1. Bayesian inference of state feedback control parameters for fo perturbation responses in cerebellar ataxia.
- Author
-
Gaines, Jessica L, Kim, Kwang S, Parrell, Ben, Ramanarayanan, Vikram, Pongos, Alvincé L, Nagarajan, Srikantan S, and Houde, John F
- Subjects
Biological Psychology ,Psychology ,Rehabilitation ,Clinical Research ,Behavioral and Social Science ,Basic Behavioral and Social Science ,Neurosciences ,Brain Disorders ,Humans ,Cerebellar Ataxia ,Bayes Theorem ,Speech ,Computational Biology ,Computer Simulation ,Adult ,Middle Aged ,Female ,Male ,Feedback ,Sensory ,Mathematical Sciences ,Biological Sciences ,Information and Computing Sciences ,Bioinformatics - Abstract
Behavioral speech tasks have been widely used to understand the mechanisms of speech motor control in typical speakers as well as in various clinical populations. However, determining which neural functions differ between typical speakers and clinical populations based on behavioral data alone is difficult because multiple mechanisms may lead to the same behavioral differences. For example, individuals with cerebellar ataxia (CA) produce atypically large compensatory responses to pitch perturbations in their auditory feedback, compared to typical speakers, but this pattern could have many explanations. Here, computational modeling techniques were used to address this challenge. Bayesian inference was used to fit a state feedback control (SFC) model of voice fundamental frequency (fo) control to the behavioral pitch perturbation responses of speakers with CA and typical speakers. This fitting process resulted in estimates of posterior likelihood distributions for five model parameters (sensory feedback delays, absolute and relative levels of auditory and somatosensory feedback noise, and controller gain), which were compared between the two groups. Results suggest that the speakers with CA may proportionally weight auditory and somatosensory feedback differently from typical speakers. Specifically, the CA group showed a greater relative sensitivity to auditory feedback than the control group. There were also large group differences in the controller gain parameter, suggesting increased motor output responses to target errors in the CA group. These modeling results generate hypotheses about how CA may affect the speech motor system, which could help guide future empirical investigations in CA. This study also demonstrates the overall proof-of-principle of using this Bayesian inference approach to understand behavioral speech data in terms of interpretable parameters of speech motor control models.
- Published
- 2024