This paper focuses on solutions and strategies for conserving weight and space, reducing emissions, and leveraging data to optimize the performance of rotating equipment on floating, production, storage, and offloading (FPSO) vessels. It discusses design considerations for gas turbines in offshore applications (i.e., dry-low emissions technology, use of lightweight components, etc.) The paper also outlines a holistic digital lifecycle approach to FPSO topsides, which can help reduce capital and operating expenses, shorten project development cycles, and decrease offshore manpower requirements. For illustrative purposes, the paper discusses specific power and compression solutions that were implemented on various offshore projects in 2017 - 2018, ranging from Offshore Brazil to the Bering Sea. It outlines how the equipment configurations helped operators meet horsepower requirements and emissions targets, as well as CAPEX and OPEX objectives. Additionally, the paper discusses how digital transformation can be leveraged to optimize FPSO lifecycle performance, delivering benefits such as 4-12 week reduction in project cycle times, ~$7 million reduction in CAPEX, and $60 - $100 million reduction in OPEX over a 10-year period.