1. MovePose: A High-performance Human Pose Estimation Algorithm on Mobile and Edge Devices
- Author
-
Yu, Dongyang, Zhang, Haoyue, Zhao, Ruisheng, Chen, Guoqi, An, Wangpeng, and Yang, Yanhong
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
We present MovePose, an optimized lightweight convolutional neural network designed specifically for real-time body pose estimation on CPU-based mobile devices. The current solutions do not provide satisfactory accuracy and speed for human posture estimation, and MovePose addresses this gap. It aims to maintain real-time performance while improving the accuracy of human posture estimation for mobile devices. Our MovePose algorithm has attained an Mean Average Precision (mAP) score of 68.0 on the COCO \cite{cocodata} validation dataset. The MovePose algorithm displayed efficiency with a performance of 69+ frames per second (fps) when run on an Intel i9-10920x CPU. Additionally, it showcased an increased performance of 452+ fps on an NVIDIA RTX3090 GPU. On an Android phone equipped with a Snapdragon 8 + 4G processor, the fps reached above 11. To enhance accuracy, we incorporated three techniques: deconvolution, large kernel convolution, and coordinate classification methods. Compared to basic upsampling, deconvolution is trainable, improves model capacity, and enhances the receptive field. Large kernel convolution strengthens these properties at a decreased computational cost. In summary, MovePose provides high accuracy and real-time performance, marking it a potential tool for a variety of applications, including those focused on mobile-side human posture estimation. The code and models for this algorithm will be made publicly accessible., Comment: This paper has been accepted by ICANN 2024 and is an oral presentation
- Published
- 2023