1. Chemotherapy triggers cachexia by deregulating synergetic function of histone‐modifying enzymes
- Author
-
Mamta Amrute‐Nayak, Gloria Pegoli, Tim Holler, Alfredo Jesus Lopez‐Davila, Chiara Lanzuolo, and Arnab Nayak
- Subjects
Chemotherapy‐induced cachexia ,Epigenetics ,Muscle atrophy ,p300 ,Sarcomere organization ,SENP3 ,Diseases of the musculoskeletal system ,RC925-935 ,Human anatomy ,QM1-695 - Abstract
Abstract Background Chemotherapy is the first line of treatment for cancer patients. However, the side effects cause severe muscle atrophy or chemotherapy‐induced cachexia. Previously, the NF‐κB/MuRF1‐dependent pathway was shown to induce chemotherapy‐induced cachexia. We hypothesized that acute collateral toxic effects of chemotherapy on muscles might involve other unknown pathways promoting chemotherapy‐induced muscle atrophy. In this study, we investigated differential effects of chemotherapeutic drugs and probed whether alternative molecular mechanisms lead to cachexia. Methods We employed mouse satellite stem cell‐derived primary muscle cells and mouse C2C12 progenitor cell‐derived differentiated myotubes as model systems to test the effect of drugs. The widely used chemotherapeutic drugs, such as daunorubicin (Daun), etoposide (Etop), and cytarabine (Ara‐C), were tested. Molecular mechanisms by which drug affects the muscle cell organization at epigenetic, transcriptional, and protein levels were measured by employing chromatin immunoprecipitations, endogenous gene expression profiling, co‐immunoprecipitation, complementation assays, and confocal microscopy. Myotube function was examined using the electrical stimulation of myotubes to monitor contractile ability (excitation–contraction coupling) post drug treatment. Results Here, we demonstrate that chemotherapeutic drugs disrupt sarcomere organization and thereby the contractile ability of skeletal muscle cells. The sarcomere disorganization results from severe loss of molecular motor protein MyHC‐II upon drug treatment. We identified that drugs impede chromatin targeting of SETD7 histone methyltransferase and disrupt association and synergetic function of SETD7 with p300 histone acetyltransferase. The compromised transcriptional activity of histone methyltransferase and acetyltransferase causes reduced histone acetylation and low occupancy of active RNA polymerase II on MyHC‐II, promoting drastic down‐regulation of MyHC‐II expression (~3.6‐fold and ~4.5‐fold reduction of MyHC‐IId mRNA levels in Daun and Etop treatment, respectively. P
- Published
- 2021
- Full Text
- View/download PDF