10,239 results on '"Cauchois A"'
Search Results
2. Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter
- Author
-
Aamir, M., Adamov, G., Adams, T., Adloff, C., Afanasiev, S., Agrawal, C., Ahmad, A., Ahmed, H. A., Akbar, S., Akchurin, N., Akgul, B., Akgun, B., Akpinar, R. O., Aktas, E., Kadhim, A. Al, Alexakhin, V., Alimena, J., Alison, J., Alpana, A., Alshehri, W., Dominguez, P. Alvarez, Alyari, M., Amendola, C., Amir, R. B., Andersen, S. B., Andreev, Y., Antoszczuk, P. D., Aras, U., Ardila, L., Aspell, P., Avila, M., Awad, I., Aydilek, O., Azimi, Z., Pretel, A. Aznar, Bach, O. A., Bainbridge, R., Bakshi, A., Bam, B., Banerjee, S., Barney, D., Bayraktar, O., Beaudette, F., Beaujean, F., Becheva, E., Behera, P. K., Belloni, A., Bergauer, T., Besancon, M., Bylund, O. Bessidskaia, Bhatt, L., Bhattacharya, S., Bhowmil, D., Blekman, F., Blinov, P., Bloch, P., Bodek, A., Boger, a., Bonnemaison, A., Bouyjou, F., Brennan, L., Brondolin, E., Brusamolino, A., Bubanja, I., Perraguin, A. Buchot, Bunin, P., Misura, A. Burazin, Butler-nalin, A., Cakir, A., Callier, S., Campbell, S., Candemir, Y. B., Canderan, K., Cankocak, K., Cappati, A., Caregari, S., Carron, S., Carty, C., Cauchois, A., Ceard, L., Cerci, S., Chang, P. J., Chatterjee, R. M., Chatterjee, S., Chattopadhyay, P., Chatzistavrou, T., Chaudhary, M. S., Chen, J. A., Chen, J., Chen, Y., Cheng, K., Cheung, H., Chhikara, J., Chiron, A., Chiusi, M., Chokheli, D., Chudasama, R., Clement, E., Mendez, S. Coco, Coko, D., Coskun, K., Couderc, F., Crossman, B., Cui, Z., Cuisset, T., Cummings, G., Curtis, E. M., D'Alfonso, M., Döhler-Ball, J., Dadazhanova, O., Damgov, J., Das, I., Gupta, S. Das, Dauncey, P., Mendes, A. David Tinoco, Davies, G., Davignon, O., de Barbaro, P., De La Taille, C., De Silva, M., De Wit, A., Debbins, P., Defranchis, M. M., Delagnes, E., Devouge, P., Di Guglielmo, G., Diehl, L., Dilsiz, K., Dincer, G. G., Dittmann, J., Dragicevic, M., Du, D., Dubinchik, B., Dugad, S., Dulucq, F., Dumanoglu, I., Duran, B., Dutta, S., Dutta, V., Dychkant, A., Dünser, M., Edberg, T., Ehle, I. T., Berni, A. El, Elias, F., Eno, S. C., Erdogan, E. N., Erkmen, B., Ershov, Y., Ertorer, E. Y., Extier, S., Eychenne, L., Fedar, Y. E., Fedi, G., De Almeida, J. P. Figueiredo De Sá Sousa, Alves, B. A. Fontana Santos, Frahm, E., Francis, K., Freeman, J., French, T., Gaede, F., Gandhi, P. K., Ganjour, S., Garcia-Bellido, A., Gastaldi, F., Gazi, L., Gecse, Z., Gerwig, H., Gevin, O., Ghosh, S., Gill, K., Gingu, C., Gleyzer, S., Godinovic, N., Goettlicher, P., Goff, R., Gok, M., Golunov, A., Gonultas, B., Martínez, J. D. González, Gorbounov, N., Gouskos, L., Gray, A., Gray, L., Grieco, C., Groenroos, S., Groner, D., Gruber, A., Grummer, A., Grönroos, S., Guerrero, D., Guilloux, F., Guler, Y., Gungordu, A. D., Guo, J., Guo, K., Guler, E. Gurpinar, Gutti, H. K., Guvenli, A. A., Gülmez, E., Hacisahinoglu, B., Halkin, Y., Machado, G. Hamilton Ilha, Hare, H. S., Hatakeyama, K., Heering, A. H., Hegde, V., Heintz, U., Hinton, N., Hinzmann, A., Hirschauer, J., Hitlin, D., Hoff, J., Hos, İ., Hou, B., Hou, X., Howard, A., Howe, C., Hsieh, H., Hsu, T., Hua, H., Hummer, F., Imran, M., Incandela, J., Iren, E., Isildak, B., Jackson, P. S., Jackson, W. J., Jain, S., Jana, P., Jaroslavceva, J., Jena, S., Jige, A., Jordano, P. P., Joshi, U., Kaadze, K., Kachanov, V., Kafizov, A., Kalipoliti, L., Tharayil, A. Kallil, Kaluzinska, O., Kamble, S., Kaminskiy, A., Kanemura, M., Kanso, H., Kao, Y., Kapic, A., Kapsiak, C., Karjavine, V., Karmakar, S., Karneyeu, A., Kaya, M., Topaksu, A. Kayis, Kaynak, B., Kazhykarim, Y., Khan, F. A., Khudiakov, A., Kieseler, J., Kim, R. S., Klijnsma, T., Kloiber, E. G., Klute, M., Kocak, Z., Kodali, K. R., Koetz, K., Kolberg, T., Kolcu, O. B., Komaragiri, J. R., Komm, M., Kopsalis, I., Krause, H. A., Krawczyk, M. A., Vinayakam, T. R. Krishnaswamy, Kristiansen, K., Kristic, A., Krohn, M., Kronheim, B., Krüger, K., Kudtarkar, C., Kulis, S., Kumar, M., Kumar, N., Kumar, S., Verma, R. Kumar, Kunori, S., Kunts, A., Kuo, C., Kurenkov, A., Kuryatkov, V., Kyre, S., Ladenson, J., Lamichhane, K., Landsberg, G., Langford, J., Laudrain, A., Laughlin, R., Lawhorn, J., Dortz, O. Le, Lee, S. W., Lektauers, A., Lelas, D., Leon, M., Levchuk, L., Li, A. J., Li, J., Li, Y., Liang, Z., Liao, H., Lin, K., Lin, W., Lin, Z., Lincoln, D., Linssen, L., Litomin, A., Liu, G., Liu, Y., Lobanov, A., Lohezic, V., Loiseau, T., Lu, C., Lu, R., Lu, S. Y., Lukens, P., Mackenzie, M., Magnan, A., Magniette, F., Mahjoub, A., Mahon, D., Majumder, G., Makarenko, V., Malakhov, A., Malgeri, L., Mallios, S., Mandloi, C., Mankel, A., Mannelli, M., Mans, J., Mantilla, C., Martinez, G., Massa, C., Masterson, P., Matthewman, M., Matveev, V., Mayekar, S., Mazlov, I., Mehta, A., Mestvirishvili, A., Miao, Y., Milella, G., Mirza, I. R., Mitra, P., Moccia, S., Mohanty, G. B., Monti, F., Moortgat, F., Murthy, S., Music, J., Musienko, Y., Nabili, S., Nelson, J. W., Nema, A., Neutelings, I., Niedziela, J., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Obraztsov, S., Ochando, C., Ogul, H., Olsson, J., Onel, Y., Ozkorucuklu, S., Paganis, E., Palit, P., Pan, R., Pandey, S., Pantaleo, F., Papageorgakis, C., Paramesvaran, S., Paranjpe, M. M., Parolia, S., Parsons, A. G., Parygin, P., Pastika, J., Paulini, M., Paus, C., Castillo, K. Peñaló, Pedro, K., Pekic, V., Peltola, T., Peng, B., Perego, A., Perini, D., Petrilli, A., Pham, H., Podem, S. K., Popov, V., Portales, L., Potok, O., Pradeep, P. B., Pramanik, R., Prosper, H., Prvan, M., Qasim, S. R., Qu, H., Quast, T., Trivio, A. Quiroga, Rabour, L., Raicevic, N., Rao, M. A., Rapacz, K., Redjeb, W., Reinecke, M., Revering, M., Roberts, A., Rohlf, J., Rosado, P., Rose, A., Rothman, S., Rout, P. K., Rovere, M., Roy, A., Rubinov, P., Rumerio, P., Rusack, R., Rygaard, L., Ryjov, V., Sadivnycha, S., Sahin, M. Ö., Sakarya, U., Salerno, R., Saradhy, R., Saraf, M., Sarbandi, K., Sarkisla, M. A., Satyshev, I., Saud, N., Sauvan, J., Schindler, G., Schmidt, A., Schmidt, I., Schmitt, M. H., Sculac, A., Sculac, T., Sedelnikov, A., Seez, C., Sefkow, F., Selivanova, D., Selvaggi, M., Sergeychik, V., Sert, H., Shahid, M., Sharma, P., Sharma, R., Sharma, S., Shelake, M., Shenai, A., Shih, C. W., Shinde, R., Shmygol, D., Shukla, R., Sicking, E., Silva, P., Simsek, C., Simsek, E., Sirasva, B. K., Sirois, Y., Song, S., Song, Y., Soudais, G., Sriram, S., Jacques, R. R. St, Leiton, A. G. Stahl, Steen, A., Stein, J., Strait, J., Strobbe, N., Su, X., Sukhov, E., Suleiman, A., Cerci, D. Sunar, Suryadevara, P., Swain, K., Syal, C., Tali, B., Tanay, K., Tang, W., Tanvir, A., Tao, J., Tarabini, A., Tatli, T., Taylor, R., Taysi, Z. C., Teafoe, G., Tee, C. Z., Terrill, W., Thienpont, D., Thomas, P. E., Thomas, R., Titov, M., Todd, C., Todd, E., Toms, M., Tosun, A., Troska, J., Tsai, L., Tsamalaidze, Z., Tsionou, D., Tsipolitis, G., Tsirigoti, M., Tu, R., Polat, S. N. Tural, Undleeb, S., Usai, E., Uslan, E., Ustinov, V., Uzunian, A., Vernazza, E., Viahin, O., Viazlo, O., Vichoudis, P., Vijay, A., Virdee, T., Voirin, E., Vojinovic, M., Vámi, T. Á., Wade, A., Walter, D., Wang, C., Wang, F., Wang, J., Wang, K., Wang, X., Wang, Y., Wang, Z., Wanlin, E., Wayne, M., Wetzel, J., Whitbeck, A., Wickwire, R., Wilmot, D., Wilson, J., Wu, H., Xiao, M., Yang, J., Yazici, B., Ye, Y., Yerli, B., Yetkin, T., Yi, R., Yohay, R., Yu, T., Yuan, C., Yuan, X., Yuksel, O., YushmanoV, I., Yusuff, I., Zabi, A., Zareckis, D., Zehetner, P., Zghiche, A., Zhang, C., Zhang, D., Zhang, H., Zhang, J., Zhang, Z., Zhao, X., Zhong, J., Zhou, Y., and Zorbilmez, Ç.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Physics - Data Analysis, Statistics and Probability - Abstract
A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower's constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated.
- Published
- 2024
- Full Text
- View/download PDF
3. The Development of Jamrani Multipurpose Project in India from a multilateral development bank perspective
- Author
-
Cauchois Arnaud, L’Hostis Marie, and Mohan Mukesh
- Subjects
Environmental sciences ,GE1-350 - Abstract
The State of Uttarakhand in India has been studying the Jamrani Multipurpose Project in the last 40 years. The government’s feasibility study has been completed and all statutory clearances were obtained. It comprises the construction of a 150-meter-high roller compacted concrete dam across the Gola River, a 14-megawatt toe powerhouse, the expansion and modernization of irrigation canal systems and a drinking water component. The project benefits will include 117 million liters per day drinking water for Haldwani Town, increased water availability for 150,000 ha cultivable command area and annual energy generation of 63 gigawatt-hour as a byproduct. The project is estimated to cost $365 million and was proposed in 2019 for the Asian Development Bank’s financial assistance. A memorandum of understanding was signed in 2018 between the states of Uttarakhand and Uttar Pradesh, defining how the cost and benefits will be shared. The paper will discuss the ADB project appraisal process and describe the steps being taken to confirm and enhance the project economic feasibility, improve the mitigation of environmental and social impacts and review and confirm the technical studies.
- Published
- 2022
- Full Text
- View/download PDF
4. Ambulatory electrocardiographic longitudinal monitoring in a canine model for Duchenne muscular dystrophy identifies decreased very low frequency power as a hallmark of impaired heart rate variability
- Author
-
Barthélémy, Inès, Su, Jin Bo, Cauchois, Xavier, Relaix, Frédéric, Ghaleh, Bijan, and Blot, Stéphane
- Published
- 2024
- Full Text
- View/download PDF
5. Modeling of the driver transverse profile for laser wakefield electron acceleration at APOLLON Research Facility
- Author
-
Moulanier, Ioaquin, Dickson, Lewis, Ballage, Charles, Vasilovici, Ovidiu, Gremaud, Aubin, Dufrenoy, Sandrine Dobosz, Delerue, Nicolas, Bernardi, Lorenzo, Mahjoub, Ali, Cauchois, Antoine, Specka, Arnd, Massimo, Francesco, Maynard, Gilles, and Cros, Brigitte
- Subjects
Physics - Plasma Physics ,Physics - Accelerator Physics - Abstract
The quality of electron bunches accelerated by laser wakefields is highly dependant on the temporal and spatial features of the laser driver. Analysis of experiments performed at APOLLON PW-class laser facility shows that spatial instabilities of the focal spot, such as shot-to-shot pointing fluctuations or asymmetry of the transverse fluence, lead to charge and energy degradation of the accelerated electron bunch. It is shown that PIC simulations can reproduce experimental results with a significantly higher accuracy when the measured laser asymmetries are included in the simulated laser's transverse profile, compared to simulations with ideal, symmetric laser profile. A method based on a modified Gerchberg-Saxton iterative algorithm is used to retrieve the laser electric field from fluence measurements in vacuum in the focal volume, and accurately reproduce experimental results using PIC simulations, leading to simulated electron spectra in close agreement with experimental results, for the accelerated charge, energy distribution and pointing of the electron beam at the exit of the plasma.
- Published
- 2023
6. Unique in the Smart Grid -The Privacy Cost of Fine-Grained Electrical Consumption Data
- Author
-
Voyez, Antonin, Allard, Tristan, Avoine, Gildas, Cauchois, Pierre, Fromont, Elisa, and Simonin, Matthieu
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Databases - Abstract
The collection of electrical consumption time series through smart meters grows with ambitious nationwide smart grid programs. This data is both highly sensitive and highly valuable: strong laws about personal data protect it while laws about open data aim at making it public after a privacy-preserving data publishing process. In this work, we study the uniqueness of large scale real-life fine-grained electrical consumption time-series and show its link to privacy threats. Our results show a worryingly high uniqueness rate in such datasets. In particular, we show that knowing 5 consecutive electric measures allows to re-identify on average more than 90% of households in our 2.5M half-hourly electric time series dataset. Moreover, uniqueness remains high even when data is severely degraded. For example, when data is rounded to the nearest 100 watts, knowing 7 consecutive electric measures allows to re-identify on average more than 40% of the households (same dataset). We also study the relationship between uniqueness and entropy, uniqueness and electric consumption, and electric consumption and temperatures, showing their strong correlation.
- Published
- 2022
7. Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20$-$300 GeV/c
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Alhusseini, M., Alison, J., de Almeida, J. P. Figueiredo de sa Sousa, de Almeida, P. G. Dias, Alpana, A., Alyari, M., Andreev, I., Aras, U., Aspell, P., Atakisi, I. O., Bach, O., Baden, A., Bakas, G., Bakshi, A., Banerjee, S., DeBarbaro, P., Bargassa, P., Barney, D., Beaudette, F., Beaujean, F., Becheva, E., Becker, A., Behera, P., Belloni, A., Bergauer, T., Berni, M. El, Besancon, M., Bhattacharya, S., Bhowmik, D., Bilki, B., Bilokin, S., Blazey, G. C., Blekman, F., Bloch, P., Bodek, A., Bonanomi, M., Bonis, J., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Bower, N., Braga, D., Brennan, L., Brianne, E., Brondolin, E., Bryant, P., Buhmann, E., Buhmann, P., Butler-Nalin, A., Bychkova, O., Callier, S., Calvet, D., Canderan, K., Cankocak, K., Cao, X., Cappati, A., Caraway, B., Caregari, S., Carty, C., Cauchois, A., Ceard, L., Cerci, D. S., Cerci, S., Cerminara, G., Chadeeva, M., Charitonidis, N., Chatterjee, R., Chen, J. A., Chen, Y. M., Cheng, H. J., Cheng, K. Y., Cheung, H., Chokheli, D., Cipriani, M., Čoko, D., Couderc, F., Cuba, E., Danilov, M., Dannheim, D., Daoud, W., Das, I., Dauncey, P., Davies, G., Davignon, O., Day, E., Debbins, P., Defranchis, M. M., Delagnes, E., Demiragli, Z., Demirbas, U., Derylo, G., Diaz, D., Diehl, L., Dinaucourt, P., Dincer, G. G., Dittmann, J., Dragicevic, M., Dugad, S., Dulucq, F., Dumanoglu, I., Dünser, M., Dutta, S., Dutta, V., Edberg, T. K., Elias, F., Emberger, L., Eno, S. C., Ershov, Yu., Extier, S., Fahim, F., Fallon, C., Fard, K. Sarbandi, Fedi, G., Ferragina, L., Forthomme, L., Frahm, E., Franzoni, G., Freeman, J., French, T., Gadow, K., Gandhi, P., Ganjour, S., Gao, X., Garcia, M. T. Ramos, Garcia-Bellido, A., Garutti, E., Gastaldi, F., Gastler, D., Gecse, Z., Germer, A., Gerwig, H., Gevin, O., Ghosh, S., Gilbert, A., Gilbert, W., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonultas, B., Gorbounov, N., Göttlicher, P., Gouskos, L., Graf, C., Gray, A. B., Grieco, C., Gr\"önroos, S., Gu, Y., Guilloux, F., Guler, E. Gurpinar, Guler, Y., Gülmez, E., Guo, J., Gutti, H., Hakimi, A., Hammer, M., Hartbrich, O., Hassanshahi, H. M., Hatakeyama, K., Hazen, E., Heering, A., Hegde, V., Heintz, U., Heuchel, D., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. S., Hou, X., Hua, H., Huck, S., Hussain, A., Incandela, J., Irles, A., Irshad, A., Isik, C., Jain, S., Jaroslavceva, J., Jheng, H. R., Joshi, U., Kaadze, K., Kachanov, V., Kalipoliti, L., Kaminskiy, A., Kanuganti, A. R., Kao, Y. W., Kapoor, A., Kara, O., Karneyeu, A., Kałuzińska, O., Kaya, M., Kaya, O., Kazhykharim, Y., Khan, F. A., Khukhunaishvili, A., Kieseler, J., Kilpatrick, M., Kim, S., Koetz, K., Kolberg, T., Komm, M., Köseyan, O. K., Kraus, V., Krawczyk, M., Kristiansen, K., Kristić, A., Krohn, M., Kronheim, B., Krüger, K., Kulis, S., Kumar, M., Kunori, S., Kuo, C. M., Kuryatkov, V., Kvasnicka, J., Kyre, S., Lai, Y., Lamichhane, K., Landsberg, G., Lange, C., Langford, J., Laurien, S., Lee, M. Y., Lee, S. W., Leiton, A. G. Stahl, Levin, A., Li, A., Li, J. H., Li, Y. Y., Liang, Z., Liao, H., Lin, Z., Lincoln, D., Linssen, L., Lipton, R., Liu, G., Liu, Y., Lobanov, A., Lohezic, V., Lomidze, D., Lu, R. S., Lu, S., Lupi, M., Lysova, I., Magnan, A. -M., Magniette, F., Mahjoub, A., Martens, S., Matysek, M., Meier, B., Malakhov, A., Mallios, S., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Martinez, G., Masterson, P., Matthewman, M., Mayekar, S. N., David, A., Coco, S., Meng, B., Menkel, A ., Mestvirishvili, A., Milella, G., Mirza, I., Moccia, S., Mohanty, G. B., Monti, F., Moortgat, F. W., Morrissey, I., Motta, J., Murthy, S., Musić, J., Musienko, Y., Nabili, S., Nguyen, M., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Nursanto, M. Wulansatiti, Ochando, C., Odell, N., Okawa, H., Onel, Y., Ortez, W., Ozegović, J., Ozkorucuklu, S., Paganis, E., Palmer, C. A., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Paranjpe, M., Parshook, J., Pastika, N., Paulini, M., Peitzmann, T., Peltola, T., Peng, N., Perraguin, A. Buchot, Petiot, P., Pierre-Emile, T., Pinto, M. Vicente Barreto, Popova, E., Pöschl, R., Prosper, H., Prvan, M., Puljak, I., Qasim, S. R., Qu, H., Quast, T., Quinn, R., Quinnan, M., Rane, A., Rao, K. K., Rapacz, K., Raux, L., Redjeb, W., Reinecke, M., Revering, M., Richard, F., Roberts, A., Sanchez, A. M., Rohlf, J., Rolph, J., Romanteau, T., Rosado, M., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Rusinov, V., Ryjov, V., Sahin, O. M., Salerno, R., Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Schuwalow, S., Scott, E., Seez, C., Sefkow, F., Selivanova, D., Sharma, S., Shelake, M., Shenai, A., Shukla, R., Sicking, E., De, M., Silva, P., Simkina, P., Simon, F., Simsek, A. E., Sirois, Y., Smirnov, V., Sobering, T. J., Spencer, E., Srimanobhas, N., Steen, A., Strait, J., Strobbe, N., Su, X. F., Sudo, Y., Suarez, C. Mantilla, Sukhov, E., Sulak, L., Sun, L., Suryadevara, P., Syal, C., de La Taille, C., Tali, B., Tan, C. L., Tao, J., Tarabini, A., Tatli, T., Thaus, R., Taylor, R. D., Tekten, S., Thiebault, A., Thienpont, D., Tiley, C., Tiras, E., Titov, M., Tlisov, D., Tok, U. G., Kayis, A., Troska, J., Tsai, L. S., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Undleeb, S., Urbanski, D., Uslan, E., Ustinov, V., Uzunian, A., Varela, J., Velasco, M., Vernazza, E., Viazlo, O., Vichoudis, P., Virdee, T., Voirin, E., Vojinovi\c, M., Vojinovic, M., Wade, A., Wang, C., Wang, C. C., Wang, D., Wang, F., Wang, X., Wang, Z., Wayne, M., Webb, S. N., Whitbeck, A., Wickwire, R., Wilson, J. S., Wu, H. Y., Wu, L., Xiao, M., Yang, J., Yeh, C. H, Yohay, R., Yu, D., Yu, S. S., Yuan, C., Miao, Y., Yumiceva, F., Yusuff, I., Zabi, A., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zehetner, P., Zerwas, D., Zhang, H., Zhang, J., Zhang, Y., Zhang, Z., and Zhao, X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data., Comment: Accepted for publication by JINST
- Published
- 2022
8. Multilingual Question Answering Applied to Conversational Agents
- Author
-
Siblini, Wissam, Pasqual, Charlotte, Lavielle, Axel, Challal, Mohamed, Cauchois, Cyril, Kacprzyk, Janusz, Series Editor, Jaziri, Rakia, editor, Martin, Arnaud, editor, Cornuéjols, Antoine, editor, Cuvelier, Etienne, editor, and Guillet, Fabrice, editor
- Published
- 2024
- Full Text
- View/download PDF
9. Query-Adaptive Predictive Inference with Partial Labels
- Author
-
Cauchois, Maxime and Duchi, John
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
The cost and scarcity of fully supervised labels in statistical machine learning encourage using partially labeled data for model validation as a cheaper and more accessible alternative. Effectively collecting and leveraging weakly supervised data for large-space structured prediction tasks thus becomes an important part of an end-to-end learning system. We propose a new computationally-friendly methodology to construct predictive sets using only partially labeled data on top of black-box predictive models. To do so, we introduce "probe" functions as a way to describe weakly supervised instances and define a false discovery proportion-type loss, both of which seamlessly adapt to partial supervision and structured prediction -- ranking, matching, segmentation, multilabel or multiclass classification. Our experiments highlight the validity of our predictive set construction as well as the attractiveness of a more flexible user-dependent loss framework.
- Published
- 2022
10. Link21 Transportation Planning and Funding
- Author
-
Berman, Josh, Cauchois, Camille, Lucchesi, Dominic, McGee, Mary, and Peck, Christina
- Abstract
The looming mass transit fiscal cliff threatens the viability of long term operations of BART and future Link21 projects. BART’s historic reliance on farebox recovery for financial stability necessitates an evaluation of available funding sources in an effort to increase funding for both long term project planning and ongoing operations. Given existing State and Federal policies that call for increased investment in public transit and rail and California’s stated goals around greenhouse gas emission reductions and equity improvements, the time is ripe for changes to the current funding mechanisms which have long favored highway and road projects over transit and rail. A streamlined process to ensure continuous and advanced planning is necessary for the successful completion of megaregional transit and rail projects that cross political jurisdictions. Further, this type of planning and funding is necessary for California to remain competitive for Federal funding opportunities, especially given the unprecedented amount of funding currently available from the Infrastructure Investment and Jobs Act (2021).
- Published
- 2022
11. The Lifecycle of a Statistical Model: Model Failure Detection, Identification, and Refitting
- Author
-
Ali, Alnur, Cauchois, Maxime, and Duchi, John C.
- Subjects
Statistics - Methodology ,Statistics - Machine Learning - Abstract
The statistical machine learning community has demonstrated considerable resourcefulness over the years in developing highly expressive tools for estimation, prediction, and inference. The bedrock assumptions underlying these developments are that the data comes from a fixed population and displays little heterogeneity. But reality is significantly more complex: statistical models now routinely fail when released into real-world systems and scientific applications, where such assumptions rarely hold. Consequently, we pursue a different path in this paper vis-a-vis the well-worn trail of developing new methodology for estimation and prediction. In this paper, we develop tools and theory for detecting and identifying regions of the covariate space (subpopulations) where model performance has begun to degrade, and study intervening to fix these failures through refitting. We present empirical results with three real-world data sets -- including a time series involving forecasting the incidence of COVID-19 -- showing that our methodology generates interpretable results, is useful for tracking model performance, and can boost model performance through refitting. We complement these empirical results with theory proving that our methodology is minimax optimal for recovering anomalous subpopulations as well as refitting to improve accuracy in a structured normal means setting.
- Published
- 2022
12. Predictive Inference with Weak Supervision
- Author
-
Cauchois, Maxime, Gupta, Suyash, Ali, Alnur, and Duchi, John
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
The expense of acquiring labels in large-scale statistical machine learning makes partially and weakly-labeled data attractive, though it is not always apparent how to leverage such data for model fitting or validation. We present a methodology to bridge the gap between partial supervision and validation, developing a conformal prediction framework to provide valid predictive confidence sets -- sets that cover a true label with a prescribed probability, independent of the underlying distribution -- using weakly labeled data. To do so, we introduce a (necessary) new notion of coverage and predictive validity, then develop several application scenarios, providing efficient algorithms for classification and several large-scale structured prediction problems. We corroborate the hypothesis that the new coverage definition allows for tighter and more informative (but valid) confidence sets through several experiments.
- Published
- 2022
13. Vascular endothelial-cadherin is involved in endothelial cell detachment during thrombotic thrombocytopenic purpura
- Author
-
Cauchois, Raphael, Lagarde, Marie, Muller, Romain, Faccini, Julien, Leroyer, Aurélie, Arnaud, Laurent, Poullin, Pascale, Dignat-George, Françoise, Kaplanski, Gilles, and Tellier, Edwige
- Published
- 2024
- Full Text
- View/download PDF
14. Predictive Inference with Weak Supervision.
- Author
-
Maxime Cauchois, Suyash Gupta 0002, Alnur Ali, and John C. Duchi
- Published
- 2024
15. Analyzing and explaining privacy risks on time series data: ongoing work and challenges.
- Author
-
Tristan Allard, Hira Asghar, Gildas Avoine, Christophe Bobineau, Pierre Cauchois, Elisa Fromont, Anna Monreale, Francesca Naretto, Roberto Pellungrini, Francesca Pratesi, Marie-Christine Rousset, and Antonin Voyez
- Published
- 2024
- Full Text
- View/download PDF
16. Multilingual Question Answering Applied to Conversational Agents
- Author
-
Siblini, Wissam, primary, Pasqual, Charlotte, additional, Lavielle, Axel, additional, Challal, Mohamed, additional, and Cauchois, Cyril, additional
- Published
- 2024
- Full Text
- View/download PDF
17. A comment and erratum on 'Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?'
- Author
-
Cauchois, Maxime, Ali, Alnur, and Duchi, John
- Subjects
Mathematics - Statistics Theory - Abstract
We identify and correct an error in the paper "Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?" This correction allows new guarantees on the excess degrees of freedom--the bias in the error estimate of Stein's unbiased risk estimate (SURE) for an estimator tuned by directly minimizing the SURE criterion--for arbitrary SURE-tuned linear estimators. Oracle inequalities follow as a consequence of these results for such estimators.
- Published
- 2021
18. Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons
- Author
-
Acar, B., Adamov, G., Adloff, C., Afanasiev, S., Akchurin, N., Akgün, B., Khan, F. Alam, Alhusseini, M., Alison, J., Alpana, A., Altopp, G., Alyari, M., An, S., Anagul, S., Andreev, I., Aspell, P., Atakisi, I. O., Bach, O., Baden, A., Bakas, G., Bakshi, A., Bannerjee, S., Bargassa, P., Barney, D., Beaudette, F., Beaujean, F., Becheva, E., Becker, A., Behera, P., Belloni, A., Bergauer, T., Besancon, M., Bhattacharya, S., Bhowmik, D., Bilki, B., Bloch, P., Bodek, A., Bonanomi, M., Bonnemaison, A., Bonomally, S., Borg, J., Bouyjou, F., Bower, N., Braga, D., Brashear, J., Brondolin, E., Bryant, P., Perraguin, A. Buchot, Bueghly, J., Burkle, B., Butler-Nalin, A., Bychkova, O., Callier, S., Calvet, D., Cao, X., Cappati, A., Caraway, B., Caregari, S., Cauchois, A., Ceard, L., Cekmecelioglu, Y. C., Cerci, S., Cerminara, G., Chadeeva, M., Charitonidis, N., Chatterjee, R., Chen, Y. M., Chen, Z., Cheng, H. J., Cheng, K. y., Chernichenko, S., Cheung, H., Chien, C. H., Choudhury, S., Čoko, D., Collura, G., Couderc, F., Danilov, M., Dannheim, D., Daoud, W., Dauncey, P., David, A., Davies, G., Davignon, O., Day, E., DeBarbaro, P., De Guio, F., de La Taille, C., De Silva, M., Debbins, P., Defranchis, M. M., Delagnes, E., Berrio, J. M. Deltoro, Derylo, G., de Almeida, P. G. Dias, Diaz, D., Dinaucourt, P., Dittmann, J., Dragicevic, M., Dugad, S., Dulucq, F., Dumanoglu, I., Dutta, V., Dutta, S., Dünser, M., Eckdahl, J., Edberg, T. K., Berni, M. El, Elias, F., Eno, S. C., Ershov, Yu., Everaerts, P., Extier, S., Fahim, F., Fallon, C., Fedi, G., Alves, B. A. Fontana Santos, Frahm, E., Franzoni, G., Freeman, J., French, T., Gandhi, P., Ganjour, S., Gao, X., Garcia-Bellido, A., Gastaldi, F., Gecse, Z., Geerebaert, Y., Gerwig, H., Gevin, O., Ghosh, S., Gilbert, A., Gilbert, W., Gill, K., Gingu, C., Gninenko, S., Golunov, A., Golutvin, I., Gonzalez, T., Gorbounov, N., Gouskos, L., Gray, A. B., Gu, Y., Guilloux, F., Guler, Y., Gülmez, E., Guo, J., Guler, E. Gurpinar, Hammer, M., Hassanshahi, H. M., Hatakeyama, K., Heering, A., Hegde, V., Heintz, U., Hinton, N., Hirschauer, J., Hoff, J., Hou, W. -S., Hou, X., Hua, H., Incandela, J., Irshad, A., Isik, C., Jain, S., Jheng, H. R., Joshi, U., Kachanov, V., Kalinin, A., Kalipoliti, L., Kaminskiy, A., Kapoor, A., Kara, O., Karneyeu, A., Kaya, M., Kaya, O., Topaksu, A. Kayis, Khukhunaishvili, A., Kiesler, J., Kilpatrick, M., Kim, S., Koetz, K., Kolberg, T., Köseyan, O. K., Kristić, A., Krohn, M., Krüger, K., Kulagin, N., Kulis, S., Kunori, S., Kuo, C. M., Kuryatkov, V., Kyre, S., Lai, Y., Lamichhane, K., Landsberg, G., Lange, C., Langford, J., Lee, M. Y., Levin, A., Li, A., Li, B., Li, J. H., Li, Y. y., Liao, H., Lincoln, D., Linssen, L., Lipton, R., Liu, Y., Lobanov, A., Lu, R. -S., Lupi, M., Lysova, I., Magnan, A. -M., Magniette, F., Mahjoub, A., Maier, A. A., Malakhov, A., Mallios, S., Mandjavize, I., Mannelli, M., Mans, J., Marchioro, A., Martelli, A., Martinez, G., Masterson, P., Meng, B., Mengke, T., Mestvirishvili, A., Mirza, I., Moccia, S., Mohanty, G. B., Monti, F., Morrissey, I., Murthy, S., Musić, J., Musienko, Y., Nabili, S., Nagar, A., Nguyen, M., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Ochando, C., Odegard, B., Odell, N., Okawa, H., Onel, Y., Ortez, W., Ozegović, J., Ozkorucuklu, S., Paganis, E., Pagenkopf, D., Palladino, V., Pandey, S., Pantaleo, F., Papageorgakis, C., Papakrivopoulos, I., Parshook, J., Pastika, N., Paulini, M., Paulitsch, P., Peltola, T., Gomes, R. Pereira, Perkins, H., Petiot, P., Pierre-Emile, T., Pitters, F., Popova, E., Prosper, H., Prvan, M., Puljak, I., Qu, H., Quast, T., Quinn, R., Quinnan, M., Garcia, M. T. Ramos, Rao, K. K., Rapacz, K., Raux, L., Reichenbach, G., Reinecke, M., Revering, M., Roberts, A., Romanteau, T., Rose, A., Rovere, M., Roy, A., Rubinov, P., Rusack, R., Rusinov, V., Ryjov, V., Sahin, O. M., Salerno, R., Rodriguez, A. M. Sanchez, Saradhy, R., Sarkar, T., Sarkisla, M. A., Sauvan, J. B., Schmidt, I., Schmitt, M., Scott, E., Seez, C., Sefkow, F., Sharma, S., Shein, I., Shenai, A., Shukla, R., Sicking, E., Sieberer, P., Silva, P., Simsek, A. E., Sirois, Y., Smirnov, V., Sozbilir, U., Spencer, E., Steen, A., Strait, J., Strobbe, N., Su, J. W., Sukhov, E., Sun, L., Cerci, D. Sunar, Syal, C., Tali, B., Tan, C. L., Tao, J., Tastan, I., Tatli, T., Thaus, R., Tekten, S., Thienpont, D., Tiras, E., Titov, M., Tlisov, D., Tok, U. G., Troska, J., Tsai, L. -S., Tsamalaidze, Z., Tsipolitis, G., Tsirou, A., Tyurin, N., Undleeb, S., Urbanski, D., Ustinov, V., Uzunian, A., Van de Klundert, M., Varela, J., Velasco, M., Viazlo, O., Pinto, M. Vicente Barreto, Virdee, P. Vichoudis T., de Oliveira, R. Vizinho, Voelker, J., Voirin, E., Vojinovic, M., Wade, A., Wang, C., Wang, F., Wang, X., Wang, Z., Wayne, M., Webb, S. N., Whitbeck, A., White, D., Wickwire, R., Wilson, J. S., Winter, D., Wu, H. y., Wu, L., Nursanto, M. Wulansatiti, Yeh, C. H, Yohay, R., Yu, D., Yu, G. B., Yu, S. S., Yuan, C., Yumiceva, F., Yusuff, I., Zacharopoulou, A., Zamiatin, N., Zarubin, A., Zenz, S., Zghiche, A., Zhang, H., Zhang, J., Zhang, Y., and Zhang, Z.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm$^2$ are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation.
- Published
- 2021
- Full Text
- View/download PDF
19. La genèse du monothéisme biblique: De la Mésopotamie à l'Egypte
- Author
-
Alexandre Cauchois
- Published
- 2024
20. Reduction of mortality, cardiac damage, and cerebral damage by IL-1 inhibition in a murine model of TTP
- Author
-
Muller, Romain, Cauchois, Raphaël, Lagarde, Marie, Roffino, Sandrine, Genovesio, Cécile, Fernandez, Samantha, Hache, Guillaume, Guillet, Benjamin, Kara, Yéter, Marlinge, Marion, Lenting, Peter, Poullin, Pascale, Dignat-George, Françoise, Tellier, Edwige, and Kaplanski, Gilles
- Published
- 2024
- Full Text
- View/download PDF
21. Robust Validation: Confident Predictions Even When Distributions Shift
- Author
-
Cauchois, Maxime, Gupta, Suyash, Ali, Alnur, and Duchi, John C.
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Statistics - Methodology - Abstract
While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy -- coming from robust statistics and optimization -- is thus to build a model robust to distributional perturbations. In this paper, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.'s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity., Comment: Published in the Journal of the American Statistical Association (JASA 2024)
- Published
- 2020
- Full Text
- View/download PDF
22. Knowing what you know: valid and validated confidence sets in multiclass and multilabel prediction
- Author
-
Cauchois, Maxime, Gupta, Suyash, and Duchi, John
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Statistics - Methodology - Abstract
We develop conformal prediction methods for constructing valid predictive confidence sets in multiclass and multilabel problems without assumptions on the data generating distribution. A challenge here is that typical conformal prediction methods---which give marginal validity (coverage) guarantees---provide uneven coverage, in that they address easy examples at the expense of essentially ignoring difficult examples. By leveraging ideas from quantile regression, we build methods that always guarantee correct coverage but additionally provide (asymptotically optimal) conditional coverage for both multiclass and multilabel prediction problems. To address the potential challenge of exponentially large confidence sets in multilabel prediction, we build tree-structured classifiers that efficiently account for interactions between labels. Our methods can be bolted on top of any classification model---neural network, random forest, boosted tree---to guarantee its validity. We also provide an empirical evaluation, simultaneously providing new validation methods, that suggests the more robust coverage of our confidence sets., Comment: Updated section on multilabel settings addressing the cases when labels may repel each other
- Published
- 2020
23. Social Data to Enhance Typical Consumer Energy Profile Estimation on a National Level
- Author
-
Alyafi, Amr, Cauchois, Pierre, Delinchant, Benoit, Berges, Alain, Angrisani, Leopoldo, Series Editor, Arteaga, Marco, Series Editor, Panigrahi, Bijaya Ketan, Series Editor, Chakraborty, Samarjit, Series Editor, Chen, Jiming, Series Editor, Chen, Shanben, Series Editor, Chen, Tan Kay, Series Editor, Dillmann, Rüdiger, Series Editor, Duan, Haibin, Series Editor, Ferrari, Gianluigi, Series Editor, Ferre, Manuel, Series Editor, Hirche, Sandra, Series Editor, Jabbari, Faryar, Series Editor, Jia, Limin, Series Editor, Kacprzyk, Janusz, Series Editor, Khamis, Alaa, Series Editor, Kroeger, Torsten, Series Editor, Li, Yong, Series Editor, Liang, Qilian, Series Editor, Martín, Ferran, Series Editor, Ming, Tan Cher, Series Editor, Minker, Wolfgang, Series Editor, Misra, Pradeep, Series Editor, Möller, Sebastian, Series Editor, Mukhopadhyay, Subhas, Series Editor, Ning, Cun-Zheng, Series Editor, Nishida, Toyoaki, Series Editor, Oneto, Luca, Series Editor, Pascucci, Federica, Series Editor, Qin, Yong, Series Editor, Seng, Gan Woon, Series Editor, Speidel, Joachim, Series Editor, Veiga, Germano, Series Editor, Wu, Haitao, Series Editor, Zamboni, Walter, Series Editor, Zhang, Junjie James, Series Editor, Pierfederici, Serge, editor, and Martin, Jean-Philippe, editor
- Published
- 2023
- Full Text
- View/download PDF
24. Multilingual Question Answering from Formatted Text applied to Conversational Agents
- Author
-
Siblini, Wissam, Pasqual, Charlotte, Lavielle, Axel, Challal, Mohamed, and Cauchois, Cyril
- Subjects
Computer Science - Computation and Language - Abstract
Recent advances with language models (e.g. BERT, XLNet, ...), have allowed surpassing human performance on complex NLP tasks such as Reading Comprehension. However, labeled datasets for training are available mostly in English which makes it difficult to acknowledge progress in other languages. Fortunately, models are now pre-trained on unlabeled data from hundreds of languages and exhibit interesting transfer abilities from one language to another. In this paper, we show that multilingual BERT is naturally capable of zero-shot transfer for an extractive Question Answering task (eQA) from English to other languages. More specifically, it outperforms the best previously known baseline for transfer to Japanese and French. Moreover, using a recently published large eQA French dataset, we are able to further show that (1) zero-shot transfer provides results really close to a direct training on the target language and (2) combination of transfer and training on target is the best option overall. We finally present a practical application: a multilingual conversational agent called Kate which answers to HR-related questions in several languages directly from the content of intranet pages.
- Published
- 2019
25. Membership Inference Attacks on Aggregated Time Series with Linear Programming.
- Author
-
Antonin Voyez, Tristan Allard, Gildas Avoine, Pierre Cauchois, élisa Fromont, and Matthieu Simonin
- Published
- 2022
- Full Text
- View/download PDF
26. A Fast Dejittering Approach for Line Scanning Microscopy.
- Author
-
Landry Duguet, Julien Calve, Cyril Cauchois, and Pierre Weiss
- Published
- 2022
- Full Text
- View/download PDF
27. Témoins de Jéhovah et Franc-Maçonnerie : l'enquête vérité: Inclus : l'histoire du nom Jéhovah
- Author
-
Alexandre Cauchois
- Published
- 2023
28. Timing performance of the CMS High Granularity Calorimeter prototype
- Author
-
Acar, B, Adamov, G, Adloff, C, Afanasiev, S, Akchurin, N, Akgun, B, Khan, F, Alhusseini, M, Alison, J, Alpana, A, Altopp, G, Alyari, M, An, S, Anagul, S, Andreev, I, Aspell, P, Atakisi, I, Bach, O, Baden, A, Bakas, G, Bakshi, A, Bannerjee, S, Bargassa, P, Barney, D, Beaudette, F, Beaujean, F, Becheva, E, Becker, A, Behera, P, Belloni, A, Bergauer, T, Besancon, M, Bhattacharya, S, Bhowmik, D, Bilki, B, Bloch, P, Bodek, A, Bonanomi, M, Bonnemaison, A, Bonomally, S, Borg, J, Bouyjou, F, Bower, N, Braga, D, Brashear, J, Brondolin, E, Bryant, P, Buchot Perraguin, A, Bueghly, J, Burkle, B, Butler-Nalin, A, Bychkova, O, Callier, S, Calvet, D, Cao, X, Cappati, A, Caraway, B, Caregari, S, Cauchois, A, Ceard, L, Cekmecelioglu, Y, Cerci, S, Cerminara, G, Chadeeva, M, Charitonidis, N, Chatterjee, R, Chen, Y, Chen, Z, Cheng, H, Cheng, K, Chernichenko, S, Cheung, H, Chien, C, Choudhury, S, Coko, D, Collura, G, Couderc, F, Danilov, M, Dannheim, D, Daoud, W, Dauncey, P, David, A, Davies, G, Davignon, O, Day, E, De Barbaro, P, De Guio, F, de La Taille, C, De Silva, M, Debbins, P, Defranchis, M, Delagnes, E, Deltoro Berrio, J, Derylo, G, Dias de Almeida, P, Diaz, D, Dinaucourt, P, Dittmann, J, Dragicevic, M, Dugad, S, Dulucq, F, Dumanoglu, I, Dutta, V, Dutta, S, Dunser, M, Eckdahl, J, Edberg, T, El Berni, M, Elias, F, Eno, S, Ershov, Y, Everaerts, P, Extier, S, Fahim, F, Fallon, C, Fedi, G, Fontana Santos Alves, B, Frahm, E, Franzoni, G, Freeman, J, French, T, Gandhi, P, Ganjour, S, Gao, X, Garcia-Bellido, A, Gastaldi, F, Gecse, Z, Geerebaert, Y, Gerwig, H, Gevin, O, Ghosh, S, Gilbert, A, Gilbert, W, Gill, K, Gingu, C, Gninenko, S, Golunov, A, Golutvin, I, Gonzalez, T, Gorbounov, N, Gouskos, L, Gray, A, Gu, Y, Guilloux, F, Guler, Y, Gulmez, E, Guo, J, Gurpinar Guler, E, Hammer, M, Hassanshahi, H, Hatakeyama, K, Heering, A, Hegde, V, Heintz, U, Hinton, N, Hirschauer, J, Hoff, J, Hou, W, Hou, X, Hua, H, Incandela, J, Irshad, A, Isik, C, Jain, S, Jheng, H, Joshi, U, Kachanov, V, Kalinin, A, Kalipoliti, L, Kaminskiy, A, Kapoor, A, Kara, O, Karneyeu, A, Kaya, M, Kaya, O, Kayis Topaksu, A, Khukhunaishvili, A, Kieseler, J, Kilpatrick, M, Kim, S, Koetz, K, Kolberg, T, Koseyan, O, Kristic, A, Krohn, M, Kruger, K, Kulagin, N, Kulis, S, Kunori, S, Kuo, C, Kuryatkov, V, Kyre, S, Lai, Y, Lamichhane, K, Landsberg, G, Lange, C, Langford, J, Lee, M, Levin, A, Li, A, Li, B, Li, J, Li, Y, Liao, H, Lincoln, D, Linssen, L, Lipton, R, Liu, Y, Lobanov, A, Lu, R, Lupi, M, Lysova, I, Magnan, A, Magniette, F, Mahjoub, A, Maier, A, Malakhov, A, Mallios, S, Mannelli, M, Mans, J, Marchioro, A, Martelli, A, Martinez, G, Masterson, P, Meng, B, Mengke, T, Mestvirishvili, A, Mirza, I, Moccia, S, Mohanty, G, Monti, F, Morrissey, I, Murthy, S, Music, J, Musienko, Y, Nabili, S, Nagar, A, Nguyen, M, Nikitenko, A, Noonan, D, Noy, M, Nurdan, K, Ochando, C, Odegard, B, Odell, N, Okawa, H, Onel, Y, Ortez, W, Ozegovic, J, Ozkorucuklu, S, Paganis, E, Pagenkopf, D, Palladino, V, Pandey, S, Pantaleo, F, Papageorgakis, C, Papakrivopoulos, I, Parshook, J, Pastika, N, Paulini, M, Paulitsch, P, Peltola, T, Pereira Gomes, R, Perkins, H, Petiot, P, Pierre-Emile, T, Pitters, F, Popova, E, Prosper, H, Prvan, M, Puljak, I, Qu, H, Quast, T, Quinn, R, Quinnan, M, Ramos Garcia, M, Rao, K, Rapacz, K, Raux, L, Reichenbach, G, Reinecke, M, Revering, M, Roberts, A, Romanteau, T, Rose, A, Rovere, M, Roy, A, Rubinov, P, Rusack, R, Rusinov, V, Ryjov, V, Sahin, M, Salerno, R, Sanchez Rodriguez, A, Saradhy, R, Sarkar, T, Sarkisla, M, Sauvan, J, Schmidt, I, Schmitt, M, Scott, E, Seez, C, Sefkow, F, Sharma, S, Shein, I, Shenai, A, Shukla, R, Sicking, E, Sieberer, P, Silva, P, Simsek, A, Sirois, Y, Smirnov, V, Sozbilir, U, Spencer, E, Steen, A, Strait, J, Strobbe, N, Su, J, Sukhov, E, Sun, L, Sunar Cerci, D, Syal, C, Tali, B, Tan, C, Tao, J, Tastan, I, Tatli, T, Thaus, R, Tekten, S, Thienpont, D, Tiras, E, Titov, M, Tlisov, D, Tok, U, Troska, J, Tsai, L, Tsamalaidze, Z, Tsipolitis, G, Tsirou, A, Tyurin, N, Undleeb, S, Urbanski, D, Ustinov, V, Uzunian, A, Van de Klundert, M, Varela, J, Velasco, M, Viazlo, O, Vicente Barreto Pinto, M, Vichoudis, P, Virdee, T, Vizinho de Oliveira, R, Voelker, J, Voirin, E, Vojinovic, M, Wade, A, Wang, C, Wang, F, Wang, X, Wang, Z, Wayne, M, Webb, S, Whitbeck, A, White, D, Wickwire, R, Wilson, J, Winter, D, Wu, H, Wu, L, Wulansatiti Nursanto, M, Yeh, C, Yohay, R, Yu, D, Yu, G, Yu, S, Yuan, C, Yumiceva, F, Yusuff, I, Zacharopoulou, A, Zamiatin, N, Zarubin, A, Zenz, S, Zghiche, A, Zhang, H, Zhang, J, Zhang, Y, Zhang, Z, Acar B., Adamov G., Adloff C., Afanasiev S., Akchurin N., Akgun B., Khan F., Alhusseini M., Alison J., Alpana A., Altopp G., Alyari M., An S., Anagul S., Andreev I., Aspell P., Atakisi I., Bach O., Baden A., Bakas G., Bakshi A., Bannerjee S., Bargassa P., Barney D., Beaudette F., Beaujean F., Becheva E., Becker A., Behera P., Belloni A., Bergauer T., Besancon M., Bhattacharya S., Bhowmik D., Bilki B., Bloch P., Bodek A., Bonanomi M., Bonnemaison A., Bonomally S., Borg J., Bouyjou F., Bower N., Braga D., Brashear J., Brondolin E., Bryant P., Buchot Perraguin A., Bueghly J., Burkle B., Butler-Nalin A., Bychkova O., Callier S., Calvet D., Cao X., Cappati A., Caraway B., Caregari S., Cauchois A., Ceard L., Cekmecelioglu Y., Cerci S., Cerminara G., Chadeeva M., Charitonidis N., Chatterjee R., Chen Y., Chen Z., Cheng H., Cheng K., Chernichenko S., Cheung H., Chien C., Choudhury S., Coko D., Collura G., Couderc F., Danilov M., Dannheim D., Daoud W., Dauncey P., David A., Davies G., Davignon O., Day E., De Barbaro P., De Guio F., de La Taille C., De Silva M., Debbins P., Defranchis M., Delagnes E., Deltoro Berrio J., Derylo G., Dias de Almeida P., Diaz D., Dinaucourt P., Dittmann J., Dragicevic M., Dugad S., Dulucq F., Dumanoglu I., Dutta V., Dutta S., Dunser M., Eckdahl J., Edberg T., El Berni M., Elias F., Eno S., Ershov Y., Everaerts P., Extier S., Fahim F., Fallon C., Fedi G., Fontana Santos Alves B., Frahm E., Franzoni G., Freeman J., French T., Gandhi P., Ganjour S., Gao X., Garcia-Bellido A., Gastaldi F., Gecse Z., Geerebaert Y., Gerwig H., Gevin O., Ghosh S., Gilbert A., Gilbert W., Gill K., Gingu C., Gninenko S., Golunov A., Golutvin I., Gonzalez T., Gorbounov N., Gouskos L., Gray A., Gu Y., Guilloux F., Guler Y., Gulmez E., Guo J., Gurpinar Guler E., Hammer M., Hassanshahi H., Hatakeyama K., Heering A., Hegde V., Heintz U., Hinton N., Hirschauer J., Hoff J., Hou W. -S., Hou X., Hua H., Incandela J., Irshad A., Isik C., Jain S., Jheng H., Joshi U., Kachanov V., Kalinin A., Kalipoliti L., Kaminskiy A., Kapoor A., Kara O., Karneyeu A., Kaya M., Kaya O., Kayis Topaksu A., Khukhunaishvili A., Kieseler J., Kilpatrick M., Kim S., Koetz K., Kolberg T., Koseyan O., Kristic A., Krohn M., Kruger K., Kulagin N., Kulis S., Kunori S., Kuo C., Kuryatkov V., Kyre S., Lai Y., Lamichhane K., Landsberg G., Lange C., Langford J., Lee M., Levin A., Li A., Li B., Li J., Li Y., Liao H., Lincoln D., Linssen L., Lipton R., Liu Y., Lobanov A., Lu R. -S., Lupi M., Lysova I., Magnan A. -M., Magniette F., Mahjoub A., Maier A., Malakhov A., Mallios S., Mannelli M., Mans J., Marchioro A., Martelli A., Martinez G., Masterson P., Meng B., Mengke T., Mestvirishvili A., Mirza I., Moccia S., Mohanty G., Monti F., Morrissey I., Murthy S., Music J., Musienko Y., Nabili S., Nagar A., Nguyen M., Nikitenko A., Noonan D., Noy M., Nurdan K., Ochando C., Odegard B., Odell N., Okawa H., Onel Y., Ortez W., Ozegovic J., Ozkorucuklu S., Paganis E., Pagenkopf D., Palladino V., Pandey S., Pantaleo F., Papageorgakis C., Papakrivopoulos I., Parshook J., Pastika N., Paulini M., Paulitsch P., Peltola T., Pereira Gomes R., Perkins H., Petiot P., Pierre-Emile T., Pitters F., Popova E., Prosper H., Prvan M., Puljak I., Qu H., Quast T., Quinn R., Quinnan M., Ramos Garcia M., Rao K., Rapacz K., Raux L., Reichenbach G., Reinecke M., Revering M., Roberts A., Romanteau T., Rose A., Rovere M., Roy A., Rubinov P., Rusack R., Rusinov V., Ryjov V., Sahin M., Salerno R., Sanchez Rodriguez A., Saradhy R., Sarkar T., Sarkisla M., Sauvan J., Schmidt I., Schmitt M., Scott E., Seez C., Sefkow F., Sharma S., Shein I., Shenai A., Shukla R., Sicking E., Sieberer P., Silva P., Simsek A., Sirois Y., Smirnov V., Sozbilir U., Spencer E., Steen A., Strait J., Strobbe N., Su J., Sukhov E., Sun L., Sunar Cerci D., Syal C., Tali B., Tan C., Tao J., Tastan I., Tatli T., Thaus R., Tekten S., Thienpont D., Tiras E., Titov M., Tlisov D., Tok U., Troska J., Tsai L. -S., Tsamalaidze Z., Tsipolitis G., Tsirou A., Tyurin N., Undleeb S., Urbanski D., Ustinov V., Uzunian A., Van de Klundert M., Varela J., Velasco M., Viazlo O., Vicente Barreto Pinto M., Vichoudis P., Virdee T., Vizinho de Oliveira R., Voelker J., Voirin E., Vojinovic M., Wade A., Wang C., Wang F., Wang X., Wang Z., Wayne M., Webb S., Whitbeck A., White D., Wickwire R., Wilson J., Winter D., Wu H., Wu L., Wulansatiti Nursanto M., Yeh C., Yohay R., Yu D., Yu G., Yu S., Yuan C., Yumiceva F., Yusuff I., Zacharopoulou A., Zamiatin N., Zarubin A., Zenz S., Zghiche A., Zhang H., Zhang J., Zhang Y., Zhang Z., Acar, B, Adamov, G, Adloff, C, Afanasiev, S, Akchurin, N, Akgun, B, Khan, F, Alhusseini, M, Alison, J, Alpana, A, Altopp, G, Alyari, M, An, S, Anagul, S, Andreev, I, Aspell, P, Atakisi, I, Bach, O, Baden, A, Bakas, G, Bakshi, A, Bannerjee, S, Bargassa, P, Barney, D, Beaudette, F, Beaujean, F, Becheva, E, Becker, A, Behera, P, Belloni, A, Bergauer, T, Besancon, M, Bhattacharya, S, Bhowmik, D, Bilki, B, Bloch, P, Bodek, A, Bonanomi, M, Bonnemaison, A, Bonomally, S, Borg, J, Bouyjou, F, Bower, N, Braga, D, Brashear, J, Brondolin, E, Bryant, P, Buchot Perraguin, A, Bueghly, J, Burkle, B, Butler-Nalin, A, Bychkova, O, Callier, S, Calvet, D, Cao, X, Cappati, A, Caraway, B, Caregari, S, Cauchois, A, Ceard, L, Cekmecelioglu, Y, Cerci, S, Cerminara, G, Chadeeva, M, Charitonidis, N, Chatterjee, R, Chen, Y, Chen, Z, Cheng, H, Cheng, K, Chernichenko, S, Cheung, H, Chien, C, Choudhury, S, Coko, D, Collura, G, Couderc, F, Danilov, M, Dannheim, D, Daoud, W, Dauncey, P, David, A, Davies, G, Davignon, O, Day, E, De Barbaro, P, De Guio, F, de La Taille, C, De Silva, M, Debbins, P, Defranchis, M, Delagnes, E, Deltoro Berrio, J, Derylo, G, Dias de Almeida, P, Diaz, D, Dinaucourt, P, Dittmann, J, Dragicevic, M, Dugad, S, Dulucq, F, Dumanoglu, I, Dutta, V, Dutta, S, Dunser, M, Eckdahl, J, Edberg, T, El Berni, M, Elias, F, Eno, S, Ershov, Y, Everaerts, P, Extier, S, Fahim, F, Fallon, C, Fedi, G, Fontana Santos Alves, B, Frahm, E, Franzoni, G, Freeman, J, French, T, Gandhi, P, Ganjour, S, Gao, X, Garcia-Bellido, A, Gastaldi, F, Gecse, Z, Geerebaert, Y, Gerwig, H, Gevin, O, Ghosh, S, Gilbert, A, Gilbert, W, Gill, K, Gingu, C, Gninenko, S, Golunov, A, Golutvin, I, Gonzalez, T, Gorbounov, N, Gouskos, L, Gray, A, Gu, Y, Guilloux, F, Guler, Y, Gulmez, E, Guo, J, Gurpinar Guler, E, Hammer, M, Hassanshahi, H, Hatakeyama, K, Heering, A, Hegde, V, Heintz, U, Hinton, N, Hirschauer, J, Hoff, J, Hou, W, Hou, X, Hua, H, Incandela, J, Irshad, A, Isik, C, Jain, S, Jheng, H, Joshi, U, Kachanov, V, Kalinin, A, Kalipoliti, L, Kaminskiy, A, Kapoor, A, Kara, O, Karneyeu, A, Kaya, M, Kaya, O, Kayis Topaksu, A, Khukhunaishvili, A, Kieseler, J, Kilpatrick, M, Kim, S, Koetz, K, Kolberg, T, Koseyan, O, Kristic, A, Krohn, M, Kruger, K, Kulagin, N, Kulis, S, Kunori, S, Kuo, C, Kuryatkov, V, Kyre, S, Lai, Y, Lamichhane, K, Landsberg, G, Lange, C, Langford, J, Lee, M, Levin, A, Li, A, Li, B, Li, J, Li, Y, Liao, H, Lincoln, D, Linssen, L, Lipton, R, Liu, Y, Lobanov, A, Lu, R, Lupi, M, Lysova, I, Magnan, A, Magniette, F, Mahjoub, A, Maier, A, Malakhov, A, Mallios, S, Mannelli, M, Mans, J, Marchioro, A, Martelli, A, Martinez, G, Masterson, P, Meng, B, Mengke, T, Mestvirishvili, A, Mirza, I, Moccia, S, Mohanty, G, Monti, F, Morrissey, I, Murthy, S, Music, J, Musienko, Y, Nabili, S, Nagar, A, Nguyen, M, Nikitenko, A, Noonan, D, Noy, M, Nurdan, K, Ochando, C, Odegard, B, Odell, N, Okawa, H, Onel, Y, Ortez, W, Ozegovic, J, Ozkorucuklu, S, Paganis, E, Pagenkopf, D, Palladino, V, Pandey, S, Pantaleo, F, Papageorgakis, C, Papakrivopoulos, I, Parshook, J, Pastika, N, Paulini, M, Paulitsch, P, Peltola, T, Pereira Gomes, R, Perkins, H, Petiot, P, Pierre-Emile, T, Pitters, F, Popova, E, Prosper, H, Prvan, M, Puljak, I, Qu, H, Quast, T, Quinn, R, Quinnan, M, Ramos Garcia, M, Rao, K, Rapacz, K, Raux, L, Reichenbach, G, Reinecke, M, Revering, M, Roberts, A, Romanteau, T, Rose, A, Rovere, M, Roy, A, Rubinov, P, Rusack, R, Rusinov, V, Ryjov, V, Sahin, M, Salerno, R, Sanchez Rodriguez, A, Saradhy, R, Sarkar, T, Sarkisla, M, Sauvan, J, Schmidt, I, Schmitt, M, Scott, E, Seez, C, Sefkow, F, Sharma, S, Shein, I, Shenai, A, Shukla, R, Sicking, E, Sieberer, P, Silva, P, Simsek, A, Sirois, Y, Smirnov, V, Sozbilir, U, Spencer, E, Steen, A, Strait, J, Strobbe, N, Su, J, Sukhov, E, Sun, L, Sunar Cerci, D, Syal, C, Tali, B, Tan, C, Tao, J, Tastan, I, Tatli, T, Thaus, R, Tekten, S, Thienpont, D, Tiras, E, Titov, M, Tlisov, D, Tok, U, Troska, J, Tsai, L, Tsamalaidze, Z, Tsipolitis, G, Tsirou, A, Tyurin, N, Undleeb, S, Urbanski, D, Ustinov, V, Uzunian, A, Van de Klundert, M, Varela, J, Velasco, M, Viazlo, O, Vicente Barreto Pinto, M, Vichoudis, P, Virdee, T, Vizinho de Oliveira, R, Voelker, J, Voirin, E, Vojinovic, M, Wade, A, Wang, C, Wang, F, Wang, X, Wang, Z, Wayne, M, Webb, S, Whitbeck, A, White, D, Wickwire, R, Wilson, J, Winter, D, Wu, H, Wu, L, Wulansatiti Nursanto, M, Yeh, C, Yohay, R, Yu, D, Yu, G, Yu, S, Yuan, C, Yumiceva, F, Yusuff, I, Zacharopoulou, A, Zamiatin, N, Zarubin, A, Zenz, S, Zghiche, A, Zhang, H, Zhang, J, Zhang, Y, Zhang, Z, Acar B., Adamov G., Adloff C., Afanasiev S., Akchurin N., Akgun B., Khan F., Alhusseini M., Alison J., Alpana A., Altopp G., Alyari M., An S., Anagul S., Andreev I., Aspell P., Atakisi I., Bach O., Baden A., Bakas G., Bakshi A., Bannerjee S., Bargassa P., Barney D., Beaudette F., Beaujean F., Becheva E., Becker A., Behera P., Belloni A., Bergauer T., Besancon M., Bhattacharya S., Bhowmik D., Bilki B., Bloch P., Bodek A., Bonanomi M., Bonnemaison A., Bonomally S., Borg J., Bouyjou F., Bower N., Braga D., Brashear J., Brondolin E., Bryant P., Buchot Perraguin A., Bueghly J., Burkle B., Butler-Nalin A., Bychkova O., Callier S., Calvet D., Cao X., Cappati A., Caraway B., Caregari S., Cauchois A., Ceard L., Cekmecelioglu Y., Cerci S., Cerminara G., Chadeeva M., Charitonidis N., Chatterjee R., Chen Y., Chen Z., Cheng H., Cheng K., Chernichenko S., Cheung H., Chien C., Choudhury S., Coko D., Collura G., Couderc F., Danilov M., Dannheim D., Daoud W., Dauncey P., David A., Davies G., Davignon O., Day E., De Barbaro P., De Guio F., de La Taille C., De Silva M., Debbins P., Defranchis M., Delagnes E., Deltoro Berrio J., Derylo G., Dias de Almeida P., Diaz D., Dinaucourt P., Dittmann J., Dragicevic M., Dugad S., Dulucq F., Dumanoglu I., Dutta V., Dutta S., Dunser M., Eckdahl J., Edberg T., El Berni M., Elias F., Eno S., Ershov Y., Everaerts P., Extier S., Fahim F., Fallon C., Fedi G., Fontana Santos Alves B., Frahm E., Franzoni G., Freeman J., French T., Gandhi P., Ganjour S., Gao X., Garcia-Bellido A., Gastaldi F., Gecse Z., Geerebaert Y., Gerwig H., Gevin O., Ghosh S., Gilbert A., Gilbert W., Gill K., Gingu C., Gninenko S., Golunov A., Golutvin I., Gonzalez T., Gorbounov N., Gouskos L., Gray A., Gu Y., Guilloux F., Guler Y., Gulmez E., Guo J., Gurpinar Guler E., Hammer M., Hassanshahi H., Hatakeyama K., Heering A., Hegde V., Heintz U., Hinton N., Hirschauer J., Hoff J., Hou W. -S., Hou X., Hua H., Incandela J., Irshad A., Isik C., Jain S., Jheng H., Joshi U., Kachanov V., Kalinin A., Kalipoliti L., Kaminskiy A., Kapoor A., Kara O., Karneyeu A., Kaya M., Kaya O., Kayis Topaksu A., Khukhunaishvili A., Kieseler J., Kilpatrick M., Kim S., Koetz K., Kolberg T., Koseyan O., Kristic A., Krohn M., Kruger K., Kulagin N., Kulis S., Kunori S., Kuo C., Kuryatkov V., Kyre S., Lai Y., Lamichhane K., Landsberg G., Lange C., Langford J., Lee M., Levin A., Li A., Li B., Li J., Li Y., Liao H., Lincoln D., Linssen L., Lipton R., Liu Y., Lobanov A., Lu R. -S., Lupi M., Lysova I., Magnan A. -M., Magniette F., Mahjoub A., Maier A., Malakhov A., Mallios S., Mannelli M., Mans J., Marchioro A., Martelli A., Martinez G., Masterson P., Meng B., Mengke T., Mestvirishvili A., Mirza I., Moccia S., Mohanty G., Monti F., Morrissey I., Murthy S., Music J., Musienko Y., Nabili S., Nagar A., Nguyen M., Nikitenko A., Noonan D., Noy M., Nurdan K., Ochando C., Odegard B., Odell N., Okawa H., Onel Y., Ortez W., Ozegovic J., Ozkorucuklu S., Paganis E., Pagenkopf D., Palladino V., Pandey S., Pantaleo F., Papageorgakis C., Papakrivopoulos I., Parshook J., Pastika N., Paulini M., Paulitsch P., Peltola T., Pereira Gomes R., Perkins H., Petiot P., Pierre-Emile T., Pitters F., Popova E., Prosper H., Prvan M., Puljak I., Qu H., Quast T., Quinn R., Quinnan M., Ramos Garcia M., Rao K., Rapacz K., Raux L., Reichenbach G., Reinecke M., Revering M., Roberts A., Romanteau T., Rose A., Rovere M., Roy A., Rubinov P., Rusack R., Rusinov V., Ryjov V., Sahin M., Salerno R., Sanchez Rodriguez A., Saradhy R., Sarkar T., Sarkisla M., Sauvan J., Schmidt I., Schmitt M., Scott E., Seez C., Sefkow F., Sharma S., Shein I., Shenai A., Shukla R., Sicking E., Sieberer P., Silva P., Simsek A., Sirois Y., Smirnov V., Sozbilir U., Spencer E., Steen A., Strait J., Strobbe N., Su J., Sukhov E., Sun L., Sunar Cerci D., Syal C., Tali B., Tan C., Tao J., Tastan I., Tatli T., Thaus R., Tekten S., Thienpont D., Tiras E., Titov M., Tlisov D., Tok U., Troska J., Tsai L. -S., Tsamalaidze Z., Tsipolitis G., Tsirou A., Tyurin N., Undleeb S., Urbanski D., Ustinov V., Uzunian A., Van de Klundert M., Varela J., Velasco M., Viazlo O., Vicente Barreto Pinto M., Vichoudis P., Virdee T., Vizinho de Oliveira R., Voelker J., Voirin E., Vojinovic M., Wade A., Wang C., Wang F., Wang X., Wang Z., Wayne M., Webb S., Whitbeck A., White D., Wickwire R., Wilson J., Winter D., Wu H., Wu L., Wulansatiti Nursanto M., Yeh C., Yohay R., Yu D., Yu G., Yu S., Yuan C., Yumiceva F., Yusuff I., Zacharopoulou A., Zamiatin N., Zarubin A., Zenz S., Zghiche A., Zhang H., Zhang J., Zhang Y., and Zhang Z.
- Abstract
This paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC.
- Published
- 2024
29. Correction: Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19
- Author
-
Cauchois, Raphaël, Koubi, Marie, Delarbre, David, Manet, Cécile, Carvelli, Julien, Blasco, Valery Benjamin, Jean, Rodolphe, Fouche, Louis, Bornet, Charleric, Pauly, Vanessa, Mazodier, Karin, Pestre, Vincent, Jarrot, Pierre-André, Dinarello, Charles A., and Kaplanski, Gilles
- Published
- 2020
30. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19
- Author
-
Cauchois, Raphaël, Koubi, Marie, Delarbre, David, Manet, Cécile, Carvelli, Julien, Blasco, Valery Benjamin, Jean, Rodolphe, Fouche, Louis, Bornet, Charleric, Pauly, Vanessa, Mazodier, Karin, Pestre, Vincent, Jarrot, Pierre-André, Dinarello, Charles A., and Kaplanski, Gilles
- Published
- 2020
31. Effect of anakinra on mortality in patients with COVID-19: a systematic review and patient-level meta-analysis
- Author
-
Kyriazopoulou, Evdoxia, Huet, Thomas, Cavalli, Giulio, Gori, Andrea, Kyprianou, Miltiades, Pickkers, Peter, Eugen-Olsen, Jesper, Clerici, Mario, Veas, Francisco, Chatellier, Gilles, Kaplanski, Gilles, Netea, Mihai G., Pontali, Emanuele, Gattorno, Marco, Cauchois, Raphael, Kooistra, Emma, Kox, Matthijs, Bandera, Alessandra, Beaussier, Hélène, Mangioni, Davide, Dagna, Lorenzo, van der Meer, Jos W.M., Giamarellos-Bourboulis, Evangelos J., Hayem, Gilles, Volpi, Stefano, Sormani, Maria Pia, Signori, Alessio, Bozzi, Giorgio, Minoia, Francesca, Aliberti, Stefano, Grasselli, Giacomo, Alagna, Laura, Lombardi, Andrea, Ungaro, Riccardo, Agostoni, Carlo, Blasi, Francesco, Costantino, Giorgio, Fracanzani, Anna Ludovica, Montano, Nicola, Peyvandi, Flora, Sottocorno, Marcello, Muscatello, Antonio, Filocamo, Giovanni, Papadopoulos, Antonios, Mouktaroudi, Maria, Karakike, Eleni, Saridaki, Maria, Gkavogianni, Theologia, Katrini, Konstantina, Vechlidis, Nikolaos, Avgoustou, Christina, Chalvatzis, Stamatios, Marantos, Theodoros, Damoulari, Christina, Damoraki, Georgia, Ktena, Sofia, Tsilika, Maria, Koufargyris, Panagiotis, Karageorgos, Athanasios, Droggiti, Dionysia-Irene, Koliakou, Aikaterini, Poulakou, Garyfallia, Tsiakos, Konstantinos, Myrodia, Dimitra-Melia, Gravvani, Areti, Trontzas, Ioannis P., Syrigos, Konstantinos, Kalomenidis, Ioannis, Kranidioti, Eleftheria, Panagopoulos, Periklis, Petrakis, Vasileios, Metallidis, Simeon, Loli, Georgia, Tsachouridou, Olga, Dalekos, George N., Gatselis, Nikolaos, Stefos, Aggelos, Georgiadou, Sarah, Lygoura, Vassiliki, Milionis, Haralampos, Kosmidou, Maria, Papanikolaou, Ilias C., Akinosoglou, Karolina, Giannitsioti, Efthymia, Chrysos, Georgios, Mavroudis, Panagiotis, Sidiropoulou, Chrysanthi, Adamis, Georgios, Fragkou, Archontoula, Rapti, Aggeliki, Alexiou, Zoi, Symbardi, Styliani, Masgala, Aikaterini, Kostaki, Konstantina, Kostis, Evangelos, Samarkos, Michael, Bakakos, Petros, Tzavara, Vassiliki, Dimakou, Katerina, Tzatzagou, Glykeria, Chini, Maria, Kotsis, Vasileios, Tsoukalas, George, Bliziotis, Ioannis, Doumas, Michael, Argyraki, Aikaterini, Kainis, Ilias, Fantoni, Massimo, Cingolani, Antonella, Angheben, Andrea, Cardellino, Chiara Simona, Castelli, Francesco, Serino, Francesco Saverio, Nicastri, Emanuele, Ippolito, Giuseppe, Bassetti, Matteo, Selmi, Carlo, Netea, Mihai G, van der Meer, Jos W M, and Giamarellos-Bourboulis, Evangelos J
- Published
- 2021
- Full Text
- View/download PDF
32. Pièce(s) de vie
- Author
-
Isabelle Cauchois
- Published
- 2022
33. Clinical characteristics and outcomes of patients with haematologic malignancies and COVID-19 suggest that prolonged SARS-CoV-2 carriage is an important issue
- Author
-
Arcani, Robin, Colle, Julien, Cauchois, Raphaël, Koubi, Marie, Jarrot, Pierre-André, Jean, Rodolphe, Boyer, Arthur, Lachamp, Julie, Tichadou, Antoine, Couderc, Anne-Laure, Farnault, Laure, Costello, Regis, Venton, Geoffroy, and Kaplanski, Gilles
- Published
- 2021
- Full Text
- View/download PDF
34. Excess body weight is an independent risk factor for severe forms of COVID-19
- Author
-
Pietri, Léa, Giorgi, Roch, Bégu, Audrey, Lojou, Manon, Koubi, Marie, Cauchois, Raphael, Grangeot, Rachel, Dubois, Noémie, Kaplanski, Gilles, Valéro, René, and Béliard, Sophie
- Published
- 2021
- Full Text
- View/download PDF
35. Immune-mediated thrombotic thrombocytopenic purpura plasma induces calcium- and IgG-dependent endothelial activation: correlations with disease severity
- Author
-
Edwige Tellier, Agnès Widemann, Raphaël Cauchois, Julien Faccini, Marie Lagarde, Marion Brun, Philippe Robert, Stéphane Robert, Richard Bachelier, Pascale Poullin, Elien Roose, Karen Vanhoorelbeke, Paul Coppo, Françoise Dignat-George, and Gilles Kaplanski
- Subjects
Diseases of the blood and blood-forming organs ,RC633-647.5 - Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is characterized by a severe ADAMTS13 deficiency due to the presence of anti-ADAMTS13 auto-antibodies, with subsequent accumulation of circulating ultra-large von Willebrand factor (VWF) multimers. The role of endothelial cell activation as a trigger of the disease has been suggested in animal models but remains to be demonstrated in humans. We prospectively obtained plasma from the first plasma exchange of 25 patients during iTTP acute phase. iTTP but not control plasma, induced a rapid VWF release and P-selectin exposure on the surface of dermal human micro-vascular endothelial cell (HMVEC-d), associated with angiopoietin-2 and endothelin-1 secretion, consistent with Weibel-Palade bodies exocytosis. Calcium (Ca2+) blockade significantly decreased VWF release, whereas iTTP plasma induced a rapid and sustained Ca2+ flux in HMVEC-d which correlated in retrospect, with disease severity and survival in 62 iTTP patients. F(ab)’2 fragments purified from the immunoglobulin G fraction of iTTP plasma mainly induced endothelial cell activation with additional minor roles for circulating free heme and nucleosomes, but not for complement. Furthermore, two anti-ADAMTS13 monoclonal antibodies purified from iTTP patients’ B cells, but not serum from hereditary TTP, induced endothelial Ca2+ flux associated with Weibel-Palade bodies exocytosis in vitro, whereas inhibition of endothelial ADAMTS13 expression using small intering RNA, significantly decreased the stimulating effects of iTTP immunoglobulin G. In conclusion, Ca2+-mediated endothelial cell activation constitutes a “second hit” of iTTP, is correlated with the severity of the disease and may constitute a possible therapeutic target.
- Published
- 2022
- Full Text
- View/download PDF
36. Will face recognition revolutionise the shopping experience?
- Author
-
Elloumi, Wael, Cauchois, Cyril, and Pasqual, Charlotte
- Published
- 2021
- Full Text
- View/download PDF
37. Successful heart transplantation for COVID‐19‐associated post‐infectious fulminant myocarditis
- Author
-
Baptiste Gaudriot, Alexandre Mansour, Vincent Thibault, Mathieu Lederlin, Aurélie Cauchois, Bernard Lelong, James T. Ross, Guillaume Leurent, Jean‐Marc Tadié, Matthieu Revest, Jean‐Philippe Verhoye, Erwan Flecher, and Nicolas Nesseler
- Subjects
Fulminant myocarditis ,COVID‐19 ,Cardiogenic shock ,Extracorporeal membrane oxygenation ,Heart transplantation ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
Abstract Various clinical presentations of the 2019 coronavirus disease (COVID‐19) have been described, including post‐infectious acute and fulminant myocarditis. Here, we describe the case of a young patient admitted for COVID‐19‐associated post‐infectious fulminant myocarditis. Despite optimal pharmacologic management, haemodynamic status worsened requiring support by veno‐arterial extracorporeal membrane oxygenation. Emergent heart transplantation was required at Day 11 given the absence of cardiac function improvement. The diagnosis of post‐infectious COVID‐19‐associated myocarditis was made from both pathologic examination of the explanted heart and positive SARS‐CoV‐2 serology.
- Published
- 2021
- Full Text
- View/download PDF
38. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19
- Author
-
Guervilly, Christophe, Bonifay, Amandine, Burtey, Stephane, Sabatier, Florence, Cauchois, Raphaël, Abdili, Evelyne, Arnaud, Laurent, Lano, Guillaume, Pietri, Léa, Robert, Thomas, Velier, Mélanie, Papazian, Laurent, Albanese, Jacques, Kaplanski, Gilles, Dignat-George, Françoise, and Lacroix, Romaric
- Published
- 2021
- Full Text
- View/download PDF
39. Système de question-réponse multilingue appliqué aux agents conversationnels.
- Author
-
Wissam Siblini, Charlotte Pasqual, Axel Lavielle, and Cyril Cauchois
- Published
- 2020
40. Knowing what You Know: valid and validated confidence sets in multiclass and multilabel prediction.
- Author
-
Maxime Cauchois, Suyash Gupta 0002, and John C. Duchi
- Published
- 2021
41. Robust Validation: Confident Predictions Even When Distributions Shift.
- Author
-
Cauchois, Maxime, Gupta, Suyash, Ali, Alnur, and Duchi, John C.
- Subjects
ROBUST statistics ,VALIDITY of statistics ,MACHINE learning ,STATISTICS ,FORECASTING - Abstract
While the traditional viewpoint in machine learning and statistics assumes training and testing samples come from the same population, practice belies this fiction. One strategy—coming from robust statistics and optimization—is thus to build a model robust to distributional perturbations. In this article, we take a different approach to describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions. We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an f-divergence ball around the training population. The method, based on conformal inference, achieves (nearly) valid coverage in finite samples, under only the condition that the training data be exchangeable. An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it; we develop estimators and prove their consistency for protection and validity of uncertainty estimates under shifts. By experimenting on several large-scale benchmark datasets, including Recht et al.'s CIFAR-v4 and ImageNet-V2 datasets, we provide complementary empirical results that highlight the importance of robust predictive validity. for this article are available online. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
42. Avdoralimab (Anti-C5aR1 mAb) Versus Placebo in Patients With Severe COVID-19: Results From a Randomized Controlled Trial (FOR COVID Elimination [FORCE])*
- Author
-
Carvelli, Julien, Meziani, Ferhat, Dellamonica, Jean, Cordier, Pierre-Yves, Allardet-Servent, Jerome, Fraisse, Megan, Velly, Lionel, Barbar, Saber Davide, Lehingue, Samuel, Guervilly, Christophe, Desgrouas, Maxime, Camou, Fabrice, Piperoglou, Christelle, Vely, Frederic, Demaria, Olivier, Karakunnel, Joyson, Fares, Joanna, Batista, Luciana, Rotolo, Federico, Viotti, Julien, Boyer-Chammard, Agnes, Lacombe, Karine, Le Dault, Erwan, Carles, Michel, Schleinitz, Nicolas, Vivier, Eric, Schleinitz, Nicolas, Carvelli, Julien, Gainnier, Marc, Bourenne, Jérémy, Bichon, Amandine, Le Saux, Audrey, Bouzana, Fouad, Tilmont, Antoine, Cauchois, Emi, Coularet, Charlotte, Bruder, Nicolas, Velly, Lionel, Ebbo, Mikael, Veit, Véronique, Jean, Estelle, Simeone, Pierre, Blasco, Valéry, Vely, Frédéric, Piperoglou, Christelle, Coutard, Bruno, Pastorino, Boris, Villaroel, Maria Saba, Garrido-Pradalie, Emilie, Amichi, Kahéna, Larosa, Aurélie, Blondelon, Aurélie, Inal, Imane, Amichi, Kahéna, Dhorne, Jean, Durieux, Frédérique, Brunet, Julie, Cohen, Anita, Deluca, Bénédicte, Malkoun, Richard, Dellamonica, Jean, Buscot, Matthieu, Saccheri, Clément, Carles, Michel, Demonchy, Elisa, Cua, Eric, Chirio, David, Courjon, Johan, Risso, Karine, Rigault, Marie-Christine, Gazoppi, Loïc, Salas, Virginie, Bouskila, Nadège, Touitou, Irit, Breaud, Sophie, Boughdiri, Nihed, Marrane, Guillaume, Meziani, Ferhat, Merdji, Hamid, Helms, Julie, Monier, Alexandra, Demiselle, Julien, Jandeaux, Louise-Marie, Studer, Antoine, Allam, Hayat, Thiebaut, Léonie, Hutt-Clauss, Anne, Le Dault, Erwan, Cordier, Pierre-Yves, Savini, Hélène, Clerc, Axelle, Spadoni, Sophie, Javelle, Emilie, Clerc, Axelle, Chouaki-Benmansour, Nassima, Le Garlantezec, Patrick, Le Tohic, Sarah, Allardet-Servent, Jérôme, Benarous, Lucas, Madjarian, Corinne, Aouadenne-Mesbah, Assia, Rognon, Amélie, Fraisse, Megan, Plantefeve, Gaétan, Benrezzak, Nasro, Dubief, Emeline, Chauvel, Olivia, Jamet, Charlotte, Davide Barbar, Saber, Ambert, Audrey, Lloret, Sophie, Elotmani, Loubna, Dubois, Grégory, Meyrieux, Séverine, Barthelemi, Laurie, Lehingue, Samuel, Poulet, Antoine, Bezirganyan, Kristina, Asselate, Belkacem, Provitolo, Vincent, Lacombe, Karine, Bollens, Diane, Letaillandier, Cyrielle, Tran, Christian, Sebire, Manuela, Lamarque, Julie, Deguenel-Nguyen, Anne, Desgrouas, Maxime, Jacquier, Sophie, Muller, Grégoire, Bretagnol, Anne, Mathonnet, Armelle, Benzekri, Dalila, Barbier, François, Mai-Anh, Nay, Runge, Isabelle, Kamel, Toufik, Muller, Lucie, Tellec, Sophie, Guervilly, Christophe, Papazian, Laurent, Forel, Jean-Marie, Sanz, Céline, Pinglis, Camille, Valera, Sabine, Colombini, Nathalie, Camou, Fabrice, Mourissoux, Gaelle, Guisset, Olivier, Issa, Nahéma, Pedenon-Peyrichout, Delphine, Delaune, Jean, Langlade, Claire, Pedeboscq, Stéphane, Lescure, Xavier, Isernia, Valentina, Bachelard, Antoine, Fleurot, Odile, Le Gac, Sylvie, Da Conceicao, Olivia, Julia, Zelie, Chalal, Lynda, Oualit, Lynda, Kramer, Laura, Le Grand, Jennifer, Poissy, Julien, Nseir, Saadalla, Mariller, Laure, Delcoutre, Claire, Brice, Sylvie, Lelievre, Jean-Daniel, Gallien, Sébastien, Cotellon, Christine, Vindrios, William, Melica, Giovanna, Natella, Pierre-André, Bourhis, Marion, Thiemele, Alaki, De Nailly, Delphine Lefebvre, Malvy, Denis, Desclaux, Arnaud, Ducours, Mailys, Perreau, Pauline, Boyer, Alexandre, Clouzeau, Benjamin, Bui, Hoang-Nam, Bourgoin, Nicolas, Kabala, Anna, Ghezzoul, Bellabes, Servant, Vincent, and Djabarouti, Sarah
- Published
- 2022
- Full Text
- View/download PDF
43. Mortality, cardiac and cerebral damages reduction by IL-1 inhibition in a murine model of TTP
- Author
-
Muller, Romain, primary, Cauchois, Raphael, additional, Lagarde, Marie, additional, Roffino, Sandrine, additional, Genovesio, Cecile, additional, Fernandez, Samantha, additional, Hache, Guillaume, additional, Guillet, Benjamin, additional, Kara, Yeter, additional, Marlinge, Marion, additional, Lenting, Peter J, additional, Poullin, Pascale, additional, Dignat-George, Françoise, additional, Tellier, Edwige, additional, and Kaplanski, Gilles, additional
- Published
- 2024
- Full Text
- View/download PDF
44. Query-Adaptive Predictive Inference with Partial Labels.
- Author
-
Maxime Cauchois and John C. Duchi
- Published
- 2022
- Full Text
- View/download PDF
45. Predictive Inference with Weak Supervision.
- Author
-
Maxime Cauchois, Suyash Gupta 0002, Alnur Ali, and John C. Duchi
- Published
- 2022
46. Unique in the Smart Grid -The Privacy Cost of Fine-Grained Electrical Consumption Data.
- Author
-
Antonin Voyez, Tristan Allard, Gildas Avoine, Pierre Cauchois, élisa Fromont, and Matthieu Simonin
- Published
- 2022
- Full Text
- View/download PDF
47. Two Venovenous Extracorporeal Membrane Oxygenation for One Gunshot
- Author
-
Louis Pot, Alizée Porto, Audrey Le Saux, Amandine Bichon, Emi Cauchois, Marc Gainnier, Julien Carvelli, and Jeremy Bourenne
- Subjects
Medical emergencies. Critical care. Intensive care. First aid ,RC86-88.9 - Abstract
Venovenous extracorporeal membrane oxygenation (VV-ECMO) is an adjuvant treatment for severe acute respiratory distress syndrome (ARDS) with refractory hypoxemia. Contraindications to therapeutic anticoagulation must be ruled out prior to ECMO implementation. We report the case of a 17-year-old male admitted in intensive care unit (ICU) for penetrating chest trauma due to multiple gunshot wounds. The body computed tomography (body CT scan) documented right pulmonary contusions and a homolateral hemothorax. His condition rapidly deteriorated with refractory hypoxemia due to lung contusion requiring invasive mechanical ventilation (IMV) and polytransfused hemorrhagic shock. During his stay in ICU, venovenous ECMO (VV-ECMO) was implemented twice, firstly for trauma-induced ARDS and secondly after thoracic surgery. This case emphasizes the successful use of VV-ECMO in posttraumatic ARDS without increasing the risk of bleeding.
- Published
- 2022
- Full Text
- View/download PDF
48. Effects of Cell Confluence on the Immunological and Migration Receptors of Wharton Jelly’s Mesenchymal Stem Cells
- Author
-
Voisin, Charlotte, primary, Cauchois, Ghislaine, additional, Bensoussan, Danièle, additional, and Huselstein, Céline, additional
- Published
- 2021
- Full Text
- View/download PDF
49. Infrastructure for Detector Research and Development towards the International Linear Collider
- Author
-
Aguilar, J., Ambalathankandy, P., Fiutowski, T., Idzik, M., Kulis, Sz., Przyborowski, D., Swientek, K., Bamberger, A., Köhli, M., Lupberger, M., Renz, U., Schumacher, M., Zwerger, Andreas, Calderone, A., Cussans, D. G., Heath, H. F., Mandry, S., Page, R. F., Velthuis, J. J., Attié, D., Calvet, D., Colas, P., Coppolani, X., Degerli, Y., Delagnes, E., Gelin, M., Giomataris, I., Lutz, P., Orsini, F., Rialot, M., Senée, F., Wang, W., Alozy, J., Apostolakis, J., Aspell, P., Bergsma, F., Campbell, M., Formenti, F., Santos, H. Franca, Garcia, E. Garcia, de Gaspari, M., Giudice, P. -A., Grefe, Ch., Grichine, V., Hauschild, M., Ivantchenko, V., Kehrli, A., Kloukinas, K., Linssen, L., Cudie, X. Llopart, Marchioro, A., Musa, L., Ribon, A., Trampitsch, G., Uzhinskiy, V., Anduze, M., Beyer, E., Bonnemaison, A., Boudry, V., Brient, J. -C., Cauchois, A., Clerc, C., Cornat, R., Frotin, M., Gastaldi, F., Jauffret, C., Jeans, D., Karar, A., Mathieu, A., de Freitas, P. Mora, Musat, G., Rougé, A., Ruan, M., Vanel, J. -C., Videau, H., Besson, A., de Masi, G. Claus. R., Doziere, G., Dulinski, W., Goffe, M., Himmi, A., Hu-Guo, Ch., Morel, F., Valin, I., Winter, M., Bonis, J., Callier, S., Cornebise, P., Dulucq, F., Giannelli, M. Faucci, Fleury, J., Guilhem, G., Martin-Chassard, G., de la Taille, Ch., Pöschl, R., Raux, L., Seguin-Moreau, N., Wicek, F., Benyamna, M., Bonnard, J., Cârloganu, C., Fehr, F., Gay, P., Mannen, S., Royer, L., Charpy, A., Da Silva, W., David, J., Dhellot, M., Imbault, D., Ghislain, P., Kapusta, F., Pham, T. Hung, Savoy-Navarro, A., Sefri, R., Dzahini, D., Giraud, J., Grondin, D., Hostachy, J. -Y., Morin, L., Bassignana, D., Pellegrini, G., Lozano, M., Quirion, D., Fernandez, M., Jaramillo, R., Munoz, F. J., Vila, I., Dolezal, Z., Drasal, Z., Kodys, P., Kvasnicka, P., Aplin, S., Bachynska, O., Behnke, T., Behr, J., Dehmelt, K., Engels, J., Gadow, K., Gaede, F., Garutti, E., Göttlicher, P., Gregor, I. -M., Haas, T., Henschel, H., Koetz, U., Lange, W., Libov, V., Lohmann, W., Lutz, B., Mnich, J., Muhl, C., Ohlerich, M., Potylitsina-Kube, N., Prahl, V., Reinecke, M., Roloff, P., Rosemann, Ch., Rubinski, Igor, Schade, P., Schuwalov, S., Sefkow, F., Terwort, M., Volkenborn, R., Kalliopuska, J., Mehtaelae, P., Orava, R., van Remortel, N., Cvach, J., Janata, M., Kvasnicka, J., Marcisovsky, M., Polak, I., Sicho, P., Smolik, J., Vrba, V., Zalesak, J., Bergauer, T., Dragicevic, M., Friedl, M., Haensel, S., Irmler, C., Kiesenhofer, W., Krammer, M., Valentan, M., Piemontese, L., Cotta-Ramusino, A., Bulgheroni, A., Jastrzab, M., Caccia, M., Re, V., Ratti, L., Traversi, G., Dewulf, J. -P., Janssen, X., De Lentdecker, G., Yang, Y., Bryngemark, L., Christiansen, P., Gross, P., Jönsson, L., Ljunggren, M., Lundberg, B., Mjörnmark, U., Oskarsson, A., Richert, T., Stenlund, E., Österman, L., Rummel, S., Richter, R., Andricek, L., Ninkovich, J., Koffmane, Ch., Moser, H. -G., Boisvert, V., Green, B., Green, M. G., Misiejuk, A., Wu, T., Bilevych, Y., Carballo, V. M. Blanco, Chefdeville, M., de Nooij, L., Fransen, M., Hartjes, F., van der Graaf, H., Timmermans, J., Abramowicz, H., Ben-Hamu, Y., Jikhleb, I., Kananov, S., Levy, A., Levy, I., Sadeh, I., Schwartz, R., Stern, A., Goodrick, M. J., Hommels, L. B. A., Ward, R. Shaw. D. R., Daniluk, W., Kielar, E., Kotula, J., Moszczynski, A., Oliwa, K., Pawlik, B., Wierba, W., Zawiejski, L., Bailey, D. S., Kelly, M., Eigen, G., Brezina, Ch., Desch, K., Furletova, J., Kaminski, J., Killenberg, M., Köckner, F., Krautscheid, T., Krüger, H., Reuen, L., Wienemann, P., Zimmermann, R., Zimmermann, S., Bartsch, V., Postranecky, M., Warren, M., Wing, M., Corrin, E., Haas, D., Pohl, M., Diener, R., Fischer, P., Peric, I., Kaukher, A., Schäfer, O., Schröder, H., Wurth, R., and Zarnecki, A. F.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry., Comment: 54 pages, 48 pictures
- Published
- 2012
50. The Development of Jamrani Multipurpose Project in India from a Multilateral Development Bank Perspective
- Author
-
Cauchois, Arnaud, L’Hostis, Marie, and Mohan, Mukesh
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.