JFFS for the first time, to establish a baseline for future studies of host-microbial-environment interactions and monitoring programs. During two consecutive reproductive seasons, 57 fecal samples were collected from seven different JFFS colonies within the Juan Fernandez Archipelago, Chile. Bacterial composition and abundance were characterized by sequencing the V4 region of the 16S rRNA gene. The overall microbiome composition was dominated by five phyla: Firmicutes (40% ±24), Fusobacteria (30% ±17), Bacteroidetes (22% ±10), Proteobacteria (6% ±4), and Actinobacteria (2% ±3). Alpha diversity was higher in Tierras Blancas. However, location was not found to be a dominant driver of microbial composition. Interestingly, the strongest signal in the data was a negative association between the genera Peptoclostridium and Fusobacterium, which explained 29.7% of the total microbial composition variability between samples. The genus Peptoclostridium has not been reported in other pinniped studies, and its role here is unclear, with interpretation challenging due to a lack of information regarding microbiome functionality in marine mammals. As a first insight into the JFFS fecal microbiome, these results contribute towards our understanding of the natural microbial diversity and composition in free-ranging pinnipeds., (© 2021 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
43. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite.
- Author
-
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, and Cámara B
- Subjects
- Anti-Bacterial Agents metabolism, Antimicrobial Cationic Peptides metabolism, Chloramphenicol metabolism, Genomics, Multigene Family genetics, Phylogeny, Biological Products metabolism, Genome, Bacterial genetics, Peptide Biosynthesis, Nucleic Acid-Independent genetics, Peptide Synthases genetics, Rhodococcus genetics, Rhodococcus metabolism
- Published
- 2021
- Full Text
- View/download PDF
44. A global metagenomic map of urban microbiomes and antimicrobial resistance.
- Author
-
Danko D, Bezdan D, Afshin EE, Ahsanuddin S, Bhattacharya C, Butler DJ, Chng KR, Donnellan D, Hecht J, Jackson K, Kuchin K, Karasikov M, Lyons A, Mak L, Meleshko D, Mustafa H, Mutai B, Neches RY, Ng A, Nikolayeva O, Nikolayeva T, Png E, Ryon KA, Sanchez JL, Shaaban H, Sierra MA, Thomas D, Young B, Abudayyeh OO, Alicea J, Bhattacharyya M, Blekhman R, Castro-Nallar E, Cañas AM, Chatziefthimiou AD, Crawford RW, De Filippis F, Deng Y, Desnues C, Dias-Neto E, Dybwad M, Elhaik E, Ercolini D, Frolova A, Gankin D, Gootenberg JS, Graf AB, Green DC, Hajirasouliha I, Hastings JJA, Hernandez M, Iraola G, Jang S, Kahles A, Kelly FJ, Knights K, Kyrpides NC, Łabaj PP, Lee PKH, Leung MHY, Ljungdahl PO, Mason-Buck G, McGrath K, Meydan C, Mongodin EF, Moraes MO, Nagarajan N, Nieto-Caballero M, Noushmehr H, Oliveira M, Ossowski S, Osuolale OO, Özcan O, Paez-Espino D, Rascovan N, Richard H, Rätsch G, Schriml LM, Semmler T, Sezerman OU, Shi L, Shi T, Siam R, Song LH, Suzuki H, Court DS, Tighe SW, Tong X, Udekwu KI, Ugalde JA, Valentine B, Vassilev DI, Vayndorf EM, Velavan TP, Wu J, Zambrano MM, Zhu J, Zhu S, and Mason CE
- Subjects
- Biodiversity, Databases, Genetic, Humans, Drug Resistance, Bacterial genetics, Metagenomics, Microbiota genetics, Urban Population
- Abstract
We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities., Competing Interests: Declaration of interests C.E.M. is co-founder of Biotia and Onegevity Health. D.B. is co-founder and CSO of Poppy Health Inc. The other authors declare they have no competing interests that impacted this study., (Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
45. Composition and structure of the skin microbiota of rorquals off the Eastern South Pacific.
- Author
-
Toro F, Alarcón J, Márquez S, Capella J, Bahamonde P, Esperón F, Moreno-Switt A, and Castro-Nallar E
- Subjects
- Animals, Chile, Phylogeny, Balaenoptera, Humpback Whale, Microbiota
- Abstract
Recent advances in high-throughput sequencing have enabled the large-scale interrogation of microbiota in the most diverse environments, including host-associated microbiota. This has led to the recognition that the skin microbiota of rorquals is specific and structurally different from that of the ocean. This study reveals the skin microbiome of 85 wild individuals along the Chilean coast belonging to Megaptera novaeangliae, Balaenoptera musculus and Balaenoptera physalus. Alpha diversity analysis revealed significant differences in richness and phylogenetic diversity, particularly among humpback whales from different locations and between blue and humpback whales. Beta diversity was partially explained by host and location but only accounting for up to 17% of microbiota variability (adjusted VPA). Overall, we found that microbiota composition was dominated by bacterial genera such as Cardiobacter, Moraxella, Tenacibaculum, Stenotrophomonas, Flavobacteria and Pseudomonas. We also found that no ASVs were associated with the three rorqual species. Up to four ASVs were specific of a location, indicating a great variability in the microbiota. To the best of our knowledge, this is the first report on the composition and structure of the skin microbiota of whales off the coast of Chile, providing a foundational dataset to understand the microbiota's role in rorquals., (© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2021
- Full Text
- View/download PDF
46. COVID-19 drug practices risk antimicrobial resistance evolution.
- Author
-
Afshinnekoo E, Bhattacharya C, Burguete-García A, Castro-Nallar E, Deng Y, Desnues C, Dias-Neto E, Elhaik E, Iraola G, Jang S, Łabaj PP, Mason CE, Nagarajan N, Poulsen M, Prithiviraj B, Siam R, Shi T, Suzuki H, Werner J, Zambrano MM, and Bhattacharyya M
- Subjects
- Anti-Bacterial Agents adverse effects, Drug Resistance, Bacterial, Humans, SARS-CoV-2, COVID-19 Drug Treatment
- Published
- 2021
- Full Text
- View/download PDF
47. Radiation-induced toxicity in rectal epithelial stem cell contributes to acute radiation injury in rectum.
- Author
-
Tirado FR, Bhanja P, Castro-Nallar E, Olea XD, Salamanca C, and Saha S
- Subjects
- Animals, Humans, Intestinal Mucosa, Male, Mice, Organoids, Receptors, G-Protein-Coupled genetics, Stem Cells, Radiation Injuries, Rectum
- Abstract
Background: Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum., Methods: C57Bl6 male mice (JAX) at 24 h were exposed to pelvic irradiation (PIR) to determine the radiation effect in pelvic epithelium. Effect of PIR on Lgr5-positive rectal stem cells (RSCs) was determined in Lgr5-EGFP-Cre-ERT2 mice exposed to PIR. Effect of PIR or clinically relevant fractionated PIR on regenerative response of Lgr5-positive RSCs was examined by lineage tracing assay using Lgr5-eGFP-IRES-CreERT2; Rosa26-CAG-tdTomato mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from Lgr5-EGFP-Cre-ERT2 mice. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Organoids from Lgr5-EGFP-ires-CreERT2-TdT mice were transplanted in C57Bl6 male mice exposed to PIR. Engraftment and repopulation of Lgr5-positive RSCs were determined after tamoxifen administration to activate Cre recombinase in recipient mice. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test., Result: Exposure to pelvic irradiation significantly damaged rectal epithelium with the loss of Lgr5+ve rectal stem cells. Radiosensitivity of rectal epithelium was also observed with exposure to clinically relevant fractionated pelvic irradiation. Regenerative capacity of Lgr5+ve rectal stem cells was compromised in response to fractionated pelvic irradiation. Ex vivo organoid study demonstrated that Lgr5+ve rectal stem cells are sensitive to both single and fractionated radiation. Organoid-based transplantation of Lgr5+ve rectal stem cells promotes repair and regeneration of rectal epithelium., Conclusion: Lgr5-positive rectal stem cells are radiosensitive and contribute to radiation-induced rectal epithelial toxicity. Transplantation of Lgr5-positive rectal stem cells mitigates radiation-induced rectal injury and promotes repair and regeneration process in rectum.
- Published
- 2021
- Full Text
- View/download PDF
48. Rapid sequence modification in the highly polymorphic region (HPR) of the hemagglutinin gene of the infectious salmon anaemia virus (ISAV) suggests intra-segmental template switching recombination.
- Author
-
Cárdenas M, Galleguillos C, Acevedo K, Ananias C, Alarcón J, Michelson S, Toledo J, Montoya M, Meneses C, Castro-Nallar E, Vásquez-Martínez Y, and Cortez-San Martin M
- Subjects
- Animals, Cell Line, Fish Diseases virology, Genotype, Hemagglutinins, Viral genetics, Orthomyxoviridae Infections virology, Salmo salar, Sequence Analysis, DNA, Viral Fusion Proteins genetics, Virulence genetics, Isavirus genetics, Isavirus pathogenicity, Recombination, Genetic
- Abstract
The ISAV has a genome composed of eight segments of (-)ssRNA, segment 6 codes for the hemagglutinin-esterase protein, and has the most variable region of the genome, the highly polymorphic region (HPR), which is unique among orthomyxoviruses. The HPR has been associated with virulence, infectivity and pathogenicity. The full length of the HPR is called HPR0 and the strain with this HPR is avirulent, in contrast to strains with deleted HPR that are virulent to varying degrees. The molecular mechanism that gives rise to the different HPRs remains unclear. Here, we studied in vitro the evolution of reassortant recombinant ISAV (rISAV) in Atlantic salmon head kidney (ASK) cells. To this end, we rescued and cultivated a set of rISAV with different segment 6-HPR genotypes using a reverse genetics system and then sequencing HPR regions of the viruses. Our results show rapid multiple recombination events in ISAV, with sequence insertions and deletions in the HPR, indicating a dynamic process. Inserted sequences can be found in four segments of the ISAV genome (segments 1, 5, 6, and 8). The results suggest intra-segmental heterologous recombination, probably by class I and class II template switching, similar to the proposed segment 5 recombination mechanism., (© 2020 John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
49. Evaluation of computational methods for human microbiome analysis using simulated data.
- Author
-
Miossec MJ, Valenzuela SL, Pérez-Losada M, Johnson WE, Crandall KA, and Castro-Nallar E
- Abstract
Background: Our understanding of the composition, function, and health implications of human microbiota has been advanced by high-throughput sequencing and the development of new genomic analyses. However, trade-offs among alternative strategies for the acquisition and analysis of sequence data remain understudied., Methods: We assessed eight popular taxonomic profiling pipelines; MetaPhlAn2, metaMix, PathoScope 2.0, Sigma, Kraken, ConStrains, Centrifuge and Taxator-tk, against a battery of metagenomic datasets simulated from real data. The metagenomic datasets were modeled on 426 complete or permanent draft genomes stored in the Human Oral Microbiome Database and were designed to simulate various experimental conditions, both in the design of a putative experiment; read length (75-1,000 bp reads), sequence depth (100K-10M), and in metagenomic composition; number of species present (10, 100, 426), species distribution. The sensitivity and specificity of each of the pipelines under various scenarios were measured. We also estimated the relative root mean square error and average relative error to assess the abundance estimates produced by different methods. Additional datasets were generated for five of the pipelines to simulate the presence within a metagenome of an unreferenced species, closely related to other referenced species. Additional datasets were also generated in order to measure computational time on datasets of ever-increasing sequencing depth (up to 6 × 10
7 )., Results: Testing of eight pipelines against 144 simulated metagenomic datasets initially produced 1,104 discrete results. Pipelines using a marker gene strategy; MetaPhlAn2 and ConStrains, were overall less sensitive, than other pipelines; with the notable exception of Taxator-tk. This difference in sensitivity was largely made up in terms of runtime, significantly lower than more sensitive pipelines that rely on whole-genome alignments such as PathoScope2.0. However, pipelines that used strategies to speed-up alignment between genomic references and metagenomic reads, such as kmerization, were able to combine both high sensitivity and low run time, as is the case with Kraken and Centrifuge. Absent species genomes in the database mostly led to assignment of reads to the most closely related species available in all pipelines. Our results therefore suggest that taxonomic profilers that use kmerization have largely superseded those that use gene markers, coupling low run times with high sensitivity and specificity. Taxonomic profilers using more time-consuming read reassignment, such as PathoScope 2.0, provided the most sensitive profiles under common metagenomic sequencing scenarios. All the results described and discussed in this paper can be visualized using the dedicated R Shiny application (https://github.com/microgenomics/HumanMicrobiomeAnalysis). All of our datasets, pipelines and results are made available through the GitHub repository for future benchmarking., Competing Interests: Keith A. Crandall and Eduardo Castro-Nallar are section and academic editors for PeerJ, respectively., (© 2020 Miossec et al.)- Published
- 2020
- Full Text
- View/download PDF
50. In infants with severe bronchiolitis: dual-transcriptomic profiling of nasopharyngeal microbiome and host response.
- Author
-
Fujiogi M, Camargo CA Jr, Bernot JP, Freishtat RJ, Harmon B, Mansbach JM, Castro-Nallar E, Perez-Losada M, and Hasegawa K
- Subjects
- Base Sequence, Biomarkers metabolism, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Viral, Humans, Infant, Infant, Newborn, Microbiota, Nasopharynx virology, Pilot Projects, RNA, Ribosomal, 16S metabolism, Respiratory Syncytial Virus Infections microbiology, Respiratory Syncytial Virus Infections virology, Respiratory Syncytial Viruses metabolism, Transcriptome, Bronchiolitis genetics, Bronchiolitis metabolism, Nasopharynx microbiology
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.