Pleun Hombrink, Peter A. van Veelen, J.H. Frederik Falkenburg, Michel G.D. Kester, Mirjam H.M. Heemskerk, Dirk M. van der Steen, Renate S. Hagedoorn, Erwin van der Pijl, Marjolein P. Schoonakker, Lorenz Jahn, and Chopie Hassan
Therapeutic reactivity of CD20-specific monoclonal antibodies (mAb) or CD19-specific chimeric antigen receptor (CAR)-transduced T cells is exerted by targeting extracellular antigens. In contrast to mAbs and CARs, T cell receptors (TCRs) recognize antigen-derived peptides that are bound to human leukocyte antigen (HLA) molecules on the cell surface. Since HLA molecules constantly sample the entire endogenous proteome of a cell, extracellular and intracellular antigens are presented and can thus be recognized by a TCR. Here, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for immunotherapy. Bob1 is highly expressed in CD19+ B cells, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and multiple myeloma (MM) and is absent in the non-B lineages including CD34+ hematopoietic progenitor cells (HPCs), T cells, fibroblasts, keratinocytes and gastrointestinal tract. Bob1 is localized intracellularly but HLA-presented Bob1-derived peptides are accessible on the cell surface to TCRs and can thus be recognized by T cells. From the HLA-presented ligandome (Mol Cell Proteomics, 2013;12:1829) we identified naturally processed Bob1-derived peptides displayed in HLA-A*0201 (HLA-A2) and in HLA-B*0702 (HLA-B7). Since auto-reactivity towards self-antigens such as Bob1 is prevented by depleting high-avidity T cells recognizing self-antigens in self-HLA, we exploited the immunogenicity of these peptides presented in allogeneic HLA. From a HLA-A2/B7-negative healthy individual we isolated T cell clone 4G11 demonstrating high sensitivity and specificity for Bob1-derived peptide Bob144 presented in HLA-B7. Bob1-dependent recognition was demonstrated by transduction of Bob1 into cell lines that otherwise lack Bob1 expression. No harmful toxicities of clone 4G11 were observed against a wide panel of Bob1-negative stimulator cells including HLA-B7-positive CD34+ HPCs, T cells, monocytes, immature and mature dendritic cells, and fibroblasts even under simulated inflamed conditions. Furthermore, stringent HLA-B7-restricted recognition was observed for clone 4G11 when tested against a stimulator panel expressing a wide range of common and rare HLA class I and II molecules. Clone 4G11 demonstrated clinical applicability by efficiently recognizing HLA-B7+ primary ALL, CLL and MCL. Furthermore, reproducible strong recognition of purified primary HLA-B7+ MM could be demonstrated. Therefore, the TCR of clone 4G11 may be used for immunotherapy by administering TCR-transduced T cells to patients suffering from B cell malignancies including multiple myeloma. Retroviral gene transfer of TCR 4G11 led to efficient cell surface expression demonstrated by binding of TCR-transduced CD8+ T cells to pMHC-tetramer composed of peptide Bob144 bound to HLA-B7. TCR-modified CD8+ T cells strongly recognized Bob1-expressing HLA-B7+ multiple myeloma cell lines U266 and UM9, and ALL cell lines. TCR-modified T cells efficiently lysed HLA-B7+ primary ALL, CLL and MCL at very low effector-to-target ratios. In addition, highly purified primary multiple myeloma samples were also readily lysed. Furthermore, TCR-transduced T cells strongly proliferated in an antigen-specific manner when stimulated with primary malignant cell samples including ALL, CLL, and MCL or MM cell lines. As expected, TCR-transduced T cells also lysed autologous primary and CD40L-stimulated B cells since these targets cells also express Bob1. In contrast, no lysis of Bob1-negative autologous primary and activated T cells, or monocytes was observed when co-cultured with TCR-transduced T cells. In summary, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for TCR-based immunotherapies of B cell malignancies. Bob1-specific T cell clone 4G11 efficiently recognized primary B cell leukemia and multiple myeloma. Gene transfer of TCR of clone 4G11 installed Bob1-reactivity and specificity onto recipient T cells shown here by cytolytic capacity and proliferation upon antigen encounter. TCR gene transfer approaches using this Bob1-specific TCR can bring novel treatment modalities and possibly curative therapy to patients with B cell malignancies including multiple myeloma. Disclosures No relevant conflicts of interest to declare.