Roberto Félix, Sébastien Duguay, Enrico Avancini, Mohit Raghuwanshi, Martti J. Puska, Romain Carron, Milos Nesladek, Jakob Bombsch, Evelyn Handick, Nicoleta Nicoara, Celia Castro, Stephan Buecheler, Emilie Bourgeois, Ville Havu, Thomas Paul Weiss, Max Hilaire Wolter, Shigenori Ueda, Philip Jackson, Hannu-Pekka Komsa, Marcus Bär, Maria Malitckaya, Susanne Siebentritt, Giovanna Sozzi, Philippe Pareige, Dimitrios Hariskos, Arantxa Vilalta-Clemente, Thomas Kunze, Sascha Sadewasser, Roberto Menozzi, Florian Werner, Ayodhya N. Tiwari, Wolfram Witte, Regan G. Wilks, Université du Luxembourg (Uni.lu), Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Helmholtz Centre for Materials and Energy (HZB), Hasselt University (UHasselt), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Zentrum fur Sonnenenergie-und Wasserstoff-Forschung (ZSW), Zentrum fur Sonnenenergie-und Wasserstoff-Forschung, Aalto University, University of Parma = Università degli studi di Parma [Parme, Italie], International Iberian Nanotechnology Laboratory (INL), National Institute for Materials Science (NIMS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Università degli studi di Parma = University of Parma (UNIPR)
Chalcopyrite solar cells achieve efficiencies above 23%. The latest improvements are due to post-deposition treatments (PDT) with heavy alkalis. This study provides a comprehensive description of the effect of PDT on the chemical and electronic structure of surface and bulk of Cu(In,Ga)Se-2. Chemical changes at the surface appear similar, independent of absorber or alkali. However, the effect on the surface electronic structure differs with absorber or type of treatment, although the improvement of the solar cell efficiency is the same. Thus, changes at the surface cannot be the only effect of the PDT treatment. The main effect of PDT with heavy alkalis concerns bulk recombination. The reduction in bulk recombination goes along with a reduced density of electronic tail states. Improvements in open-circuit voltage appear together with reduced band bending at grain boundaries. Heavy alkalis accumulate at grain boundaries and are not detected in the grains. This behavior is understood by the energetics of the formation of single-phase Cu-alkali compounds. Thus, the efficiency improvement with heavy alkali PDT can be attributed to reduced band bending at grain boundaries, which reduces tail states and nonradiative recombination and is caused by accumulation of heavy alkalis at grain boundaries. This work was supported by the European Union's Horizon 2020 research and innovation program under grant agreement no. 641004 (Sharc25) and by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0158. Siebentritt, S (reprint author), Univ Luxembourg, Lab Photovolta, Phys & Mat Sci Res Unit, 41 Rue Brill, L-4422 Belvaux, Luxembourg. susanne.siebentritt@uni.lu