17 results on '"Cefarin N"'
Search Results
2. Nano-Fabricated Free-Standing Wire-Scanners with Sub-Micrometer Resolution
- Author
-
Orlandi, G. L., David, C., Ferrari, E., Guzenko, V. A., Hermann, B., Ischebeck, R., Prat, E., Ferianis, M., Penco, G., Veronese, M., Cefarin, N., Zilio, S. Dal, and Lazzarino, M.
- Subjects
Physics - Accelerator Physics - Abstract
Diagnostics of the beam transverse profile with ever more demanding spatial resolution is required by the progress on novel particle accelerators - such as laser and plasma driven accelerators - and by the stringent beam specifications of the new generation of X-ray facilities. In a linac driven Free-Electron-Laser (FEL), the spatial resolution constraint joins with the further requirement for the diagnostics to be minimally invasive in order to protect radiation sensitive components - such as the undulators - and to preserve the lasing mechanism. As for high resolution measurements of the beam transverse profile in a FEL, wire-scanners (WS) are the top-ranked diagnostics. Nevertheless, conventional WS consisting of a metallic wire (beam-probe) stretched onto a frame (fork) can provide at best a rms spatial resolution at the micrometer scale along with an equivalent surface of impact on the electron beam. In order to improve the spatial resolution of a WS beyond the micrometer scale along with the transparency to the lasing, PSI and FERMI are independently pursuing the technique of the nano-lithography to fabricate a free-standing and sub-micrometer wide WS beam-probe fully integrated into a fork. Free-standing WS with a geometrical resolution of about 250 nm have been successfully tested at SwissFEL where low charge electron beams with a vertical size of 400-500 nm have been characterized. Further experimental tests carried out at SwissFEL at the nominal beam charge of 200 pC confirmed the resilience to the heat-loading of the nano-fabricated WS. In this work, details on the nano-fabrication of free-standing WS as well as results of the electron-beam characterization are presented.
- Published
- 2019
- Full Text
- View/download PDF
3. Soft X-ray induced radiation damage in thin freeze-dried brain samples studied by FTIR microscopy
- Author
-
Surowka, Artur D., primary, Gianoncelli, A., additional, Birarda, G., additional, Sala, S., additional, Cefarin, N., additional, Matruglio, A., additional, Szczerbowska-Boruchowska, M., additional, Ziomber-Lisiak, A., additional, and Vaccari, L., additional
- Published
- 2020
- Full Text
- View/download PDF
4. Direct morpho-chemical characterization of elusive plant residues from Aurignacian Pontic Steppe ground stones
- Author
-
Birarda, G., primary, Cagnato, C., additional, Pantyukhina, I., additional, Stani, C., additional, Cefarin, N., additional, Sorrentino, G., additional, Badetti, E., additional, Marcomini, A., additional, Lubritto, C., additional, Khlopachev, G., additional, Covalenco, S., additional, Obada, T., additional, Skakun, N., additional, Vaccari, L., additional, and Longo, L., additional
- Published
- 2020
- Full Text
- View/download PDF
5. Nanofabricated free-standing wire scanners for beam diagnostics with submicrometer resolution
- Author
-
Orlandi, G. L., primary, David, C., additional, Ferrari, E., additional, Guzenko, V. A., additional, Ischebeck, R., additional, Prat, E., additional, Hermann, B., additional, Ferianis, M., additional, Penco, G., additional, Veronese, M., additional, Cefarin, N., additional, Dal Zilio, S., additional, and Lazzarino, M., additional
- Published
- 2020
- Full Text
- View/download PDF
6. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites
- Author
-
Sutter-Fella, CM, Ngo, QP, Cefarin, N, Gardner, KL, Tamura, N, Stan, CV, Drisdell, WS, Javey, A, Toma, FM, and Sharp, ID
- Subjects
Affordable and Clean Energy ,cation variation ,photoluminescence ,in situ characterization ,Nanoscience & Nanotechnology ,Metal halide perovskite ,halide demixing - Abstract
Copyright © 2018 American Chemical Society. Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH2)2CsPb-halide (FACsPb-) and CH3NH3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.
- Published
- 2018
- Full Text
- View/download PDF
7. Substrate stiffness modulates extracellular vesicles' release in a triple-negative breast cancer model.
- Author
-
Senigagliesi B, Geiss O, Valente S, Vondracek H, Cefarin N, Ceccone G, Calzolai L, Ballerini L, Parisse P, and Casalis L
- Abstract
Aim: The microenvironment effect on the tumoral-derived Extracellular Vesicle release, which is of significant interest for biomedical applications, still represents a rather unexplored field. The aim of the present work is to investigate the interrelation between extracellular matrix (ECM) stiffness and the release of small EVs from cancer cells. Here, we focus on the interrelation between the ECM and small extracellular vesicles (sEVs), specifically investigating the unexplored aspect of the influence of ECM stiffness on the release of sEVs., Methods: We used a well-studied metastatic Triple-Negative Breast Cancer (TNBC) cell line, MDA-MB-231, as a model to study the release of sEVs by cells cultured on substrates of different stiffness. We have grown MDA-MB-231 cells on two collagen-coated polydimethylsiloxane (PDMS) substrates at different stiffness (0.2 and 3.6 MPa), comparing them with a hard glass substrate as control, and then we isolated the respective sEVs by differential ultracentrifugation. After checking the cell growth conditions [vitality, morphology by immunofluorescence microscopy, stiffness by atomic force microscopy (AFM)], we took advantage of a multi-parametric approach based on complementary techniques (AFM, Nanoparticle Tracking Analysis, and asymmetric flow field flow fractionation with a multi-angle light scattering detector) to characterize the TNBC-derived sEV obtained in the different substrate conditions., Results: We observe that soft substrates induce TNBC cell softening and rounding. This effect promotes the release of a high number of larger sEVs., Conclusion: Here, we show the role of ECM physical properties in the regulation of sEV release in a TNBC model. While the molecular mechanisms regulating this effect need further investigation, our report represents a step toward an improved understanding of ECM-cell-sEVs crosstalk., Competing Interests: All authors declared that there are no conflicts of interest., (© The Author(s) 2024.)
- Published
- 2024
- Full Text
- View/download PDF
8. Triple negative breast cancer-derived small extracellular vesicles as modulator of biomechanics in target cells.
- Author
-
Senigagliesi B, Samperi G, Cefarin N, Gneo L, Petrosino S, Apollonio M, Caponnetto F, Sgarra R, Collavin L, Cesselli D, Casalis L, and Parisse P
- Subjects
- Biomechanical Phenomena, Humans, MCF-7 Cells, Extracellular Vesicles metabolism, Triple Negative Breast Neoplasms pathology
- Abstract
Extracellular vesicle (EV) mediated communication has recently been proposed as one of the pivotal routes in the development of cancer metastasis. EVs are nano-sized vesicles swapped between cells, carrying a biologically active content that can promote tumor-induced immune suppression, metastasis and angiogenesis. Thus, EVs constitute a potential target in cancer therapy. However, their role in triggering the premetastatic niche and in tumor spreading is still unclear. Here, we focused on the EV ability to modulate the biomechanical properties of target cells, known to play a crucial role in metastatic spreading. To this purpose, we isolated and thoroughly characterized triple-negative breast cancer (TNBC)-derived small EVs. We then evaluated variations in the mechanical properties (cell stiffness, cytoskeleton/nuclear/morphology and Yap activity rearrangements) of non-metastatic breast cancer MCF7 cells upon EV treatment. Our results suggest that TNBC-derived small EVs are able to directly modify MCF7 cells by inducing a decrease in cell stiffness, rearrangements in cytoskeleton, focal adhesions and nuclear/cellular morphology, and an increase in Yap downstream gene expression. Testing the biomechanical response of cells after EV addition might represent a new functional assay in metastatic cancer framework that can be exploited for future application both in diagnosis and in therapy., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest., (Copyright © 2022. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF
9. Chemical constitution of polyfurfuryl alcohol investigated by FTIR and Resonant Raman spectroscopy.
- Author
-
D'Amico F, Musso ME, Berger RJF, Cefarin N, Birarda G, Tondi G, Bertoldo Menezes D, Reyer A, Scarabattoli L, Sepperer T, Schnabel T, and Vaccari L
- Subjects
- Quantum Theory, Spectroscopy, Fourier Transform Infrared, Spectrum Analysis, Raman, Vibration
- Abstract
The actual chemical structure of polyfurfuryl alcohol (PFA) is still uncertain in spite of several studies on the topic, variations during the polymerization processes being one reason that must be addressed. The use of a limited set of analytical techniques is often insufficient to provide an exhaustive chemical characterization. Moreover, it is still not possible to exactly determine presence and amount of each specific functional group in the polymeric structure. We employed both Fourier Transform Infrared Spectroscopy (FTIR) and Resonant Raman spectroscopy (RR), corroborated by quantum mechanically aided analysis of the experimental spectra, to infer about the chemical structure of two samples of PFAs, synthetized in different ways and appearing macroscopically different, the first one being a liquid and viscous commercial sample, the second one being a self-prepared solid and rigid sample produced following a thermosetting procedure. The vibrational spectroscopic analysis confirms the presence of differences in their chemical structures. The viscous form of PFA is mainly composed by short polymeric chains, and is characterized by the presence of isolated furfuryl alcohol and furfural residues similar to 5-hydroxymethylfurfural; the thermosetted PFA is formed by more cross-linked structures, characterized by several ketones and alkene double bonds, as well as a significant presence of Diels-Alder structures. In summary, the present study evidences how the use of both FTIR and RR spectroscopy, the latter carried out at several laser excitation wavelengths, indicates an accurate way to spectroscopically investigate complex polymers enabling to satisfactorily infer about their peculiar chemical structure., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
10. Study of the Spatio-Chemical Heterogeneity of Tannin-Furanic Foams: From 1D FTIR Spectroscopy to 3D FTIR Micro-Computed Tomography.
- Author
-
Cefarin N, Bedolla DE, Surowka A, Donato S, Sepperer T, Tondi G, Dreossi D, Sodini N, Birarda G, and Vaccari L
- Subjects
- Spectroscopy, Fourier Transform Infrared, X-Ray Microtomography, Furans chemistry, Tannins chemistry
- Abstract
Tannin-furanic rigid foams are bio-based copolymers of tannin plant extract and furfuryl alcohol, promising candidates to replace synthetic insulation foams, as for example polyurethanes and phenolics, in eco-sustainable buildings thanks to their functional properties, such as lightness of the material and fire resistance. Despite their relevance as environmental-friendly alternatives to petroleum derivatives, many aspects of the polymerization chemistry still remain unclear. One of the open issues is on the spatial heterogeneity of the foam, i.e., whether the foam constituents prevalently polymerize in spatially segregated blocks or distribute almost homogenously in the foam volume. To address this matter, here we propose a multiscale FTIR study encompassing 1D FTIR spectroscopy, 2D FTIR imaging and 3D FTIR micro-tomography (FTIR-μCT) on tannin-furanic rigid foams obtained by varying the synthesis parameters in a controlled way. Thanks to the implementation of the acquisition and processing pipeline of FTIR-μCT, we were able for the first time to demonstrate that the polymer formulations influence the spatial organization of the foam at the microscale and, at the same time, prove the reliability of FTIR-μCT data by comparing 2D FTIR images and the projection of the 3D chemical images on the same plane.
- Published
- 2021
- Full Text
- View/download PDF
11. Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application.
- Author
-
Zanut A, Cian A, Cefarin N, Pozzato A, and Tormen M
- Subjects
- Nanotechnology, Polymers, Printing, Biosensing Techniques, Electrochemical Techniques, Electrodes, Nanostructures
- Abstract
Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.
- Published
- 2020
- Full Text
- View/download PDF
12. Synthesis and Characterization of High-Performing Sulfur-Free Tannin Foams.
- Author
-
Eckardt J, Neubauer J, Sepperer T, Donato S, Zanetti M, Cefarin N, Vaccari L, Lippert M, Wind M, Schnabel T, Petutschnigg A, and Tondi G
- Abstract
Tannin foams are green lightweight materials that have attracted industrial interest for the manufacturing of sandwich panels for insulation purposes. However, the dimensions of the cells and the presence of sulfur in the formulation developed until now have discouraged their upscaling. In this work, we present the synthesis and the characterization of the more promising small cell and sulfur-free materials. It was observed that, with respect to standard ones, foams catalyzed with nitric acid present similar physical properties and more phenolic character, which favors the absorption of ionic pollutants. Conversely, the foams blown with aliphatic solvents and surfactants present smaller pores, and higher mechanical and insulating properties, without affecting the chemical properties or the heating value. The combined foam produced with nitric acid as a catalyst and petroleum ether as a blowing agent result in sulfur-free and small cell material with overall improved features. These foams have been produced at 30 × 30 × 3 cm
3 , with high homogeneity and, to date, they represent the most suitable formulation for industrial upscaling.- Published
- 2020
- Full Text
- View/download PDF
13. Understanding the Polymerization of Polyfurfuryl Alcohol: Ring Opening and Diels-Alder Reactions.
- Author
-
Tondi G, Cefarin N, Sepperer T, D'Amico F, Berger RJF, Musso M, Birarda G, Reyer A, Schnabel T, and Vaccari L
- Abstract
Polyfurfuryl alcohol (PFA) is one of the most intriguing polymers because, despite its easy polymerization in acid environment, its molecular structure is definitely not obvious. Many studies have been performed in recent decades, and every time, surprising aspects came out. With the present study, we aim to take advantage of all of the findings of previous investigations and exploit them for the interpretation of the completely cured PFA spectra registered with three of the most powerful techniques for the characterization of solid, insoluble polymers: Solid-State
13 C-NMR, Attenuated Total Reflectance (ATR), Fourier Transform Infrared (FTIR) spectroscopy, and UV-resonant Raman spectroscopy at different excitation wavelengths, using both an UV laser source and UV synchrotron radiation. In addition, the foreseen structures were modeled and the corresponding13 C-NMR and FTIR spectra were simulated with first-principles and semi-empiric methods to evaluate their matching with experimental ones. Thanks to this multi-technique approach, based on complementary analytical tools and computational support, it was possible to conclude that, in addition to the major linear unconjugated polymerization, the PFA structure consists of Diels-Alder rearrangements occurring after the opening of some furanic units, while the terminal moieties of the chain involves γ-lactone arrangements. The occurrence of head-head methylene ether bridges and free hydroxyl groups (from unreacted furfuryl alcohol, FA, or terminal chains) could be excluded, while the conjugated systems could be considered rather limited.- Published
- 2019
- Full Text
- View/download PDF
14. Electronic structure of MAPbI 3 and MAPbCl 3 : importance of band alignment.
- Author
-
Caputo M, Cefarin N, Radivo A, Demitri N, Gigli L, Plaisier JR, Panighel M, Di Santo G, Moretti S, Giglia A, Polentarutti M, De Angelis F, Mosconi E, Umari P, Tormen M, and Goldoni A
- Abstract
Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples.
- Published
- 2019
- Full Text
- View/download PDF
15. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.
- Author
-
Sutter-Fella CM, Ngo QP, Cefarin N, Gardner KL, Tamura N, Stan CV, Drisdell WS, Javey A, Toma FM, and Sharp ID
- Abstract
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH
2 )2 CsPb-halide (FACsPb-) and CH3 NH3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.- Published
- 2018
- Full Text
- View/download PDF
16. Low Pressure Vapor-assisted Solution Process for Tunable Band Gap Pinhole-free Methylammonium Lead Halide Perovskite Films.
- Author
-
Sutter-Fella CM, Li Y, Cefarin N, Buckley A, Ngo QP, Javey A, Sharp ID, and Toma FM
- Subjects
- Solutions, Vapor Pressure, Calcium Compounds chemistry, Lead chemistry, Methylamines chemistry, Oxides chemistry, Titanium chemistry
- Abstract
Organo-lead halide perovskites have recently attracted great interest for potential applications in thin-film photovoltaics and optoelectronics. Herein, we present a protocol for the fabrication of this material via the low-pressure vapor assisted solution process (LP-VASP) method, which yields ~19% power conversion efficiency in planar heterojunction perovskite solar cells. First, we report the synthesis of methylammonium iodide (CH3NH3I) and methylammonium bromide (CH3NH3Br) from methylamine and the corresponding halide acid (HI or HBr). Then, we describe the fabrication of pinhole-free, continuous methylammonium-lead halide perovskite (CH3NH3PbX3 with X = I, Br, Cl and their mixture) films with the LP-VASP. This process is based on two steps: i) spin-coating of a homogenous layer of lead halide precursor onto a substrate, and ii) conversion of this layer to CH3NH3PbI3-xBrx by exposing the substrate to vapors of a mixture of CH3NH3I and CH3NH3Br at reduced pressure and 120 °C. Through slow diffusion of the methylammonium halide vapor into the lead halide precursor, we achieve slow and controlled growth of a continuous, pinhole-free perovskite film. The LP-VASP allows synthetic access to the full halide composition space in CH3NH3PbI3-xBrx with 0 ≤ x ≤ 3. Depending on the composition of the vapor phase, the bandgap can be tuned between 1.6 eV ≤ Eg ≤ 2.3 eV. In addition, by varying the composition of the halide precursor and of the vapor phase, we can also obtain CH3NH3PbI3-xClx. Films obtained from the LP-VASP are reproducible, phase pure as confirmed by X-ray diffraction measurements, and show high photoluminescence quantum yield. The process does not require the use of a glovebox.
- Published
- 2017
- Full Text
- View/download PDF
17. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.
- Author
-
Sinisi V, Forzato C, Cefarin N, Navarini L, and Berti F
- Subjects
- Binding Sites, Caffeic Acids chemistry, Chlorogenic Acid analogs & derivatives, Chlorogenic Acid chemistry, Coumaric Acids chemistry, Humans, Lactones chemistry, Quinic Acid analogs & derivatives, Quinic Acid chemistry, Spectrometry, Fluorescence, Coffee chemistry, Polyphenols chemistry, Serum Albumin chemistry
- Abstract
Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.