1. Effect of Cholesterol on C99 Dimerization: Revealed by Molecular Dynamics Simulations
- Author
-
Cheng-Dong Li, Muhammad Junaid, Xiaoqi Shan, Yanjing Wang, Xiangeng Wang, Abbas Khan, and Dong-Qing Wei
- Subjects
cholesterol ,C99 ,dimerization ,molecular dynamics simulations ,Alzheimer’s disease ,Biology (General) ,QH301-705.5 - Abstract
C99 is the immediate precursor for amyloid beta (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer’s disease (AD). It has been suggested that cholesterol is associated with C99, but the dynamic details of how cholesterol affects C99 assembly and the Aβ formation remain unclear. To investigate this question, we employed coarse-grained and all-atom molecular dynamics simulations to study the effect of cholesterol and membrane composition on C99 dimerization. We found that although the existence of cholesterol delays C99 dimerization, there is no direct competition between C99 dimerization and cholesterol association. In contrast, the existence of cholesterol makes the C99 dimer more stable, which presents a cholesterol binding C99 dimer model. Cholesterol and membrane composition change the dimerization rate and conformation distribution of C99, which will subsequently influence the production of Aβ. Our results provide insights into the potential influence of the physiological environment on the C99 dimerization, which will help us understand Aβ formation and AD’s etiology.
- Published
- 2022
- Full Text
- View/download PDF