1. R-EQUIVALENCE ON GROUP SCHEMES AND NON STABLE K 1 -FUNCTORS
- Author
-
Gille, Philippe, Stavrova, A, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Chebyshev Laboratory, St. Petersburg State University, Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
resolution property. MSC 2000: 14L15 ,Group schemes ,tori ,[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] ,representations ,20G35 ,R-equivalence ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Reductive group schemes ,Whitehead groups and K 1 ,Karoubi-Villamayor Ktheory - Abstract
We define R-equivalence for group schemes over a semilocal ring and relate this with rational properties. Two main cases are investigated: tori and isotropic semisimple simply connected group schemes where we show in certain cases that R-equivalence coincide with Karoubi-Villamayor equivalence and is also related to the Kneser-Tits problem in this setting. Finally we construct specialization maps for R-equivalence in the case of regular algebras containing a field.
- Published
- 2021