1. First Results from the AMoRE-Pilot neutrinoless double beta decay experiment
- Author
-
Alenkov, V., Bae, H. W., Beyer, J., Boiko, R. S., Boonin, K., Buzanov, O., Chanthima, N., Cheoun, M. K., Chernyak, D. M., Choe, J. S., Choi, S., Danevich, F. A., Djamal, M., Drung, D., Enss, C., Fleischmann, A., Gangapshev, A. M., Gastaldo, L., Gavriljuk, Yu. M., Gezhaev, A. M., Grigoryeva, V. D., Gurentsov, V. I., Gylova, O., Ha, C., Ha, D. H., Ha, E. J., Hahn, I. S., Jang, C. H., Jeon, E. J., Jeon, J. A., Jo, H. S., Kaewkhao, J., Kang, C. S., Kang, S. J., Kang, W. G., Kazalov, V. V., Khan, A., Khan, S., Kim, D. Y., Kim, G. W., Kim, H. B., Kim, H. J., Kim, H. L., Kim, H. S., Kim, I., Kim, S. C., Kim, S. G., Kim, S. K., Kim, S. R., Kim, W. T., Kim, Y. D., Kim, Y. H., Kirdsiri, K., Ko, Y. J., Kobychev, V. V., Kornoukhov, V., Kuzminov, V. V., Kwon, D. H., Lee, C., Lee, E. K., Lee, H. J., Lee, H. S., Lee, J. S., Lee, J. Y., Lee, K. B., Lee, M. H., Lee, M. K., Lee, S. W., Lee, S. H., Leonard, D., Li, J., Li, Y., Limkitjaroenporn, P., Makarov, E. P., Oh, S. Y., Oh, Y. M., Olsen, S. L., Pabitra, A., Panasenko, S. I., Pandey, I., Park, C. W., Park, H. K., Park, H. S., Park, K. S., Park, S. Y., Poda, D. V., Polischuk, O. G., Prihtiadi, H., Ra, S. J., Ratkevich, S. S., Rooh, G., Sari, M. B., Seo, K. M., Shin, J. W., Shin, K. A., Shlegel, V. N., Siyeon, K., So, J. H., Son, J. K., Srisittipokakun, N., Sujita, K., Tretyak, V. I., Wirawan, R., Woo, K. R., Yoon, Y. S., Yue, Q., and Zaman, S. U.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$\nu\beta\beta$) of $^{100}$Mo with $\sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $^{48}$Ca-depleted calcium and $^{100}$Mo-enriched molybdenum ($^{48\textrm{depl}}$Ca$^{100}$MoO$_4$). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $0\nu\beta\beta$ search with a 111 kg$\cdot$d live exposure of $^{48\textrm{depl}}$Ca$^{100}$MoO$_4$ crystals. No evidence for $0\nu\beta\beta$ decay of $^{100}$Mo is found, and a upper limit is set for the half-life of 0$\nu\beta\beta$ of $^{100}$Mo of $T^{0\nu}_{1/2} > 9.5\times10^{22}$ y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range $\langle m_{\beta\beta}\rangle\le(1.2-2.1)$ eV.
- Published
- 2019
- Full Text
- View/download PDF