303 results on '"Chipman, Ariel D."'
Search Results
2. Size and complexity
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
3. The concept of evolutionary change
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
4. Annelida
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
5. Vertebrate characteristics
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
6. Embryogenesis
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
7. Mollusca
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
8. What is an organism?
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
9. Segmental organization of the body
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
10. Platyhelminthes
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
11. Motility and symmetry
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
12. Organismic biology in the twenty-first century
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
13. Chordata and Hemichordata
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
14. Sensory systems
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
15. Arthropoda II
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
16. The hierarchical nature of biology
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
17. Species concepts and speciation
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
18. Germ layers
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
19. Gene content evolution in the arthropods
- Author
-
Thomas, Gregg WC, Dohmen, Elias, Hughes, Daniel ST, Murali, Shwetha C, Poelchau, Monica, Glastad, Karl, Anstead, Clare A, Ayoub, Nadia A, Batterham, Phillip, Bellair, Michelle, Binford, Greta J, Chao, Hsu, Chen, Yolanda H, Childers, Christopher, Dinh, Huyen, Doddapaneni, Harsha Vardhan, Duan, Jian J, Dugan, Shannon, Esposito, Lauren A, Friedrich, Markus, Garb, Jessica, Gasser, Robin B, Goodisman, Michael AD, Gundersen-Rindal, Dawn E, Han, Yi, Handler, Alfred M, Hatakeyama, Masatsugu, Hering, Lars, Hunter, Wayne B, Ioannidis, Panagiotis, Jayaseelan, Joy C, Kalra, Divya, Khila, Abderrahman, Korhonen, Pasi K, Lee, Carol Eunmi, Lee, Sandra L, Li, Yiyuan, Lindsey, Amelia RI, Mayer, Georg, McGregor, Alistair P, McKenna, Duane D, Misof, Bernhard, Munidasa, Mala, Munoz-Torres, Monica, Muzny, Donna M, Niehuis, Oliver, Osuji-Lacy, Nkechinyere, Palli, Subba R, Panfilio, Kristen A, Pechmann, Matthias, Perry, Trent, Peters, Ralph S, Poynton, Helen C, Prpic, Nikola-Michael, Qu, Jiaxin, Rotenberg, Dorith, Schal, Coby, Schoville, Sean D, Scully, Erin D, Skinner, Evette, Sloan, Daniel B, Stouthamer, Richard, Strand, Michael R, Szucsich, Nikolaus U, Wijeratne, Asela, Young, Neil D, Zattara, Eduardo E, Benoit, Joshua B, Zdobnov, Evgeny M, Pfrender, Michael E, Hackett, Kevin J, Werren, John H, Worley, Kim C, Gibbs, Richard A, Chipman, Ariel D, Waterhouse, Robert M, Bornberg-Bauer, Erich, Hahn, Matthew W, and Richards, Stephen
- Subjects
Human Genome ,Genetics ,Biotechnology ,Generic health relevance ,Animals ,Arthropods ,DNA Methylation ,Evolution ,Molecular ,Genetic Speciation ,Genetic Variation ,Phylogeny ,Genome assembly ,Genomics ,Protein domains ,Gene content ,Evolution ,DNA methylation ,Environmental Sciences ,Biological Sciences ,Information and Computing Sciences ,Bioinformatics - Abstract
BackgroundArthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods.ResultsUsing 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception.ConclusionsThese analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
- Published
- 2020
20. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome
- Author
-
Panfilio, Kristen A, Vargas Jentzsch, Iris M, Benoit, Joshua B, Erezyilmaz, Deniz, Suzuki, Yuichiro, Colella, Stefano, Robertson, Hugh M, Poelchau, Monica F, Waterhouse, Robert M, Ioannidis, Panagiotis, Weirauch, Matthew T, Hughes, Daniel ST, Murali, Shwetha C, Werren, John H, Jacobs, Chris GC, Duncan, Elizabeth J, Armisén, David, Vreede, Barbara MI, Baa-Puyoulet, Patrice, Berger, Chloé S, Chang, Chun-che, Chao, Hsu, Chen, Mei-Ju M, Chen, Yen-Ta, Childers, Christopher P, Chipman, Ariel D, Cridge, Andrew G, Crumière, Antonin JJ, Dearden, Peter K, Didion, Elise M, Dinh, Huyen, Doddapaneni, Harsha Vardhan, Dolan, Amanda, Dugan, Shannon, Extavour, Cassandra G, Febvay, Gérard, Friedrich, Markus, Ginzburg, Neta, Han, Yi, Heger, Peter, Holmes, Christopher J, Horn, Thorsten, Hsiao, Yi-min, Jennings, Emily C, Johnston, J Spencer, Jones, Tamsin E, Jones, Jeffery W, Khila, Abderrahman, Koelzer, Stefan, Kovacova, Viera, Leask, Megan, Lee, Sandra L, Lee, Chien-Yueh, Lovegrove, Mackenzie R, Lu, Hsiao-ling, Lu, Yong, Moore, Patricia J, Munoz-Torres, Monica C, Muzny, Donna M, Palli, Subba R, Parisot, Nicolas, Pick, Leslie, Porter, Megan L, Qu, Jiaxin, Refki, Peter N, Richter, Rose, Rivera-Pomar, Rolando, Rosendale, Andrew J, Roth, Siegfried, Sachs, Lena, Santos, M Emília, Seibert, Jan, Sghaier, Essia, Shukla, Jayendra N, Stancliffe, Richard J, Tidswell, Olivia, Traverso, Lucila, van der Zee, Maurijn, Viala, Séverine, Worley, Kim C, Zdobnov, Evgeny M, Gibbs, Richard A, and Richards, Stephen
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Biotechnology ,Amino Acid Sequence ,Animals ,CYS2-HIS2 Zinc Fingers ,Evolution ,Molecular ,Feeding Behavior ,Gene Dosage ,Gene Expression Profiling ,Gene Transfer ,Horizontal ,Genes ,Homeobox ,Genome ,Insect ,Hemiptera ,Pigmentation ,Smell ,Transcription Factors ,Evolution of development ,Gene family evolution ,Gene structure ,Lateral gene transfer ,Phytophagy ,RNAi ,Transcription factors ,Environmental Sciences ,Information and Computing Sciences ,Bioinformatics - Abstract
BackgroundThe Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae.ResultsThe 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding.ConclusionsWith the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
- Published
- 2019
21. The moulting arthropod: a complete genetic toolkit review.
- Author
-
Campli, Giulia, Volovych, Olga, Kim, Kenneth, Veldsman, Werner P., Drage, Harriet B., Sheizaf, Idan, Lynch, Sinéad, Chipman, Ariel D., Daley, Allison C., Robinson‐Rechavi, Marc, and Waterhouse, Robert M.
- Subjects
KNOWLEDGE gap theory ,MOLECULAR biology ,LIFE cycles (Biology) ,ARTHROPOD diversity ,ECDYSIS ,MOLTING ,ANIMAL exoskeletons - Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre‐moult phase to ecdysis itself and post‐moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so‐called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under‐explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra‐conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage‐specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
22. The Evolution and Development of Segmented Body Plans
- Author
-
Chipman, Ariel D., Nuño de la Rosa, Laura, editor, and Müller, Gerd B., editor
- Published
- 2021
- Full Text
- View/download PDF
23. Developmental Exaptation
- Author
-
Chipman, Ariel D., Müller, Gerd B., Section editor, Nuño de la Rosa, Laura, editor, and Müller, Gerd B., editor
- Published
- 2021
- Full Text
- View/download PDF
24. The multiple roles of caudal in early development of the milkweed bug Oncopeltus fasciatus
- Author
-
Novikova, Asya V., Auman, Tzach, Cohen, Mira, Oleynik, Olesya, Stahi-Hitin, Reut, Gil, Ella, Weisbrod, Anat, and Chipman, Ariel D.
- Published
- 2020
- Full Text
- View/download PDF
25. Copyright Page
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
26. Glossary
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
27. About this book
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
28. Organismic Animal Biology
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
29. eLife assessment: The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis
- Author
-
Chipman, Ariel D, primary
- Published
- 2024
- Full Text
- View/download PDF
30. eLife assessment: MORPHIX: Resolving sample identification bias in morphometrics analysis with a supervised machine learning package
- Author
-
Chipman, Ariel D., primary
- Published
- 2024
- Full Text
- View/download PDF
31. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo
- Author
-
Chipman, Ariel D. and Edgecombe, Gregory D.
- Published
- 2019
32. eLife assessment: Cis-regulatory modes of Ultrabithorax inactivation in butterfly forewings
- Author
-
Chipman, Ariel D, primary
- Published
- 2024
- Full Text
- View/download PDF
33. A Subsurface Stepping Stone Hypothesis for the Conquest of Land by Arthropods
- Author
-
Frumkin, Amos, primary and Chipman, Ariel D., additional
- Published
- 2023
- Full Text
- View/download PDF
34. Diversity in Segmentation Mechanisms
- Author
-
Chipman, Ariel D., primary
- Published
- 2020
- Full Text
- View/download PDF
35. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima
- Author
-
Chipman, Ariel D, Ferrier, David EK, Brena, Carlo, Qu, Jiaxin, Hughes, Daniel ST, Schröder, Reinhard, Torres-Oliva, Montserrat, Znassi, Nadia, Jiang, Huaiyang, Almeida, Francisca C, Alonso, Claudio R, Apostolou, Zivkos, Aqrawi, Peshtewani, Arthur, Wallace, Barna, Jennifer CJ, Blankenburg, Kerstin P, Brites, Daniela, Capella-Gutiérrez, Salvador, Coyle, Marcus, Dearden, Peter K, Du Pasquier, Louis, Duncan, Elizabeth J, Ebert, Dieter, Eibner, Cornelius, Erikson, Galina, Evans, Peter D, Extavour, Cassandra G, Francisco, Liezl, Gabaldón, Toni, Gillis, William J, Goodwin-Horn, Elizabeth A, Green, Jack E, Griffiths-Jones, Sam, Grimmelikhuijzen, Cornelis JP, Gubbala, Sai, Guigó, Roderic, Han, Yi, Hauser, Frank, Havlak, Paul, Hayden, Luke, Helbing, Sophie, Holder, Michael, Hui, Jerome HL, Hunn, Julia P, Hunnekuhl, Vera S, Jackson, LaRonda, Javaid, Mehwish, Jhangiani, Shalini N, Jiggins, Francis M, Jones, Tamsin E, Kaiser, Tobias S, Kalra, Divya, Kenny, Nathan J, Korchina, Viktoriya, Kovar, Christie L, Kraus, F Bernhard, Lapraz, François, Lee, Sandra L, Lv, Jie, Mandapat, Christigale, Manning, Gerard, Mariotti, Marco, Mata, Robert, Mathew, Tittu, Neumann, Tobias, Newsham, Irene, Ngo, Dinh N, Ninova, Maria, Okwuonu, Geoffrey, Ongeri, Fiona, Palmer, William J, Patil, Shobha, Patraquim, Pedro, Pham, Christopher, Pu, Ling-Ling, Putman, Nicholas H, Rabouille, Catherine, Ramos, Olivia Mendivil, Rhodes, Adelaide C, Robertson, Helen E, Robertson, Hugh M, Ronshaugen, Matthew, Rozas, Julio, Saada, Nehad, Sánchez-Gracia, Alejandro, Scherer, Steven E, Schurko, Andrew M, Siggens, Kenneth W, Simmons, DeNard, Stief, Anna, Stolle, Eckart, Telford, Maximilian J, Tessmar-Raible, Kristin, Thornton, Rebecca, van der Zee, Maurijn, von Haeseler, Arndt, Williams, James M, Willis, Judith H, Wu, Yuanqing, and Zou, Xiaoyan
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Biotechnology ,Prevention ,1.1 Normal biological development and functioning ,Underpinning research ,Generic health relevance ,Animals ,Arthropods ,Circadian Rhythm Signaling Peptides and Proteins ,DNA Methylation ,Evolution ,Molecular ,Female ,Genome ,Genome ,Mitochondrial ,Hormones ,Male ,Multigene Family ,Phylogeny ,Polymorphism ,Genetic ,Protein Kinases ,RNA ,Untranslated ,Receptors ,Odorant ,Selenoproteins ,Sex Chromosomes ,Synteny ,Transcription Factors ,Agricultural and Veterinary Sciences ,Medical and Health Sciences ,Developmental Biology ,Agricultural ,veterinary and food sciences ,Biological sciences ,Biomedical and clinical sciences - Abstract
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
- Published
- 2014
36. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans
- Author
-
Auman, Tzach and Chipman, Ariel D.
- Published
- 2017
37. The Evolution of Arthropod Body Plans : Integrating Phylogeny, Fossils, and Development—An Introduction to the Symposium
- Author
-
Chipman, Ariel D. and Erwin, Douglas H.
- Published
- 2017
38. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm
- Author
-
Chipman, Ariel D., primary
- Published
- 2020
- Full Text
- View/download PDF
39. Trilobites in rock enrol: a comment on ‘Developmental and functional controls on enrolment in an ancient, extinct arthropod’ by Esteve and Hughes (2023)
- Author
-
Chipman, Ariel D., primary and Drage, Harriet B., additional
- Published
- 2023
- Full Text
- View/download PDF
40. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms
- Author
-
Stahi, Reut and Chipman, Ariel D.
- Published
- 2016
41. Hexapoda: Comparative Aspects of Early Development
- Author
-
Chipman, Ariel D. and Wanninger, Andreas, editor
- Published
- 2015
- Full Text
- View/download PDF
42. Hexapoda: A Drosophila’s View of Development
- Author
-
Hartenstein, Volker, Chipman, Ariel D., and Wanninger, Andreas, editor
- Published
- 2015
- Full Text
- View/download PDF
43. Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, Thamnocephalus platyurus
- Author
-
Constantinou, Savvas J., Duan, Nicole, Nagy, Lisa M., Chipman, Ariel D., and Williams, Terri A.
- Published
- 2020
- Full Text
- View/download PDF
44. A Subsurface Stepping Stone Hypothesis for the Conquest of Land by Arthropods.
- Author
-
Frumkin, Amos and Chipman, Ariel D.
- Subjects
- *
OXYGENATION (Chemistry) , *SURFACE phenomenon , *MILITARY invasion , *RADIATION protection , *CAVES , *FOSSIL plants , *TRACE fossils - Abstract
The conquest of land by arthropods is commonly believed to be a surface phenomenon associated with the arrival of photosynthetic plants, atmospheric oxygenation, and an ozone shield in the mid-Paleozoic Era. However, recent molecular and fossil evidence suggests terrestrial fauna may have first appeared in the Cambrian, before the proliferation of plants and ozone, which are thought to be essential for survival. This raises the question—how could arthropods survive on land without established plants and an ozone shield? We propose a hypothesis that chemolithoautotrophic cave ecosystems, independent of photosynthesis, may have served as a subsurface stepping stone, providing a possible explanation for the land invasion enigma. Chemolithoautrophic caves have offered abundant food and radiation protection, enabling ancient arthropods to evolve strategies to adapt to new frontiers through gradual dispersion from the sea to shielded cave waters, then to cave hygropetric margins of cave waters, and, finally, to the surface. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
45. An isolated chemolithoautotrophic ecosystem deduced from environmental isotopes: Ayyalon cave (Israel)
- Author
-
Frumkin, Amos, primary, Chipman, Ariel D., additional, and Naaman, Israel, additional
- Published
- 2023
- Full Text
- View/download PDF
46. M. Nechama Ben-Eliahu, 4 January 1935 – 23 March 2014.
- Author
-
Chipman, Ariel D and Hove, Harry A Ten
- Published
- 2014
47. The Evolution and Development of Segmented Body Plans
- Author
-
Chipman, Ariel D., primary
- Published
- 2018
- Full Text
- View/download PDF
48. Evolution of the insect terminal patterning system—Insights from the milkweed bug, Oncopeltus fasciatus
- Author
-
Weisbrod, Anat, Cohen, Mira, and Chipman, Ariel D.
- Published
- 2013
- Full Text
- View/download PDF
49. Lycosa piochardi Simon 1876
- Author
-
Steinpress, Igor Armiach, Cohen, Mira, Pétillon, Julien, Chipman, Ariel D., and Gavish-Regev, Efrat
- Subjects
Arthropoda ,Arachnida ,Animalia ,Araneae ,Lycosa piochardi ,Biodiversity ,Lycosidae ,Taxonomy ,Lycosa - Abstract
Lycosa piochardi Simon, 1876 Figs 1, 2D, 3D, 4D, 5D, 6D, G, 7D, G, 9C–L, 10C–L, 11E–F, 12D, 13–18, 21C–D, 22C–D, 23–27 Lycosa piochardi Simon, 1876: 72, pl. 3 figs 8–9 (♂ ♀, Syria). Tarentula piochardi infraclara Strand, 1915: 167 (♀, Israel). Syn. nov. Tarentula piochardi – Kulczyński 1911: 51, pl. 2 figs 60–61 (♀, Lebanon). Lycosa piochardi infraclara – Roewer 1955: 269. Lycosa piochardi – Nentwig et al. 2019: 40, fig. 6a–b (♀). — Nadolny & Zamani 2020: 209, fig. 19 (♀). — Zamani et al. 2021: 284, figs 7a–f, 8a–o (♀, Iran). Lycosa piochardi infraclara – Nentwig et al. 2019: 40, fig. 6c–e (♀, subspecies inquirenda). Diagnosis Male Tegular apophysis tip (TAT) bent posteriorly at ~90° (in L. hyraculus sp. nov. TA unbent posteriorly). CTA (Fig. 2D) serrated (in L. hyraculus CTA smooth-edged), not wider than TA (in L. praegrandis, Fig. 2E, CTA wider than TA). Tip of conductor membranous, triangular, smooth-edged (in the similar L. praegrandis it is semicircular and unevenly toothed) (Figs 2D, 3D, 4D, 5D, 6D, 7D, 12D, 13). Female Epigyne: septal pedicel reduced, septum subtriangular to trapezoidal, proportions vary greatly! Copulatory openings narrow, at anterior end of septum. Distal part of spermatheca (Fig. 10C–L) bent dorso-ventrally (in the similar L. praegrandis it is bent distally, so that the left spermatheca twists counterclockwise, Fig. 10M). Head of spermatheca elongated, not much wider than spermatheca. Both sexes distinguished from other levantine Lycosa by habitus: ocular area Holotype SYRIA • ♀; 1876; M.Ch. Piochard de la Brûlerie leg.; MNHN 2076 (not examined). Paratypes SYRIA • 5 ♀♀; same collection data as for holotype; MNHN 1266 (examined) Other material examined EGYPT – Sinai • 1 ♀; Al-Qusaymah (Kadesh Barnea); [30.668° N, 34.366° E]; 13 Nov. 1967; P. Amitai leg.; HUJ INV-AR20838 • 1 juv.; same collection data as for preceding; HUJ INV-AR20839 • 1 ♀; Mt. Catherine; [28.56° N, 33.95° E]; 16 Aug. 1968; Tsabar leg.; HUJ INV-AR20860 • 1 ♂; same collection data as for preceding; 17 Jul. 1968; HUJ INV-AR20862 • 1 ♂; same collection data as for preceding; 16 Aug. 1968; HUJ INV-AR20861 ISRAEL and PALESTINE – Coastal Plain • 1 ♂; Ashdod sands; [31.763° N, 35.633° E]; 19 Jun. 2020; I. Armiach Steinpress leg.; col. sub.; HUJ INV-AR20734 • 1 ♂; Be’eri; [31.42° N, 34.48° E]; 22 Sep. 2011; HUJ INV-AR20923 • 1 ♀; east Holon (near Yamit 2000); [32° N, 34.793° E]; 20 Jul. 2017; I. Armiach Steinpress leg.; HUJ INV-AR20735 • 1 ♀; same collection data as for preceding; 28 Jul. 2018; HUJ INV-AR20782 • 1 juv.; ETSEL memorial monument, Lod; [31.9404° N, 34.8658° E]; 28 May 2014; I. Armiach Steinpress leg.; HUJ INV-AR20779 • 1 juv.; same collection data as for preceding; HUJ INV-AR20780 • 1 ♀; Gaza area; [31.5° N, 34.46° E]; 1942; HUJ INV-AR20895 • 1 ♂; grove near Drezner st., Tel Aviv; [32.1295° N, 34.808° E]; 18 Jun. 2019; I.Armiach Steinpress leg.; col. juv.; HUJ INV-AR20730 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20731 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20732 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20733 • 1 ♀; Hadera sands; [32.461° N, 34.885° E]; 23 Aug. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20759 • 1 ♂; same collection data as for preceding; HUJ INV-AR20760 • 1 ♂; same collection data as for preceding;col. sub.; HUJ INV-AR20761 • 1 ♂; same collection data as for preceding; 4 Jul. 2019; col. sub.; HUJ INV-AR20787 • 1 ♀; Hatsor; [31.77° N, 34.71° E]; 2008; HUJ INV-AR20897 • 1 ♂; same collection data as for preceding; HUJ INV-AR20898 • 1 ♂; same collection data as for preceding; HUJ INV-AR20899 • 1 ♀; Jaffa-Rehoboth; [31.95° N, 34.78° E]; May 1913; I. Aharoni leg.; SMFD2184 • 1 ♀; Kfar Bialik; [32.82° N, 35.087° E]; 17 Sep. 2018; HUJ INV-AR20913 • 1 ♀; same collection data as for preceding; 7 Sep. 2018; with eggsac; HUJ INV-AR20950 • 1 ♀; Mavo Ashdod; [31.84° N, 34.7° E]; 24 Aug. 2015; HUJ INV-AR20926 • 1 ♂; Nitzanim; [31.739° N, 34.623° E]; 11 Jul. 2017; I. Armiach Steinpress leg.; col. juv.; HUJ INV-AR20683 • 1 ♂; Nitzanim sands; 7 Aug. 2017; B. Shacham leg.; HUJ INV-AR20572 • 1 ♀; Oranim boarding School, Rishon LeTsiyon; [31.944° N, 34.805° E]; 24 Aug. 2013; I. Armiach Steinpress leg.; HUJ INV-AR20762 • 1 ♀; Ramat-Gan; [32.08° N, 34.81° E]; 1947; A. Shulov leg.; HUJ INV-AR 20526 • 1 ♂; Rehovot; [31.8992° N, 34.8363° E]; 5 Sep. 2019; I. Armiach Steinpress leg.; HUJ INV-AR20788 • 1 ♀; Savyon; [32.04° N, 34.87° E]; 29 Sep. 1972; HUJ INV-AR20937 • 1 ♀; Superland, Rishon LeTsiyon; [31.9748° N, 34.74235° E]; 6 Sep. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20790 • 1 ♀; Talmei Menashe; [31.941° N, 34.853° E]; 28 May 2014; I. Armiach Steinpress leg.; col. sub.; HUJ INV-AR20781 • 1 juv.; Tel Akko; [32.9212° N, 35.0877° E]; 20 Aug. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20736 • 1 ♀; Tel Baruch, Tel Aviv; [32.13° N, 34.789° E]; 22 Aug. 2020; D. Simon leg.; HUJ INV-AR20584 • 1 ♀; Tel Kofer, Tel Aviv; [32.04° N, 34.807° E]; 12 Oct. 2018; I.Armiach Steinpress leg.; HUJ INV-AR20685 • 1 ♀; same collection data as for preceding; HUJ INV-AR20686 • 1 ♀; same collection data as for preceding; HUJ INV-AR20687 • 1 ♀; same collection data as for preceding; HUJ INV-AR20688 • 1 ♀; same collection data as for preceding; HUJ INV-AR20689 • 1 ♀; same collection data as for preceding; HUJ INV-AR20690 • 1 ♀; same collection data as for preceding; HUJ INV-AR20691 • 1 ♀; same collection data as for preceding; HUJ INV-AR20692 • 1 ♀; same collection data as for preceding; HUJ INV-AR20693 • 1 ♀; same collection data as for preceding; HUJ INV-AR20694 • 1 ♀; same collection data as for preceding; HUJ INV-AR20695 • 1 ♀; same collection data as for preceding; HUJ INV-AR20696 • 1 ♀; same collection data as for preceding; HUJ INV-AR20697 • 1 ♀; same collection data as for preceding; HUJ INV-AR20698 • ♀; same collection data as for preceding; HUJ INV-AR20699 • 1 ♀; same collection data as for preceding; HUJ INV-AR20700 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20701 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20702 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20703 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20704 • 1 ♂; same collection data as for preceding; HUJ INV-AR20705 • 1 ♀; Tel Michal, Herzlia; [32.162° N, 34.8° E]; 16 Jun. 2017; I. Armiach Steinpress leg.; col. sub; HUJ INV-AR20716 • 1 ♀; Tira; [32.234° N, 34.934° E]; 17 Jun. 2019; A. Topper leg.; col. sub; HUJ INV-AR20548 • 1 juv.; Yashresh nature reserve, Rehovot; [31.9155° N, 34.8304° E]; 9 Mar. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20813. – Dead Sea Area • 1 ♀; Ein Feshkha; [31.716° N, 35.451° E]; 15 May 1935; A. Shulov leg.; HUJ INV-AR20530 • 1 ♀; Hawat Einot Kedem; [31.928° N, 35.4301° E]; 2 Jun. 2019; E. Gavish-Regev leg.; col. juv.; HUJ INV-AR20621 • 1 ♀; same collection data as for preceding; col. juv.; HUJ INV-AR20622 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20623 • 1 ♀; Jericho; [31.85° N, 35.46° E]; 12 Dec. 1987; P.Amitai leg.; HUJ INV-AR20837 • 1 ♀; same collection data as for preceding; 10 Nov. 1971; with juv.; HUJ INV-AR20904. – Galilee • 1 ♀; Adamit; [33.081° N, 35.21° E]; 10 Aug. 1964; HUJ INV-AR20903 • 1 ♀; Ahihud forest; [32.92° N, 35.19° E]; 10 Oct. 2017; B. Shacham leg.; HUJ INV-AR20556 • 1 ♀; Biq`at Qedesh; [33.13° N, 35.54° E]; 13 May 2015; E. Gavish-Regev leg.; HUJ INV-AR20588 • 1 ♂; Dishon; [33.085° N, 35.519° E]; 14 Aug. 2014; E. Gavish-Regev leg.; HUJ INV-AR20589 • 1 ♂; same collection data as for preceding; HUJ INV-AR20590 • 1 ♂; same collection data as for preceding; HUJ INV-AR20591 • ♂; same collection data as for preceding; HUJ INV-AR20592 • 1 ♀; Eilon; [33.059° N, 35.224° E]; 24 Jul. 2018; I. Armiach Steinpress leg.; col. juv.; HUJ INV-AR20763 • 1 juv.; same collection data as for preceding; HUJ INV-AR20764 • 1 juv.; same collection data as for preceding; HUJ INV-AR20765 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20766 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20767 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20768 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20769 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20770 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20771 • 1 ♂; Har Eliezer; [33.044° N, 35.55° E]; Sep. 1995; HUJ INV-AR20955 • 1 ♀; Kfar HaHoresh; [32.7° N, 35.27° E]; 9 Oct. 1968; Gershoni leg.; HUJ INV-AR20679 • 1 ♂; Kfar Kisch; [32.67° N, 35.45° E]; 19 Aug. 2008; HUJ INV-AR20917 • 1 ♀; Moreshet; [32.825° N, 35.232° E]; 23 Sep. 2018; with eggsac; HUJ INV-AR20924 • 1 juv.; Mt. Meron; [32.99° N, 35.41° E]; 9 Apr. 1967; Pener leg.; sub. female; HUJ INV-AR20853 • 1 ♂; Nahal Snir; [33.235° N, 35.676° E]; 9 Jul. 1992; R. Kasher leg.; HUJ INV-AR20854 • 1 ♀; Nahal Tzippori; [32.75° N, 35.19° E]; 30 Apr. 2018; D. Ben Natan leg.; col. juv.; HUJ INV-AR20576 • 1 ♀; same collection data as for preceding; HUJ INV-AR20577 • 1 ♂; same collection data as for preceding; I. Tesler leg.; HUJ INV-AR20821 • 1 ♀; north Yiftah; [33.134° N, 35.548° E]; 9–17 Sep. 2015; E. Gavish-Regev leg.; HUJ INV-AR20633 • 1 juv.; Ramot Naftali; [33.1° N, 35.547° E]; 13 May 2014; sub. female.; HUJ INV-AR20905 • 1 ♀; Safed; [32.966° N, 35.491° E]; 2 Oct. 1967; Blondheim leg.; HUJ INV-AR20574 • 1 ♀; Yavne’el; [32.697° N, 35.5° E]; 1 Aug. 2019; Y. Zvik leg.; col. juv.; HUJ INV-AR20869 • 1 ♂; same collection data as for preceding; HUJ INV-AR20870 • 1 ♂; Yuvalim; [32.877° N, 35.27° E]; 3 Aug. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20785 • 1 ♀; same collection data as for preceding; 30 Apr. 2017; col. juv.; HUJ INV-AR20783 • 1 juv.; same collection data as for preceding; 3 Aug. 2018; HUJ INV-AR20786 • 1 ♂; same collection data as for preceding; 30 Apr. 2017; col. sub.; HUJ INV-AR20784 • 1 ♂; Zar’it; [33.085° N, 35.51° E]; 9–18 Aug. 2014; E. Gavish-Regev leg.; HUJ INV-AR20634 • 1 ♂; same collection data as for preceding; 18 Aug. 2014; HUJ INV-AR20594 • 1 ♂; Zavit cave; [33.038° N, 35.306° E]; 23 Aug. 2018; E. Gavish-Regev leg.; HUJ INV-AR20598. – Golan Heights • 1 ♀; Horvat Susita; [32.777°, 35.663° E]; 26 Jul. 2018; E. Gavish-Regev leg.; HUJ INV-AR20607 • 1 ♀; same collection data as for preceding; HUJ INV-AR20608 • ♀; same collection data as for preceding; col. juv.; HUJ INV-AR20609 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20610 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20611 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20612 • 1 ♀; same collection data as for preceding; col. sub.; HUJ INV-AR20613 • 1 juv.; same collection data as for preceding; sub. female; HUJ INV-AR20614 • 1 ♂; same collection data as for preceding; col. sub.; HUJ INV-AR20615 • 1 ♀; same collection data as for preceding; HUJ INV-AR20664 • 1 ♀; Nahal Yehudiya; [32.926° N, 35.7003° E]; 24 May 2015; B. Shacham leg.; HUJ INV-AR20567 • 1 ♀; same collection data as for preceding; [32.9221° N, 35.678° E]; 3 Jun. 2015; HUJ INV-AR20569 • 1 juv.; Odem Forest; [33.22° N, 35.75° E]; 14 Jun. 1972; P. Amitai leg.; sub. female; HUJ INV-AR20841 • 1 ♀; Qatsrin; [32.988° N, 35.677° E]; 7 Oct. 2018; I. Armiach Steinpress leg.v; HUJ INV-AR20791 • 1 ♀; same collection data as for preceding; HUJ INV-AR20792 • 1 ♀; same collection data as for preceding; HUJ INV-AR20793 • 1 ♀; same collection data as for preceding; HUJ INV-AR20794 • 1 ♀; same collection data as for preceding; HUJ INV-AR20795 • 1 ♀; same collection data as for preceding; HUJ INV-AR20796 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20797 • 1 ♀; same collection data as for preceding; HUJ INV-AR20798 • 1 ♀; same collection data as for preceding; HUJ INV-AR20799 • 1 ♀; same collection data as for preceding; HUJ INV-AR20800 • 1 ♀; same collection data as for preceding; HUJ INV-AR20801 • 1 ♀; same collection data as for preceding; HUJ INV-AR20802 • 1 ♀; same collection data as for preceding; HUJ INV-AR20803 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20804 • 1 ♀; same collection data as for preceding; HUJ INV-AR20805 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20806 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20807 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20808 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20809 • 1 ♀; same collection data as for preceding; with eggsac; HUJ INV-AR20810 • 1 ♂; Waset (Wassit); [33.139° N, 35.733° E]; 19 Jul. 1970; HUJ INV-AR20918. – Hermon • 1 juv.; Hermon; [33.3° N, 35.78° E]; 23 Jun. 2017; N. Givon leg.; HUJ INV-AR20834 • 1 juv.; same collection data as for preceding; [33.28° N, 35.75° E]; 6 Apr. 1967; P. Amitai leg.; sub. female; HUJ INV-AR20847 • 1 ♀; Hermon; [33.29° N, 35.759° E]; 1400 m a.s.l.; 2 Jun. 2017; A. Uzan leg.; col. juv.; HUJ INV-AR20549 • 1 juv.; same collection data as for preceding; [33.28° N, 35.75° E]; 6 Apr. 1971; HUJ INV-AR20949 • 1 juv.; Hermon; [33.3043° N, 35.7882° E]; 2000 m a.s.l.; 9 Sep. 1971; Lebovits leg.; dolina; HUJ INV-AR20832 • 1 juv.; Hermon (dolina near peak 2072); 23 Jun. 2017; N. Givon leg.; HUJ INV-AR20833 • 1 ♀; Hermon (near upper chairlift station); [33.306° N, 35.784° E]; 9 Jun. 2019; D. David leg.; HUJ INV-AR20583 • 1 ♀; same collection data as for preceding; [33.3061° N, 35.7851° E]; 14 Jul. 2019; EGR, MC; HUJ INV-AR20674 • 1 ♀; same collection data as for preceding; [33.304° N, 35.789° E]; 23 Jun. 2017; I.Armiach Steinpress leg.; HUJ INV-AR20758 • 1 ♀; Nabi Hazuri; [33.251° N, 35.729° E]; 24 Aug. 2018; I. Armiach Steinpress leg.; HUJ INV-AR20772 • 1 ♀; same collection data as for preceding; HUJ INV-AR20773 • 1 ♂; same collection data as for preceding; HUJ INV-AR20774 • 1 ♂; same collection data as for preceding; HUJ INV-AR20775 • 1 ♂; same collection data as for preceding; HUJ INV-AR20776. – Emeq Yizra'el • 1 ♀; Kfar Baruh Reservoir; [32.643° N, 35.218° E]; 16 Sep. 2019; I.Armiach Steinpress leg.; HUJ INV-AR20710 • 1 ♀; same collection data as for preceding; HUJ INV-AR20711 • 1 ♀; same collection data as for preceding; HUJ INV-AR20712 • 1 ♀; same collection data as for preceding; HUJ INV-AR20713 • 1 ♀; same collection data as for preceding; HUJ INV-AR20714 • 1 ♀; same collection data as for preceding; HUJ INV-AR20715 • 1 juv.; same collection data as for preceding; [32.641° N, 35.219° E]; 6 Feb. 2018; HUJ INV-AR20789 • 1 juv.; Sarid; [32.6674° N, 35.229° E]; 22 Jun. 2020; Y. Zvik leg.; sub. female; HUJ INV-AR20962. – Jordan Valley • 1 ♀; Ashdot Ya’akov; [32.66° N, 35.578° E]; 5 Aug. 1972; Zevi leg.; HUJ INV-AR20894 • 1 ♀; same collection data as for preceding; Oct. 1971; with eggsac; HUJ INV-AR20957 • 1 ♂; same collection data as for preceding; HUJ INV-AR20958 • 1 ♀; Ein Sukkot; [32.365° N, 35.547° E]; 11 May 2017; B. Shacham leg.; col. juv.; HUJ INV-AR20557 • 1 ♀; Karei Deshe; [32.862° N, 35.536° E]; 16 Sep. 2013; HUJ INV-AR20910 • 1 ♀; Maoz Haim; [32.4935° N, 35.5517° E]; 30 Jan. 1943; A. Shulov leg.; HUJ INV-AR20534 • 1 ♀; Menahemia; [32.664° N, 35.5538° E]; 22 Sep. 2019; Y. Zvik leg.; HUJ INV-AR20871 • 1 juv.; same collection data as for preceding; 24 May 2017; sub. female; HUJ INV-AR20927 • 1 ♂; Nahal Hagal; [32.631° N, 35.554° E]; 21 Jun. 2015; col. sub.; HUJ INV-AR20921 • 1 ♀; Sde Eliyahu; [32.441° N, 35.514° E]; 23 Jun. 2019; Y. Zvik leg.; col. sub.; HUJ INV-AR20872 • 1 ♀; Southern Jordan Valley; [32.2471° N, 35.5588° E]; 23Apr. 2017; B. Shacham leg.; col. juv.; HUJ INV-AR20564 • 1 juv.;same collection data as for preceding; [32.0446° N, 35.5166° E]; 24 Apr. 2017; HUJ INV-AR20566. – Judea • 1 juv.;`Ayn ad Duyuk (near Jericho); [31.8959° N, 35.4222° E]; 8 Jun. 1978; P. Amitai leg.; sub. female; HUJ INV-AR20848 • 1 ♀; Alon; [31.833° N, 35.352° E]; Jan. 2016; D. Waysman leg.; HUJ INV-AR20585 • 1 ♀; Arad; [31.26° N, 35.21° E]; 9 Dec. 2015; HUJ INV-AR20953 • 1 ♀; Arad Cemetery; [31.273° N, 35.229° E]; 31 Jul. 2018; J. Ballesteros Chaves leg.; HUJ INV-AR20822 • 1 ♀; same collection data as for preceding; HUJ INV-AR20823 • 1 ♀; same collection data as for preceding; HUJ INV-AR20824 • 1 ♀; same collection data as for preceding; HUJ INV-AR20825 • 1 ♀; same collection data as for preceding; HUJ INV-AR20826 • 1 ♂; same collection data as for preceding; HUJ INV-AR20827 • 1 ♂; same collection data as for preceding; HUJ INV-AR20828 • 1 ♂; same collection data as for preceding; HUJ INV-AR20829 • 1 ♂; same collection data as for preced, Published as part of Steinpress, Igor Armiach, Cohen, Mira, Pétillon, Julien, Chipman, Ariel D. & Gavish-Regev, Efrat, 2022, Lycosa Latreille, 1804 (Araneae, Lycosidae) of Israel, with a note on Geolycosa Montgomery, 1904, pp. 1-54 in European Journal of Taxonomy 832 (1) on pages 27-43, DOI: 10.5852/ejt.2022.832.1877, http://zenodo.org/record/6916850, {"references":["Simon E. 1876. Etudes arachnologiques. 4 e memoire. VII. Revision des especes europeennes du groupe de la Lycosa tarentula Rossi. Annales de la Societe entomologique de France (5) 6: 57 - 91.","Strand E. 1915. Dritte Mitteilung uber Spinnen aus Palastina, gesammelt von Herrn Dr J. Aharoni. Archiv fur Naturgeschichte 81 (A 2): 134 - 171.","Kulczynski W. 1911. Fragmenta Arachnologica. XVI, XVII. Bulletin international de l'Academie des Sciences de Cracovie 1911: 12 - 75.","Roewer C. F. 1955. Katalog der Araneae von 1758 bis 1940, bzw. 1954. 2. Band, Abt. a (Lycosaeformia, Dionycha [excl. Salticiformia]). 2. Band, Abt. b (Salticiformia, Cribellata) (Synonyma-Verzeichnis, Gesamtindex). Royal Belgian Institute of Natural Sciences, Brussels.","Nentwig W., Blick T., Gloor D., Jager P. & Kropf C. 2019. Tackling taxonomic redundancy in spiders: the infraspecific spider taxa described by Embrik Strand (Arachnida: Araneae). Arachnologische Mitteilungen 58: 29 - 51. https: // doi. org / 10.30963 / aramit 5809","Nadolny A. A. & Zamani A. 2020. A new species of wolf spiders of the genus Lycosa (Aranei: Lycosidae) from Iran. Zoosystematica Rossica 29 (2): 205 - 212. https: // doi. org / 10.31610 / zsr / 2020.29.2.205","Zamani A., Nadolny A. A., Esyunin S. L. & Marusik Y. M. 2021. New data on the spider fauna of Iran (Arachnida: Araneae), part VIII. Zoosystematica Rossica 30 (2): 279 - 297. https: // doi. org / 10.31610 / zsr / 2021.30.2.279","Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus differentiis, synonymis, locis. Editio decima, reformata. Holmiae. https: // doi. org / 10.5962 / bhl. title. 542","Koch C. L. 1838. Die Arachniden. C. H. Zeh'sche Buchhandlung, Nurnberg. https: // doi. org / 10.5962 / bhl. title. 43744"]}
- Published
- 2022
- Full Text
- View/download PDF
50. Lycosidae Sundevall 1833
- Author
-
Steinpress, Igor Armiach, Cohen, Mira, Pétillon, Julien, Chipman, Ariel D., and Gavish-Regev, Efrat
- Subjects
Arthropoda ,Arachnida ,Animalia ,Araneae ,Biodiversity ,Lycosidae ,Taxonomy - Abstract
Key to large lycosids (Geolycosa, Hogna, Lycosa) of Israel and Palestine 1. First eye row as wide as second eye row (PME). Second eye row narrower than half of front of the carapace. Posterior eyes arranged in trapezoid................................................................................. 2 – First eye row narrower than second eye row (PME). Second eye row wider than half of front of carapace. Posterior eyes arranged in rectangle................................................................................. 3 2. Base of epigyne septum as wide as half of length of pedicel. Terminal apophysis with prolateral spur that is longer than half of width of bulb (incl. spur)................................................................................................................... Geolycosa vultuosa (C.L. Koch, 1838) Figs 2A, 3A, 4A, 5A, 6A, 7A, 8A – Base of epigyne septum as wide as length of pedicel. Terminal apophysis with prolateral spur that is shorter than half of width of bulb (incl. spur).............................................................................................................................................................. Hogna effera (O. Pickard-Cambridge, 1872) Fig. 8F 3. Epigyne septum hammer-shaped, pedicel long. Terminal apophysis with prolateral spur......................................................................................................... Hogna (cf.) graeca (Roewer, 1951) Fig. 8E – Epigyne septum trapezoid, pedicel greatly reduced to absent. Terminal apophysis without prolateral spur........................................................................................................... Lycosa Latreille, 1804 …4 4. Ocular area less than one third of length of carapace. Tegular apophysis tip curving posteriorly at ~90°. Left spermatheca not twisting clockwise................................................................................ 5 – Ocular area longer than one third of length of carapace. Tegular apophysis tip directed retrolaterally and not curving posteriorly. Left spermatheca twisting clockwise................................................... 6 5. Crest of tegular apophysis ½ width of tegular apophysis. Conductor tip acute. Base of spermathecae parallel or subparallel, not helical...................................................... Lycosa piochardi Simon, 1876 Figs 2D, 3D, 4D, 5D, 6D, G, 7D, G, 9C–L, 10C–L, 11E–F, 12C, 13–18 – Crest of tegular apophysis>½ width of tegular apophysis. Conductor tip blunt. Base of spermathecae helical, twisting counterclockwise... Lycosa praegrandis C.L. Koch, 1836 Figs 2E, 9M, 10M, 12A (Not yet known from the southern Levant. May be present in nearby areas) 6. Tegular apophysis tip and crest of tegular apophysis distinct from one another. Septal pedicel present. Atria of epigyne visible........................................................................................................................... Lycosa hyraculus sp. nov. Figs 2C, 3C, 4C, 5C, 6C, F, 7C, F, 8C–D, 9B, 10B, 11C–D, 12C, 19 – Tegular apophysis tip indistinct from the crest and continuing line of crest of tegular apophysis........................................................ Lycosa gesserit sp. nov. Figs 2B, 3B, 4B, 5B, 6B, 7B, 8B, 12B, 20 – Septal pedicel absent. Atria of epigyne not visible........... Lycosa sp. Figs 6E, 7E, 9A, 10A, 12A–B, Published as part of Steinpress, Igor Armiach, Cohen, Mira, Pétillon, Julien, Chipman, Ariel D. & Gavish-Regev, Efrat, 2022, Lycosa Latreille, 1804 (Araneae, Lycosidae) of Israel, with a note on Geolycosa Montgomery, 1904, pp. 1-54 in European Journal of Taxonomy 832 (1) on pages 10-11, DOI: 10.5852/ejt.2022.832.1877, http://zenodo.org/record/6916850, {"references":["Koch C. L. 1838. Die Arachniden. C. H. Zeh'sche Buchhandlung, Nurnberg. https: // doi. org / 10.5962 / bhl. title. 43744","Simon E. 1876. Etudes arachnologiques. 4 e memoire. VII. Revision des especes europeennes du groupe de la Lycosa tarentula Rossi. Annales de la Societe entomologique de France (5) 6: 57 - 91.","Koch C. L. 1836. Die Arachniden. Dritter Band. C. H. Zeh'sche Buchhandlung, Nurnberg. https: // doi. org / 10.5962 / bhl. title. 43744"]}
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.