Arenas, M., Mona, S., Trochet, A., Sramkova Hanulova, A., Currat, M., Ray, N., Chikhi, L., Rasteiro, R., Schmeller, D.S., Excoffier, L., CMPG, University of Bern, Swiss Institute of Bioinformatics [Lausanne] (SIB), Université de Lausanne = University of Lausanne (UNIL), Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Station d’Ecologie Expérimentale du CNRS à Moulis (SEEM), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Centre Universitaire d'Informatique, Université de Genève = University of Geneva (UNIGE), Geometry and Lighting (ALICE), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Leicester, Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Henle, Klaus, Potts, Simon, Kunin, William, Matsinos, Yiannis, Simila, Jukka, Pantis, John, Grobelnik, Vesna, Penev, Lyubomir, and Settele, Josef
Most species do not live in a constant environment over space or time. Their environment is often heterogeneous with a huge variability in resource availability and exposure to pathogens or predators, which may affect the local densities of the species. Moreover, the habitat might be fragmented, preventing free and isotropic migrations between local sub-populations (demes) of a species, making some demes more isolated than others. For example, during the last ice age populations of many species migrated towards refuge areas from which re-colonization originated when conditions improved. However, populations that could not move fast enough or could not adapt to the new environmental conditions faced extinctions. Populations living in these types of dynamic environments are often referred to as metapopulations and modeled as an array of subdivisions (or demes) that exchange migrants with their neighbors. Several studies have focused on the description of their demography, probability of extinction and expected patterns of diversity at different scales. Importantly, all these evolutionary processes may affect genetic diversity, which can affect the chance of populations to persist. In this chapter we provide an overview on the consequences of fragmentation, long-distance dispersal, range contractions and range shifts on genetic diversity. In addition, we describe new methods to detect and quantify underlying evolutionary processes from sampled genetic data. Laboratoire d’Excellence (LABEX) entitled TULIP: (ANR-10-LABX-41).