40 results on '"Christof Buchbender"'
Search Results
2. Ionized carbon as a tracer of the assembly of interstellar clouds
- Author
-
Nicola Schneider, Lars Bonne, Sylvain Bontemps, Slawa Kabanovic, Robert Simon, Volker Ossenkopf-Okada, Christof Buchbender, Jürgen Stutzki, Marc Mertens, Oliver Ricken, Timea Csengeri, and Alexander G.G.M. Tielens
- Subjects
Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Molecular hydrogen clouds are a key component of the interstellar medium because they are the birthplaces for stars. They are embedded in atomic gas that pervades the interstellar space. However, the details of how molecular clouds assemble from and interact with the atomic gas are still largely unknown. As a result of new observations of the 158~$\mu$m line of ionized carbon CII in the Cygnus region within the FEEDBACK program on SOFIA (Stratospheric Observatory for Infrared Astronomy), we present compelling evidence that CII unveils dynamic interactions between cloud ensembles. This process is neither a head-on collision of fully molecular clouds nor a gentle merging ofonly atomic clouds. Moreover, we demonstrate that the dense molecular clouds associated with the DR21 and W75N star-forming regions and a cloud at higher velocity are embedded in atomic gas and all components interact over a large range of velocities (20 km/s). The atomic gas has a density of 100 cm$^{-3}$ and a temperature of 100 K. We conclude that the CII 158 $\mu$m line is an excellent tracer to witness the processes involved in cloud interactions and anticipate further detections of this phenomenon in other regions, Comment: Nature Astronomy in press
- Published
- 2023
- Full Text
- View/download PDF
3. Ionized carbon tracing the assembly of interstellar clouds
- Author
-
Nicola Schneider, Lars Bonne, Sylvain Bontemps, Slawa Kabanovic, Robert Simon, Volker Ossenkopf-Okada, Christof Buchbender, Jürgen Stutzki, Marc Mertens, Oliver Ricken, Timea Csengeri, and Alexander Tielens
- Abstract
Molecular hydrogen clouds are a key component of the interstellar medium because they are the birthplaces for stars. However, the details of how molecular clouds assemble and interact are still largely unknown. Thanks to new observations of the 158 micron line of ionized carbon [CII] in the Cygnus region within the FEEDBACK program on SOFIA, we present for the first time compelling evidence that [CII] unveils dynamic interactions between cloud ensembles. This process is neither a head-on collision of fully molecular clouds nor a gentle merging of only atomic clouds. Moreover, we demonstrate that the dense molecular clouds associated with the DR21 and W75N star-forming regions and a cloud at higher velocity are embedded in atomic gas and all components interact over a large range of velocities (~20 km/s). The atomic gas has a density of ~100 cm-3 and a temperature of ~100 K. We promote that this type of interaction, solely traced in [CII], is the most common process of molecular cloud formation and anticipate further detections of this phenomenon in other regions.
- Published
- 2022
- Full Text
- View/download PDF
4. The PDR structure and kinematics around the compact H ii regions S235 A and S235 C with [C ii], [13C ii], [O i], and HCO+ line profiles
- Author
-
Volker Ossenkopf-Okada, Christof Buchbender, Nicola Schneider, Rebeca Aladro, Matteo Luisi, Maria S. Kirsanova, A. M. Sobolev, M. R. Samal, Paul A. Boley, L. D. Anderson, John H. Bieging, Yoko Okada, Morten Andersen, and Ya. N. Pavlyuchenkov
- Subjects
ISM [INFRARED] ,Physics ,H II REGIONS ,KINEMATICS AND DYNAMICS [ISM] ,010308 nuclear & particles physics ,Molecular cloud ,Photodissociation ,FOS: Physical sciences ,Astronomy and Astrophysics ,RADIATIVE TRANSFER ,Kinematics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Radiative transfer ,PROFILES [LINE] ,PHOTODISSOCIATION REGION (PDR) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Optical depth ,Line (formation) - Abstract
The aim of the present work is to study structure and gas kinematics in the photodissociation regions (PDRs) around the compact HII regions S235A and S235C. We observe the [CII], [13CII] and [OI] line emission, using SOFIA/upGREAT and complement them by data of HCO+ and CO. We use the [13CII] line to measure the optical depth of the [CII] emission, and find that the [CII] line profiles are influenced by self-absorption, while the [13CII] line remains unaffected by these effects. Hence, for dense PDRs, [13CII] emission is a better tracer of gas kinematics. The optical depth of the [CII] line is up to 10 in S235A. We find an expanding motion of the [CII]-emitting layer of the PDRs into the front molecular layer in both regions. Comparison of the gas and dust columns shows that gas components visible neither in the [CII] nor in low-J CO lines may contribute to the total column across S235A. We test whether the observed properties of the PDRs match the predictions of spherical models of expanding HII region + PDR + molecular cloud. Integrated intensities of the [13CII], [CII] and [OI] lines are well-represented by the model, but the models do not reproduce the double-peaked [CII] line profiles due to an insufficient column density of C+. The model predicts that the [OI] line could be a more reliable tracer of gas kinematics, but the foreground self-absorbing material does not allow using it in the considered regions., Comment: accepted to MNRAS
- Published
- 2020
- Full Text
- View/download PDF
5. Observation of Atomic Oxygen in the Mesosphere and Thermosphere of Earth with the THz Heterodyne Spectrometer GREAT
- Author
-
Christof Buchbender, Jürgen Stutzki, Rolf Güsten, Ronan Higgins, Heiko Richter, Bernd Klein, Heinz-Wilhelm Hübers, and Helmut Wiesemeyer
- Subjects
Heterodyne ,Physics ,heterodyne ,Atmospheric models ,Spectrometer ,Terahertz radiation ,Stratospheric Observatory for Infrared Astronomy ,MLT ,Atmospheric model ,Computational physics ,atomic oxygen ,THz ,Satellite ,Thermosphere - Abstract
Atomic oxygen governs photochemistry and energy balance of the mesosphere and lower thermosphere of the Earth. Its concentration is extremely difficult to measure with remote sensing techniques since it has only few optically active transitions. Current indirect measurements involve photochemical models and the results are not always in agreement, particularly when obtained with different instruments. In addition, altitudes above 100 km are not covered by these methods. We report on direct measurements of the 4.7-THz fine-structure transition of atomic oxygen at 4.7448 THz using the German Receiver for Astronomy at Terahertz Frequencies on board the Stratospheric Observatory for Infrared Astronomy. Our measurements agree well with atmospheric models and satellite observations below 100 km.
- Published
- 2021
- Full Text
- View/download PDF
6. Observation and calibration strategies for large-scale multi-beam velocity-resolved mapping of the [CII] emission in the Orion molecular cloud
- Author
-
Rolf Güsten, S. Suri, Olivier Berné, S. Kabanovic, Mark G. Wolfire, Alexander G. G. M. Tielens, C. H. M. Pabst, Ronan Higgins, Javier R. Goicoechea, Yoko Okada, Heiko Richter, A. Parikka, Juergen Stutzki, E. Chambers, D. Teyssier, Christof Buchbender, M. Mertens, Rebeca Aladro, National Aeronautics and Space Administration (US), Universities Space Research Association (US), University of Stuttgart, German Research Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Heterodyne ,ISM: individual (Orion) ,Instrumentation: spectrometer ,ISM: structure ,Local insterstellar matter ,FOS: Physical sciences ,Context (language use) ,Instrumentation: spectrographs ,Astrophysics ,Methods: observational ,ISM: photon-dominated region (PDR) ,Radiative transfer ,observational [Methods] ,Spectral resolution ,spectrographs [Instrumentation] ,Submillimeter: ISM ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,ISM: kinematics and dynamics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Stratospheric Observatory for Infrared Astronomy ,Molecular cloud ,ISM [Submillimeter] ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,kinematics and dynamics [ISM] ,Far-infrared: ISM ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,ISM: bubbles ,Photon-dominated region ,Astrophysics - Instrumentation and Methods for Astrophysics ,Data reduction - Abstract
24 pags., 32 figs., 3 tabs., Context. The [CII] 158 μm far-infrared fine-structure line is one of the dominant cooling lines of the star-forming interstellar medium. Hence [CII] emission originates in and thus can be used to trace a range of ISM processes. Velocity-resolved large-scale mapping of [CII] in star-forming regions provides a unique perspective of the kinematics of these regions and their interactions with the exciting source of radiation. Aims. We explore the scientific applications of large-scale mapping of velocity-resolved [CII] observations. With the [CII] observations, we investigate the effect of stellar feedback on the ISM. We present the details of observation, calibration, and data reduction using a heterodyne array receiver mounted on an airborne observatory. Methods. A 1.15 square degree velocity-resolved map of the Orion molecular cloud centred on the bar region was observed using the German REceiver for Astronomy at Terahertz Frequencies (upGREAT) heterodyne receiver flying on board the Stratospheric Observatory for Infrared Astronomy. The data were acquired using the 14 pixels of the German REceiver for Astronomy at Terahertz Frequencies that were observed in an on-the-fly mapping mode. 2.4 million spectra were taken in total. These spectra were gridded into a three-dimensional cube with a spatial resolution of 14.1 arcseconds and a spectral resolution of 0.3 km s-1. Results. A square-degree [CII] map with a spectral resolution of 0.3 km s-1 is presented. The scientific potential of this data is summarized with discussion of mechanical and radiative stellar feedback, filament tracing using [CII], [CII] opacity effects, [CII] and carbon recombination lines, and [CII] interaction with the large molecular cloud. The data quality and calibration is discussed in detail, and new techniques are presented to mitigate the effects of unavoidable instrument deficiencies (e.g. baseline stability) and thus to improve the data quality. A comparison with a smaller [CII] map taken with the Herschel/Heterodyne Instrument for the Far-Infrared spectrometer is presented. Conclusions. Large-scale [CII] mapping provides new insight into the kinematics of the ISM. The interaction between massive stars and the ISM is probed through [CII] observations. Spectrally resolving the [CII] emission is necessary to probe the microphysics induced by the feedback of massive stars. We show that certain heterodyne instrument data quality issues can be resolved using a spline-based technique, and better data correction routines allow for more efficient observing strategies., This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc.(USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. This work is carried out within the Collaborative Research Centre 956, subproject [A4], funded by the Deutsche Forschungsgemeinschaft (DFG) – project ID 184018867. We thank the Spanish MICIU for funding support under grant AYA2017-85111-P.
- Published
- 2021
- Full Text
- View/download PDF
7. Characterizing the Multi-Phase Origin of [CII] Emission in M101 and NGC 6946 with Velocity Resolved Spectroscopy
- Author
-
Andrew I. Harris, Kevin V. Croxall, Mark G. Wolfire, Denise Riquelme, Christof Buchbender, Alberto D. Bolatto, Rodrigo Herrera-Camus, J. D. T. Smith, Daniel A. Dale, Jürgen Stutzki, Elizabeth Tarantino, Brent Groves, and Rebecca C. Levy
- Subjects
Physics ,Spiral galaxy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Far-infrared astronomy ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Spectroscopy ,Astrophysics::Galaxy Astrophysics - Abstract
The [CII] fine-structure transition at 158 micron is frequently the brightest far-infrared line in galaxies. Due to its low ionization potential, C+ can trace the ionized, atomic, and molecular phases of the ISM. We present velocity resolved [CII] and [NII] pointed observations from SOFIA/GREAT on ~500 pc scales in the nearby galaxies M101 and NGC 6946 and investigate the multi-phase origin of [CII] emission over a range of environments. We show that ionized gas makes a negligible contribution to the [CII] emission in these positions using [NII] observations. We spectrally decompose the [CII] emission into components associated with the molecular and atomic phases using existing CO(2-1) and HI data and show that a peak signal-to-noise ratio of 10-15 is necessary for a reliable decomposition. In general, we find that in our pointings greater than or equal to 50% of the [CII] emission arises from the atomic phase, with no strong dependence on star formation rate, metallicity, or galactocentric radius. We do find a difference between pointings in these two galaxies, where locations in NGC 6946 tend to have larger fractions of [CII] emission associated with the molecular phase than in M101. We also find a weak but consistent trend for fainter [CII] emission to exhibit a larger contribution from the atomic medium. We compute the thermal pressure of the cold neutral medium through the [CII] cooling function and find log(P_th/k)=3.8-4.6 [K cm^-3], a value slightly higher than similar determinations, likely because our observations are biased towards star-forming regions., 23 pages, 11 figures, 4 tables, accepted to The Astrophysical Journal
- Published
- 2021
8. SOFIA FEEDBACK survey: exploring the dynamics of the stellar wind driven shell of RCW 49
- Author
-
Oliver Ricken, Christof Buchbender, C. H. M. Pabst, Robert Simon, Mark G. Wolfire, A. G. G. M. Tielens, Arshia M. Jacob, R. Higgins, Rolf Güsten, R. Karim, Nicola Schneider, C. Guevara, S. Kabanovic, M. Tiwari, Marc W. Pound, and Juergen Stutzki
- Subjects
010504 meteorology & atmospheric sciences ,Infrared ,Astrophysics::High Energy Astrophysical Phenomena ,Shell (structure) ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,Momentum ,Telescope ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Star-forming regions ,Spectral resolution ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Stellar feedback ,1602, 1565 ,0105 earth and related environmental sciences ,Line (formation) ,Physics ,Astronomy and Astrophysics ,Radius ,Astrophysics - Astrophysics of Galaxies ,Wavelength ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We unveil the stellar wind driven shell of the luminous massive star-forming region of RCW 49 using SOFIA FEEDBACK observations of the [CII] 158 $\mu$m line. The complementary dataset of the $^{12}$CO and $^{13}$CO J = 3 - 2 transitions is observed by the APEX telescope and probes the dense gas toward RCW 49. Using the spatial and spectral resolution provided by the SOFIA and APEX telescopes, we disentangle the shell from a complex set of individual components of gas centered around RCW 49. We find that the shell of radius ~ 6 pc is expanding at a velocity of 13 km s$^{-1}$ toward the observer. Comparing our observed data with the ancillary data at X-Ray, infrared, sub-millimeter and radio wavelengths, we investigate the morphology of the region. The shell has a well defined eastern arc, while the western side is blown open and is venting plasma further into the west. Though the stellar cluster, which is ~ 2 Myr old gave rise to the shell, it only gained momentum relatively recently as we calculate the shell's expansion lifetime ~ 0.27 Myr, making the Wolf-Rayet star WR20a a likely candidate responsible for the shell's re-acceleration., Comment: 31 pages, 17 figures
- Published
- 2021
9. Atomic oxygen in the mesosphere and lower thermosphere measured by terahertz heterodyne spectroscopy
- Author
-
Ronan Higgins, Heiko Richter, Rolf Güsten, Heinz-Wilhelm Hübers, Helmut Wiesemeyer, Christof Buchbender, Jürgen Stutzki, and Bernd Klein
- Subjects
Heterodyne ,Materials science ,Terahertz radiation ,Atomic oxygen ,Thermosphere ,Atomic physics ,Spectroscopy - Abstract
Atomic oxygen is a main component of the mesosphere and lower thermosphere (MLT). The photochemistry and the energy balance of the MLT are governed by atomic oxygen. In addition, it is a tracer for dynamical motions in the MLT. It is difficult to measure with remote sensing techniques. Concentrations can be inferred indirectly from the oxygen air glow or from observations of OH, which is involved in photochemical processes related to atomic oxygen. Such measurements have been performed with several satellite instruments such as SCIAMACHY, SABER, WINDII and OSIRIS. However, the methods are indirect and rely on photochemical models and assumptions such as quenching rates, radiative lifetimes, and reaction coefficients. The results are not always in agreement, particularly when obtained with different instruments.We have explored an alternative approach, namely the observation of the 3P1 → 3P2 fine-structure transition of atomic oxygen at 4.7 THz (63 µm) using the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on board of SOFIA, the Stratospheric Observatory for Infrared Astronomy. GREAT is a heterodyne spectrometer providing high sensitivity and high spectral resolution as low as 76 kHz. This method enables the direct measurement without involving photochemical models to derive the atomic oxygen concentration. The night-time measurements have been performed during a SOFIA flight along the west coast of the US. These are the first measurements which resolve the line shape of the 4.7-THz transition. From the spectra the concentration profiles and radiances of atomic oxygen were derived with a radiative transfer model. The observed radiances range from 1.5 to 2.2 nW cm-2 sr-1 and the the altitude profiles agree within the measurement uncertainty with SABER data and the NRLMSISE-00 model [1].In conclusion, THz heterodyne spectroscopy is a powerful method to measure atomic oxygen in the MLT. With the current progress in THz technology balloon-borne and space-borne 4.7-THz heterodyne spectrometers become feasible [2, 3]. Combining such a THz spectrometer with optical instruments similar to SABER or SCIAMACHY will be even more advantageous for the determination of atomic oxygen in the MLT.[1] H. Richter et al., Direct measurements of atomic oxygen in the mesosphere and lower thermosphere using terahertz heterodyne spectroscopy, accepted for publication in Communications Earth & Environment (2021).[2] M. Wienold et al, A balloon-borne 4.75 THz-heterodyne receiver to probe atomic oxygen in the atmosphere, to appear in: Proceedings of the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Buffalo, NY, 2020).[3] S. P. Rea et al., The low-cost upper-atmosphere sounder (LOCUS), Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015).
- Published
- 2021
- Full Text
- View/download PDF
10. Direct measurements of atomic oxygen in the mesosphere and lower thermosphere using terahertz heterodyne spectroscopy
- Author
-
Bernd Klein, Helmut Wiesemeyer, Ronan Higgins, Heinz-Wilhelm Hübers, Rolf Güsten, Heiko Richter, Christof Buchbender, and Jürgen Stutzki
- Subjects
Heterodyne ,Materials science ,010504 meteorology & atmospheric sciences ,Spectrometer ,Atmospheric models ,Terahertz radiation ,Stratospheric Observatory for Infrared Astronomy ,heterodyne spectroscopy ,MLT ,01 natural sciences ,Computational physics ,atomic oxygen ,terahertz ,Atmosphere ,Earth atmosphere ,Physics::Space Physics ,0103 physical sciences ,General Earth and Planetary Sciences ,Terahertz- und Laserspektroskopie ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Spectroscopy ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
Atomic oxygen is a main component of the mesosphere and lower thermosphere of the Earth, where it governs photochemistry and energy balance and is a tracer for dynamical motions. However, its concentration is extremely difficult to measure with remote sensing techniques since atomic oxygen has few optically active transitions. Current indirect methods involve photochemical models and the results are not always in agreement, particularly when obtained with different instruments. Here we present direct measurements—independent of photochemical models—of the ground state 3P1 → 3P2 fine-structure transition of atomic oxygen at 4.7448 THz using the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). We find that our measurements of the concentration of atomic oxygen agree well with atmospheric models informed by satellite observations. We suggest that this direct observation method may be more accurate than existing indirect methods that rely on photochemical models. Atomic oxygen concentrations in the upper atmosphere can be measured directly with an airborne terahertz heterodyne spectrometer. This approach is probably more accurate than indirect estimates from photochemical models, according to a comparison of the two methods.
- Published
- 2021
- Full Text
- View/download PDF
11. Stellar feedback and triggered star formation in the prototypical bubble RCW 120
- Author
-
Karl Jacobs, Nicola Schneider, C. Guevara, Jürgen Stutzki, L. D. Anderson, Dylan J. Linville, Matteo Luisi, Markus Röllig, Alexander G. G. M. Tielens, Leisa K. Townsley, Christof Buchbender, M. Tiwari, Annie Zavagno, D. Russeil, Rolf Güsten, M. Justen, Bernd Klein, Patrick S. Broos, Robert Simon, S. Kabanovic, Rheinische Friedrich-Wilhelms-Universität Bonn, Centre de recherche sur les civilisations de l'Asie Orientale (CRCAO), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Physikalisches Institut [Köln], Universität zu Köln = University of Cologne, I. Physikalisches Institut [Köln], ANR-16-CE92-0035,GENESIS,GENeration et Evolution des Structures du milieu InterStellaire(2016), Leiden Observatory [Leiden], Universiteit Leiden, West Virginia University [Morgantown], Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], and Université Catholique de Louvain = Catholic University of Louvain (UCL)
- Subjects
endocrine system ,Astronomy ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Negative feedback ,0103 physical sciences ,Galaxy formation and evolution ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Research Articles ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Positive feedback ,Physics ,Multidisciplinary ,010308 nuclear & particles physics ,Stratospheric Observatory for Infrared Astronomy ,Star formation ,Molecular cloud ,fungi ,food and beverages ,SciAdv r-articles ,Astrophysics - Astrophysics of Galaxies ,Stars ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,Research Article - Abstract
Radiative and mechanical feedback of massive stars regulates star formation and galaxy evolution. Positive feedback triggers the creation of new stars by collecting dense shells of gas, while negative feedback disrupts star formation by shredding molecular clouds. Although key to understanding star formation, their relative importance is unknown. Here, we report velocity-resolved observations from the SOFIA (Stratospheric Observatory for Infrared Astronomy) legacy program FEEDBACK of the massive star-forming region RCW 120 in the [CII] 1.9-THz fine-structure line, revealing a gas shell expanding at 15 km/s. Complementary APEX (Atacama Pathfinder Experiment) CO J=3-2 345-GHz observations exhibit a ring structure of molecular gas, fragmented into clumps that are actively forming stars. Our observations demonstrate that triggered star formation can occur on much shorter time scales than hitherto thought (, 8 Pages, 4 Figures, 1 Table (+16 Page Supplementary Materials with 10 Figures). Published in Science Advances on April 9th, 2021, with free open access to the online article available at https://advances.sciencemag.org/content/7/15/eabe9511
- Published
- 2021
- Full Text
- View/download PDF
12. FEEDBACK: a SOFIA Legacy Program to Study Stellar Feedback in Regions of Massive Star Formation
- Author
-
Aggm Tielens, C. H. M. Pabst, Henrik Beuther, Nicolas Reyes, Urs U. Graf, O. Ricken, Annie Zavagno, Heiko Richter, Karl M. Menten, Bhaswati Mookerjea, Helmut Wiesemeyer, R. Simon, M. Justen, Mark Wolfire, S. Kabanovic, L. D. Anderson, Antoine Gusdorf, Matteo Luisi, L. Bonne, Ronan Higgins, Christof Buchbender, K. Jacobs, John Bally, Friedrich Wyrowski, Yoko Okada, Markus Röllig, Timea Csengeri, R. Karim, M. Mertens, G. Sandell, Marc W. Pound, Volker Ossenkopf-Okada, J. Stutzki, M. Tiwari, E. Chambers, D. Russeil, Álvaro Sánchez-Monge, Rolf Güsten, Nicola Schneider, Sylvain Bontemps, C. Guevara, Universität zu Köln, FORMATION STELLAIRE 2020, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), and Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,H II region ,010504 meteorology & atmospheric sciences ,Star formation ,Molecular cloud ,Giant molecular clouds – Astronomical instrumentation – H II regions – Interstellar clouds – Interstellar filaments – Molecular clouds – Observatories – Stellar wind bubbles – Submillimeter astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Interstellar medium ,Stars ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,O-type star ,Line (formation) - Abstract
FEEDBACK is a SOFIA (Stratospheric Observatory for Infrared Astronomy) legacy program dedicated to study the interaction of massive stars with their environment. It performs a survey of 11 galactic high mass star-forming regions in the 158 μm (1.9 THz) line of [C II] and the 63 μm (4.7 THz) line of [O I]. We employ the 14 pixel Low Frequency Array and 7 pixel High Frequency Array upGREAT heterodyne instrument to spectrally resolve (0.24 MHz) these far-infrared fine structure lines. With a total observing time of 96h, we will cover ∼6700 arcmin2 at 14 1) angular resolution for the [C II] line and 6 3 for the [O I] line. The observations started in spring 2019 (Cycle 7). Our aim is to understand the dynamics in regions dominated by different feedback processes from massive stars such as stellar winds, thermal expansion, and radiation pressure, and to quantify the mechanical energy injection and radiative heating efficiency. This is an important science topic because feedback of massive stars on their environment regulates the physical conditions and sets the emission characteristics in the interstellar medium (ISM), influences the star formation activity through molecular cloud dissolution and compression processes, and drives the evolution of the ISM in galaxies. The [C II] line provides the kinematics of the gas and is one of the dominant cooling lines of gas for low to moderate densities and UV fields. The [O I] line traces warm and high-density gas, excited in photodissociations regions with a strong UV field or by shocks. The source sample spans a broad range in stellar characteristics from single OB stars, to small groups of O stars, to rich young stellar clusters, to ministarburst complexes. It contains well-known targets such as Aquila, the Cygnus X region, M16, M17, NGC7538, NGC6334, Vela, and W43 as well as a selection of H II region bubbles, namely RCW49, RCW79, and RCW120. These [C II] maps, together with the less explored [O I] 63 μm line, provide an outstanding database for the community. They will be made publically available and will trigger further studies and follow-up observations.
- Published
- 2020
- Full Text
- View/download PDF
13. Globules and pillars in Cygnus X
- Author
-
N. Rothbart, Z. Makai, M. Roellig, F. Comerón, Edward Polehampton, Rolf Guesten, Christof Buchbender, Nicola Schneider, Yoko Okada, A. Parikka, Sylvain Bontemps, A. A. Djupvik, R. Simon, and Glenn J. White
- Subjects
Physics ,Be star ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Spire ,Stars ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Far infrared spectroscopy ,Cluster (physics) ,ISM: atoms – ISM: clouds – HII regions – photon-dominated region – ISM: molecules – ISM: kinematics and dynamics ,Line (formation) - Abstract
IRAS 20319+3958 in Cygnus X South is a rare example of a free-floating globule (mass ~240 Msun, length ~1.5 pc) with an internal HII region created by the stellar feedback of embedded intermediate-mass stars, in particular, one Herbig Be star. Here, we present a Herschel/HIFI CII 158 mu map of the whole globule and a large set of other FIR lines (mid-to high-J CO lines observed with Herschel/PACS and SPIRE, the OI 63 mu line and the CO 16-15 line observed with upGREAT on SOFIA), covering the globule head and partly a position in the tail. The CII map revealed that the whole globule is probably rotating. Highly collimated, high-velocity CII emission is detected close to the Herbig Be star. We performed a PDR analysis using the KOSMA-tau PDR code for one position in the head and one in the tail. The observed FIR lines in the head can be reproduced with a two-component model: an extended, non-clumpy outer PDR shell and a clumpy, dense, and thin inner PDR layer, representing the interface between the HII region cavity and the external PDR. The modelled internal UV field of ~2500 Go is similar to what we obtained from the Herschel FIR fluxes, but lower than what we estimated from the census of the embedded stars. External illumination from the ~30 pc distant Cyg OB2 cluster, producing an UV field of ~150-600 G0 as an upper limit, is responsible for most of the CII emission. For the tail, we modelled the emission with a non-clumpy component, exposed to a UV-field of around 140 Go., accepted by Astronomy & Astrophysics
- Published
- 2021
- Full Text
- View/download PDF
14. The Chemistry of Chlorine-bearing Species in the Diffuse Interstellar Medium, and New SOFIA/GREAT* Observations of HCl+
- Author
-
David A. Neufeld, Harshal Gupta, Peter Schilke, Arshia M. Jacob, Helmut Wiesemeyer, Rolf Güsten, Maryvonne Gerin, Mark J. Wolfire, Christof Buchbender, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
Far infrared astronomy ,Astrochemistry ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,Ion ,0103 physical sciences ,Chlorine ,[NLIN]Nonlinear Sciences [physics] ,Continuum (set theory) ,Absorption (logic) ,010303 astronomy & astrophysics ,Dissociative recombination ,0105 earth and related environmental sciences ,Physics ,Polyatomic ion ,Astronomy and Astrophysics ,Interstellar molecules ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,chemistry ,Interstellar absorption ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Diffuse interstellar clouds ,Atomic physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl$^+$ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the $^2\Pi_{3/2}\, J = 5/2 - 3/2$ transition of HCl$^+$ near 1444 GHz toward the bright THz continuum source W49N. We detected absorption by diffuse foreground gas unassociated with the background source, and were able to thereby measure the distribution of HCl$^+$ along the sight-line. We interpreted the observational data using an updated version of an astrochemical model used previously in a theoretical study of Cl-bearing interstellar molecules. The abundance of HCl$^+$ was found to be almost constant relative to the related H$_2$Cl$^+$ ion, but the observed $n({\rm H_2Cl^+})/n({\rm HCl^+})$ abundance ratio exceeds the predictions of our astrochemical model by an order-of-magnitude. This discrepancy suggests that the rate of the primary destruction process for ${\rm H_2Cl^+}$, dissociative recombination, has been significantly overestimated. For HCl$^+$, the model predictions can provide a satisfactory fit to the observed column densities along the W49N sight-line while simultaneously accounting for the ${\rm OH^+}$ and ${\rm H_2O^+}$ column densities., Comment: 34 pages. 8 figures. Accepted for publication in the Astrophysical Journal
- Published
- 2021
- Full Text
- View/download PDF
15. A SOFIA Survey of [CII] in the galaxy M51 II. [CII] and CO kinematics across spiral arms
- Author
-
Christian Fischer, Jorge L. Pineda, Ralf S. Klessen, Paul F. Goldsmith, Simon C. O. Glover, Jürgen Stutzki, Robin G. Treß, Rowan J. Smith, Christof Buchbender, Bhaswati Mookerjea, Jin Koda, Monika Ziebart, and Carsten Kramer
- Subjects
Physics ,Spiral galaxy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Kinematics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Interstellar medium ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present the first complete, velocity-resolved [CII] 158um image of the M51 grand-design spiral galaxy, observed with the upGREAT instrument on SOFIA. [CII] is an important tracer of various phases of the interstellar medium (ISM), including ionized gas, neutral atomic, and diffuse molecular regions. We combine the [CII] data with HI, CO, 24um dust continuum, FUV, and near-infrared K-band observations to study the evolution of the ISM across M51's spiral arms in both position-position, and position-velocity space. Our data show strong velocity gradients in HI, 12CO, and [CII] at the locations of stellar arms (traced by K--band data) with a clear offset in position-velocity space between upstream molecular gas (traced by 12CO) and downstream star formation (traced by [CII]). We compare the observed position--velocity maps across spiral arms with synthetic observations from numerical simulations of galaxies with both dynamical and quasi-stationary steady spiral arms that predict both tangential and radial velocities at the location of spiral arms. We find that our observations, based on the observed velocity gradients and associated offset between CO and [CII], are consistent with the presence of shocks in spiral arms in the inner parts of M51 and in the arm connecting the companion galaxy, M51b, in the outer parts of M51., Comment: 20 pages, 14 figures, Accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
16. Molecular globules in the Veil bubble of Orion: IRAM 30 m 12CO, 13CO, and C18O (2-1) expanded maps of Orion A
- Author
-
S. Suri, S. Kabanovic, C. Kramer, Nuria Marcelino, Alvaro Hacar, Aggm Tielens, C. H. M. Pabst, Ronan Higgins, Javier R. Goicoechea, D. Teyssier, S. Cuadrado, Olivier Berné, Mark G. Wolfire, J. Stutzki, M. G. Santa-Maria, Christof Buchbender, National Aeronautics and Space Administration (US), University of Stuttgart, Ames Research Center, and Ministerio de Ciencia, Innovación y Universidades (España)
- Subjects
HII regions ,Young stellar object ,Shell (structure) ,FOS: Physical sciences ,Astrophysics ,medicine.disease_cause ,7. Clean energy ,01 natural sciences ,ISM: clouds ,0103 physical sciences ,ISM [Galaxies] ,Cluster (physics) ,medicine ,010303 astronomy & astrophysics ,Physics ,ISM: individual objects: Orion ,010308 nuclear & particles physics ,Star formation ,Molecular cloud ,Local standard of rest ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,bubbles [ISM] ,Stars ,Galaxies: ISM ,individual objects: Orion [ISM] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,ISM: bubbles ,clouds [ISM] ,Ultraviolet - Abstract
18 pags., 21 figs., 5 tabs, 1 app., Strong winds and ultraviolet (UV) radiation from O-type stars disrupt and ionize their molecular core birthplaces, sweeping up material into parsec-size shells. Owing to dissociation by starlight, the thinnest shells are expected to host low molecular abundances and therefore little star formation. Here, we expand previous maps made with observations using the IRAM 30 m telescope (at 11″ ≃ 4500 AU resolution) and present square-degree 12CO and 13CO (J = 2-1) maps of the wind-driven "Veil bubble"that surrounds the Trapezium cluster and its natal Orion molecular core (OMC). Although widespread and extended CO emission is largely absent from the Veil, we show that several CO "globules"exist that are blueshifted in velocity with respect to OMC and are embedded in the [C » II] 158 μm-bright shell that confines the bubble. This includes the first detection of quiescent CO at negative local standard of rest velocities in Orion. Given the harsh UV irradiation conditions in this translucent material, the detection of CO globules is surprising. These globules are small (Rg = 7100 AU), not massive (Mg = 0.3 M⊙ ), and are moderately dense: nH = 4 × 104 cm-3 (median values). They are confined by the external pressure of the shell, Pext∕ k ≳ 107 cm-3 K, and are likely magnetically supported. They are either transient objects formed by instabilities or have detached from pre-existing molecular structures, sculpted by the passing shock associated with the expanding shell and by UV radiation from the Trapezium. Some represent the first stages in the formation of small pillars, others of isolated small globules. Although their masses (Mg, We warmly thank the operators, AoDs, and chefs at the IRAM 30 m telescope for their support while the CO observations were conducted. This work is also based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NNA17BF53C, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. We acknowledge the work, during the C+ upGREAT square degree survey of Orion, of the USRA and NASA staff of the Armstrong Flight Research Center in Palmdale, the Ames Research Center in Mountain View (California), and the Deutsches SOFIA Institut. We thank the Spanish MICIU for funding support under grant AYA2017-85111-P. Research on the ISM at Leiden Observatory is supported through a Spinoza award.
- Published
- 2020
17. Dense gas formation in the Musca filament due to the dissipation of a supersonic converging flow★
- Author
-
M. Steinke, Nicola Schneider, L. Bonne, Rolf Güsten, Sylvain Bontemps, Siobhán Clarke, Christof Buchbender, Timea Csengeri, S. Kabanovic, R. Simon, Antoine Gusdorf, A. Lehmann, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Department of Otolaryngology - Head and Neck Surgery, Department of Medecine [Montréal], McGill University = Université McGill [Montréal, Canada]-McGill University = Université McGill [Montréal, Canada], Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Division for Submm Technologies, Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE92-0035,GENESIS,GENeration et Evolution des Structures du milieu InterStellaire(2016)
- Subjects
Shock wave ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Photodissociation region ,01 natural sciences ,Spectral line ,Protein filament ,0103 physical sciences ,evolution ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Physics ,ISM: kinematics and dynamics ,ISM: individual objects: Musca ,stars: formation ,Shock (fluid dynamics) ,Accretion (meteorology) ,010308 nuclear & particles physics ,turbulence ,Astronomy and Astrophysics ,shock waves ,Astrophysics - Astrophysics of Galaxies ,3. Good health ,Interstellar medium ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Observations with the Herschel Space Telescope have established that most of the star forming gas is organised in interstellar filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the $^{12}$CO(4-3), $^{12}$CO(3-2), and various CO(2-1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C II] line at 158 $\mu$m and the [O I] line at 63 $\mu$m, observed with the upGREAT receiver on SOFIA, as well as a weak [C I] 609 $\mu$m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures., Comment: 16 pages, 17 figures
- Published
- 2020
- Full Text
- View/download PDF
18. The dense warm ionized medium in the inner Galaxy
- Author
-
Christof Buchbender, E. T. Chambers, William D. Langer, Jorge L. Pineda, Matteo Luisi, Paul F. Goldsmith, M. Justen, Denise Riquelme, and L. D. Anderson
- Subjects
Physics ,Proton ,010308 nuclear & particles physics ,Milky Way ,Green Bank Telescope ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,7. Clean energy ,01 natural sciences ,Galaxy ,Interstellar medium ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Ionization ,Extreme ultraviolet ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact HII regions suggests that there is a major gap in our understanding of the interstellar gas. Here we investigate the properties of the dense warm ionized medium (D-WIM) in the Milky Way using spectrally resolved SOFIA GREAT [NII] 205 micron line emission and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by Herschel PACS [NII] 122 micron data, and spectrally resolved 12CO. We observed eight lines of sight in the 20deg 50% of the observed [CII] intensity along these LOS. The kinetic temperatures we derive are too low to explain the presence of N+ resulting from electron collisional ionization and/or proton charge transfer of atomic nitrogen. Rather, these regions most likely are ionized by extreme ultraviolet radiation., Comment: 16 pages, 10 figures
- Published
- 2021
- Full Text
- View/download PDF
19. Stellar Feedback on the Earliest Stage of Massive Star Formation
- Author
-
Mélanie Chevance, Min-Young Lee, Margaret Meixner, A. Parikka, Christof Buchbender, O. Nayak, J. Stutzki, Toshikazu Onishi, Yasuo Fukui, and Yoko Okada
- Subjects
Physics ,Space and Planetary Science ,Star formation ,Stage (stratigraphy) ,Astronomy ,Protostar ,Astronomy and Astrophysics - Abstract
We report SOFIA/GREAT observations of high-J CO lines and [C ii] observations of the super star cluster candidate H72.97-69.39 in the Large Magellanic Cloud (LMC), which is in its very early formation stage. We use our observations to determine if shocks are heating the gas or if photon-dominated regions (PDRs) are being heated by local far-UV radiation. We use a PDR model and a shock model to determine whether the CO and [C ii] lines arise from PDRs or shocks. We can reproduce the observed high-J CO and [C ii] emission with a clumpy PDR model with the following properties: a density of 104.7 cm−3, a mass of 104 M ⊙, and UV radiation of 103.5 in units of Draine field. Comparison with the ALMA beam-filling factor suggests a higher density within the uncertainty of the fit. We find the lower-limit [C ii]/total infrared (TIR) ratio (ϵ) traced by [C ii]/TIR to be 0.026%, lower than other known young star-forming regions in the LMC. Our shock models may explain the CO (16−15) and CO (11−10) emission lines with shock velocity of 8–11 km s−1, pre-shock density of 104–105 cm−3, and G UV = 0 in units of Draine field. However, the [C ii] line emission cannot be explained by a shock model, thus it is originating in a different gas component. Observations of [O i] 63 μm predicted to be 1.1 × 10−13 W m−2 by PDR models and 7.8 × 10−15 W m−2 by shock models will help distinguish between the PDR and shock scenarios.
- Published
- 2021
- Full Text
- View/download PDF
20. Gas and dust cooling along the major axis of M 33 (HerM33es)
- Author
-
Paul van der Werf, Thomas Nikola, S. Anderl, Jonathan Braine, Markus Röllig, Frank P. Israel, Karl Schuster, Francoise Combes, Christof Buchbender, Emmanuel M. Xilouris, I. Hermelo, Martina C. Wiedner, Monica Relaño, Frank Bertoldi, Christian Henkel, Floris van der Tak, Fatemeh Tabatabaei, Carsten Kramer, Simon Verley, Médéric Boquien, Ministerio de Economía y Competitividad (España), European Commission, Junta de Andalucía, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Plateforme Génomique de l'IBENS, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut für Physik (Institut für Physik), Universität Potsdam, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Dpto. Fisica Teorica y del Cosmos, Universidad de Granada (UGR), Physikalisches Institut [Köln], Universität zu Köln, Federal Institute for Geosciences and Natural Resources (BGR), SRON Netherlands Institute for Space Research (SRON), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), National Observatory of Athens (NOA), Astronomy, Institut de biologie de l'ENS Paris (IBENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Galaxies: individual: M33 ,Infrared ,ISM [Infrared] ,Continuum (design consultancy) ,FOS: Physical sciences ,Context (language use) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,7. Clean energy ,individual: M33 [Galaxies] ,galaxies [Infrared] ,ISM [Galaxies] ,0103 physical sciences ,Absorption (electromagnetic radiation) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Infrared: ISM ,Luminous infrared galaxy ,Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,individual:M33 [Galaxies] ,Infrared: galaxies ,Astrophysics - Astrophysics of Galaxies ,galaxies: individual: M 33 ,Interstellar medium ,Galaxies: ISM ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Context. M 33 is a gas rich spiral galaxy of the Local Group. Its vicinity allows us to study its interstellar medium (ISM) on linear scales corresponding to the sizes of individual giant molecular clouds. Aims. We investigate the relationship between the two major gas cooling lines and the total infrared (TIR) dust continuum. Methods. We mapped the emission of gas and dust in M 33 using the far-infrared lines of [C ii] and [O i](63 µm) and the total infrared continuum. The line maps were observed with the PACS spectrometer on board the Herschel Space Observatory. These maps have 50 pc resolution and form a ∼370 pc wide stripe along its major axis covering the sites of bright H ii regions, but also more quiescent arm and inter-arm regions from the southern arm at 2 kpc galacto-centric distance to the south out to 5.7 kpc distance to the north. Full-galaxy maps of the continuum emission at 24 µm from Spitzer/MIPS, and at 70 µm, 100 µm, and 160 µm from Herschel/PACS were combined to obtain a map of the TIR. Results. TIR and [C ii] intensities are correlated over more than two orders of magnitude. The range of TIR translates to a range of far ultraviolet (FUV) emission of G0,obs ∼ 2 to 200 in units of the average Galactic radiation field. The binned [C ii]/TIR ratio drops with rising TIR, with large, but decreasing scatter. The contribution of the cold neutral medium to the [C ii] emission, as estimated from VLA H i data, is on average only 10%. Fits of modified black bodies to the continuum emission were used to estimate dust mass surface densities and total gas column densities. A correction for possible foreground absorption by cold gas was applied to the [O i] data before comparing it with models of photon dominated regions. Most of the ratios of [C ii]/[O i] and ([C ii]+[O i])/TIR are consistent with two model solutions. The median ratios are consistent with one solution at n ∼ 2 × 102 cm−3 , G0 ∼ 60, and a second low-FUV solution at n ∼ 104 cm−3 , G0 ∼ 1.5. Conclusions. The bulk of the gas along the lines-of-sight is represented by a low-density, high-FUV phase with low beam filling factors ∼1. A fraction of the gas may, however, be represented by the second solution., Spanish Ministerio de Economia y Competitividad AYA2014-53506-P AYA2017-84897-P, Junta de Andalucia FQM108, Junta de Andalucia, European Union (EU) SOMM17/6105/UGR, Spanish Ministry of Economy and Competitiveness (MINECO) AYA2016-76219-P, European Union (EU)
- Published
- 2020
- Full Text
- View/download PDF
21. A SOFIA Survey of [CII] in the galaxy M51 I. [CII] as a tracer of Star Formation
- Author
-
Ralf S. Klessen, Simon C. O. Glover, Jin Koda, Jorge L. Pineda, Carsten Kramer, Maria Kapala, Rowan J. Smith, Bhaswati Mookerjea, Paul F. Goldsmith, Nick Scoville, Christof Buchbender, Monika Ziebart, Karin Sandstrom, Christian Fischer, and Juergen Stutzki
- Subjects
Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Star formation ,Stratospheric Observatory for Infrared Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Center (category theory) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Grand design spiral galaxy ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Computer Science::Computational Geometry ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Galaxy ,Far infrared ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
We present a [CII] 158um map of the entire M51 (including M51b) grand--design spiral galaxy observed with the FIFI-LS instrument on SOFIA. We compare the [CII] emission with the total far--infrared (TIR) intensity and star formation rate(SFR) surface density maps (derived using H_alpha and 24um emission) to study the relationship between [CII] and the star formation activity in a variety of environments within M51 on scales of 16" corresponding to ~660 pc. We find that [CII] and the SFR surface density are well correlated in the central, spiral arm, and inter-arm regions. The correlation is in good agreement with that found for a larger sample of nearby galaxies at kpc scales. We find that the SFR, and [CII] and TIR luminosities in M51 are dominated by the extended emission in M51's disk. The companion galaxy M51b, however, shows a deficit of [CII] emission compared with the TIR emission and SFR surface density, with [CII] emission detected only in the S-W part of this galaxy. The [CII] deficit is associated with an enhanced dust temperature in this galaxy. We interpret the faint [CII] emission in M51b to be a result of suppressed star formation in this galaxy, while the bright mid- and far-infrared emission, which drive the TIR and SFR values, are powered by other mechanisms. A similar but less pronounced effect is seen at the location of the black hole in M51's center. The observed [CII] deficit in M51b suggests that this galaxy is a valuable laboratory to study the origin of the apparent [CII] deficit observed in ultra-luminous galaxies., Comment: 10 pages, 4 figures, Accepted for publication in Apj Letters
- Published
- 2018
- Full Text
- View/download PDF
22. The upGREAT Dual Frequency Heterodyne Arrays for SOFIA
- Author
-
O. Ricken, Nicola Schneider, Paul Fusco, Heinz-Wilhelm Hübers, Christophe Risacher, Rolf Güsten, Heiko Richter, Timea Csengeri, J. Stutzk, Ronan Higgins, A. Bell, Urs U. Graf, Nicolas Reyes, A. Parikka, Martin Wienold, Rebeca Aladro, Helmut Wiesemeyer, Yoko Okada, Bernd Klein, P. Pütz, Stefan W. Rosner, Christof Buchbender, R. Simon, M. Mertens, Monika Ziebart, M. Justen, Denise Riquelme, K. Jacobs, Nick Rothbart, B. Wohler, Cornelia E. Honingh, C. Duran, and D. Büchel
- Subjects
Terahertz radiation ,Terahertz ,FOS: Physical sciences ,Spektroskopie ,02 engineering and technology ,01 natural sciences ,law.invention ,Telescope ,Heterodyn EdW ,Optics ,law ,Observatory ,Technik für Weltraumsysteme ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Instrumentation ,Physics ,THz Lokaloszillator ,Spectrometer ,business.industry ,Astronomy and Astrophysics ,Astronomie ,Cryocooler ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Dual-polarization interferometry ,Dichroic filter ,ddc:520 ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business ,SOFIA - Abstract
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R > 10^7) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2x7 pixels (dual polarization), and presently covers the 1.83-2.06 THz frequency range, which allows to observe the [CII] and [OI] lines at 158 um and 145 um wavelengths. The high frequency array (HFA) covers the [OI] line at 63 um and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7 THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA's instrument suite since observing cycle 6., Accepted to the Journal of Astronomical Instrumentation (SOFIA Special Edition) on 12th November 2018
- Published
- 2018
- Full Text
- View/download PDF
23. Performance and Science Opportunities with the upGREAT Spectrometer onboard of SOFIA
- Author
-
Rolf Güsten, Stefan Heyminck, Urs U. Graf, Timea Csengeri, T. Klein, Karl Jacobs, P. Pütz, E. T. Chambers, D. Büchel, Heiko Richter, Nicolas Reyes, Heinz-Wilhelm Hübers, Helmut Wiesemeyer, R. Simon, Christof Buchbender, Cornelia E. Honingh, Bernd Klein, O. Ricken, Denise Riquelme, J. Stutzki, Christian Leinz, Yoko Okada, A. Bell, M. Requena, Achim Wunsch, and Christophe Risacher
- Subjects
Heterodyne ,Physics ,Spectrometer ,010308 nuclear & particles physics ,Hexagonal crystal system ,business.industry ,General Engineering ,Astronomy and Astrophysics ,01 natural sciences ,Space and Planetary Science ,Observatory ,0103 physical sciences ,Aerospace engineering ,business ,010303 astronomy & astrophysics - Abstract
The high-resolution far-infrared spectrometer GREAT is now routinely operated onboard the NASA/DLR airborne observatory SOFIA. The instrument runs simultaneously two receivers in science-selected frequency windows between 1.25 and 4.7 THz. Because the instrument has seen major upgrades during the last years we will briefly review the present instrument configurations and performances. The extension of GREAT to mid-size heterodyne arrays is under way. The commissioning of our low-frequency array, operating 2 × 7 HEB mixers at 1.9 THz in two polarizations in a hexagonal configuration, was successfully concluded in 2015, and will be available for community projects during SOFIA's cycle 4. A second (high-frequency) array with 7 pixels aiming at the frequency of the [OI] fine-structure line at 4.7 THz is under construction, with commissioning planned for late 2016. In more than 60 successful science flights, most of them performing community projects, a wide variety of astrophysical questions has been addressed, with particular interest in velocity-resolved spectroscopy of the most important ISM cooling lines accessible to GREAT, namely the [CII] and [OI] atomic fine-structure and the mid-J CO rotational transitions. On the example of a few selected science cases the performance of the instrument will be illustrated, and the science opportunities with the instrument in its current and near-future configurations will be addressed.
- Published
- 2015
- Full Text
- View/download PDF
24. COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - I. Relations between H2, H i, stellar content and structural properties
- Author
-
Riccardo Giovanelli, A. Sievers, Jian Fu, Javier Graciá-Carpio, Mark R. Krumholz, Jing Wang, Jenna Lemonias, David Schiminovich, Timothy M. Heckman, Guinevere Kauffmann, Nemesio Rodriguez-Fernandez, Amélie Saintonge, Luca Cortese, Christof Buchbender, Qi Guo, Sean M. Moran, Karl Schuster, Linda J. Tacconi, Martha P. Haynes, Carsten Kramer, Barbara Catinella, Reinhard Genzel, Cheng Li, and Silvia Fabello
- Subjects
Physics ,Stellar mass ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,IRAM 30m telescope ,Baryon ,Photometry (optics) ,Stars ,Space and Planetary Science ,0103 physical sciences ,Spectroscopy ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
We are conducting COLD GASS, a legacy survey for molecular gas in nearby galaxies. Using the IRAM 30m telescope, we measure the CO(1-0) line in a sample of ~350 nearby (D=100-200 Mpc), massive galaxies (log(M*/Msun)>10.0). The sample is selected purely according to stellar mass, and therefore provides an unbiased view of molecular gas in these systems. By combining the IRAM data with SDSS photometry and spectroscopy, GALEX imaging and high-quality Arecibo HI data, we investigate the partition of condensed baryons between stars, atomic gas and molecular gas in 0.1-10L* galaxies. In this paper, we present CO luminosities and molecular hydrogen masses for the first 222 galaxies. The overall CO detection rate is 54%, but our survey also uncovers the existence of sharp thresholds in galaxy structural parameters such as stellar mass surface density and concentration index, below which all galaxies have a measurable cold gas component but above which the detection rate of the CO line drops suddenly. The mean molecular gas fraction MH2/M* of the CO detections is 0.066+/-0.039, and this fraction does not depend on stellar mass, but is a strong function of NUV-r colour. Through stacking, we set a firm upper limit of MH2/M*=0.0016+/-0.0005 for red galaxies with NUV-r>5.0. The average molecular-to-atomic hydrogen ratio in present-day galaxies is 0.3, with significant scatter from one galaxy to the next. The existence of strong detection thresholds in both the HI and CO lines suggests that "quenching" processes have occurred in these systems. Intriguingly, atomic gas strongly dominates in the minority of galaxies with significant cold gas that lie above these thresholds. This suggests that some re-accretion of gas may still be possible following the quenching event.
- Published
- 2011
- Full Text
- View/download PDF
25. COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale
- Author
-
Linda J. Tacconi, Javier Graciá-Carpio, A. Sievers, Jing Wang, Carsten Kramer, Jenna Lemonias, Martha P. Haynes, David Schiminovich, Riccardo Giovanelli, Jian Fu, Cheng Li, Sean M. Moran, Guinevere Kauffmann, Mark R. Krumholz, Reinhard Genzel, Silvia Fabello, Christof Buchbender, Karl Schuster, Nemesio Rodriguez-Fernandez, Barbara Catinella, Luca Cortese, Timothy M. Heckman, Amélie Saintonge, and Qi Guo
- Subjects
Physics ,education.field_of_study ,Stellar mass ,010308 nuclear & particles physics ,Star formation ,Population ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Galaxy ,Redshift ,Photometry (optics) ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Low Mass ,education ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
We study the relation between molecular gas and star formation in a volume-limited sample of 222 galaxies from the COLD GASS survey, with measurements of the CO(1-0) line from the IRAM 30m telescope. The galaxies are at redshifts 0.025
- Published
- 2011
- Full Text
- View/download PDF
26. The upGREAT 1.9 THz multi-pixel high resolution spectrometer for the SOFIA Observatory
- Author
-
A. Parikka, P. Puetz, J. Stutzki, Yoko Okada, Urs U. Graf, Cornelia E. Honingh, Christophe Risacher, Timea Csengeri, Rolf Guesten, Ronan Higgins, Nicolas Reyes, Denise Riquelme, Christof Buchbender, Bernd Klein, K. Jacobs, D. Buechel, O. Ricken, Helmut Wiesemeyer, H.-W. Huebers, R. Simon, A. Bell, and Stefan Heyminck
- Subjects
Terahertz radiation ,Terahertz ,FOS: Physical sciences ,Instrumentation: spectrographs ,01 natural sciences ,010309 optics ,Optics ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Line (formation) ,Physics ,methods and techniques ,Nebula ,Spectrometer ,Pixel ,Orthogonal polarization spectral imaging ,business.industry ,Astronomy and Astrophysics ,Heterodyn Techniques: spectroscopic ,astronomical Instrumentation ,Space and Planetary Science ,spectrometer ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,SOFIA ,Order of magnitude - Abstract
We present a new multi-pixel high resolution (R >10^7) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 x 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016 . The receiver is designed to ultimately cover the full 1.8-2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83-2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA's instrument suite already for ongoing observing cycle 4., 7 pages, 11 figures. Accepted for publication in Astronomy & Astrophysics
- Published
- 2016
- Full Text
- View/download PDF
27. Dense Gas in M33 (HerM33es)
- Author
-
F. F. S. van der Tak, Susanne Aalto, S. Verley, Frank P. Israel, Pierre Gratier, Carsten Henkel, Christof Buchbender, G. Quintana-Lacaci, Bhaswati Mookerjea, C. Kramer, Erik Rosolowsky, M. González-García, Santiago García-Burillo, Médéric Boquien, J. Braine, P. van der Werf, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], FORMATION STELLAIRE 2013, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), University of British Columbia (UBC), KOSMA, I. Physikalisches Institut, Universität zu Köln, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut de RadioAstronomie Millimétrique (IRAM), Institut für Physik (Institut für Physik), Universität Potsdam, Dept. fısica Teorica y del Cosmos, Universidad de Granada (UGR), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional, Madrid, Universiteit Leiden, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Universität zu Köln = University of Cologne, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Potsdam = Universität Potsdam, Universidad de Granada = University of Granada (UGR), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Metallicity ,Milky Way ,STAR-FORMING REGION ,FOS: Physical sciences ,Astrophysics ,CHEMICAL-COMPOSITION ,01 natural sciences ,ISM: clouds ,Spectral line ,COLOGNE DATABASE ,MOLECULAR ABUNDANCE VARIATIONS ,photon-dominated region (PDR) ,MAGELLANIC CLOUDS ,0103 physical sciences ,010306 general physics ,Large Magellanic Cloud ,010303 astronomy & astrophysics ,Line (formation) ,Luminous infrared galaxy ,Physics ,INTERSTELLAR-MEDIUM ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Molecular cloud ,Astronomy and Astrophysics ,INTER-STELLAR CLOUDS ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,LUMINOUS INFRARED GALAXIES ,LINE OBSERVATIONS ,galaxies: individual: M 33 ,ISM: molecules ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: ISM ,LOCAL GROUP - Abstract
We aim to better understand the emission of molecular tracers of the diffuse and dense gas in giant molecular clouds and the influence that metallicity, optical extinction, density, far-UV field, and star formation rate have on these tracers. Using the IRAM 30m telescope, we detected HCN, HCO+, 12CO, and 13CO in six GMCs along the major axis of M33 at a resolution of ~ 114pc and out to a radial distance of 3.4kpc. Optical, far-infrared, and submillimeter data from Herschel and other observatories complement these observations. To interpret the observed molecular line emission, we created two grids of models of photon-dominated regions, one for solar and one for M33-type subsolar metallicity. The observed HCO+/HCN line ratios range between 1.1 and 2.5. Similarly high ratios have been observed in the Large Magellanic Cloud. The HCN/CO ratio varies between 0.4% and 2.9% in the disk of M33. The 12CO/13CO line ratio varies between 9 and 15 similar to variations found in the diffuse gas and the centers of GMCs of the Milky Way. Stacking of all spectra allowed HNC and C2H to be detected. The resulting HCO+/HNC and HCN/HNC ratios of ~ 8 and 6, respectively, lie at the high end of ratios observed in a large set of (ultra-)luminous infrared galaxies. HCN abundances are lower in the subsolar metallicity PDR models, while HCO+ abundances are enhanced. For HCN this effect is more pronounced at low optical extinctions. The observed HCO+/HCN and HCN/CO line ratios are naturally explained by subsolar PDR models of low optical extinctions between 4 and 10 mag and of moderate densities of n = 3x10^3 - 3x10^4 cm^-3, while the FUV field strength only has a small effect on the modeled line ratios. The line ratios are almost equally well reproduced by the solar-metallicity models, indicating that variations in metallicity only play a minor role in influencing these line ratios., Comment: 21 pages, 9 figures, published in A&A
- Published
- 2013
- Full Text
- View/download PDF
28. Spectral Energy Distributions of HII regions in M33 (HerM33es)
- Author
-
Monica Relaño, Pierre Gratier, Christof Buchbender, Frank P. Israel, G. Quintana-Lacaci, Isabel Pérez, C. Kramer, P. van der Werf, M. Boquien, Fatemeh Tabatabaei, J. Abreu-Vicente, S. D. Lord, S. Verley, M. Gonzalez, J. Braine, Francoise Combes, D. Calzetti, E. M. Xilouris, Bhaswati Mookerjea, Dpto. Fisica Teorica y del Cosmos, Universidad de Granada (UGR), Dept. fısica Teorica y del Cosmos, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Department of Astronomy, University of Massachusetts System (UMASS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], FORMATION STELLAIRE 2013, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institut de RadioAstronomie Millimétrique (IRAM), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), KOSMA, I. Physikalisches Institut, Universität zu Köln, Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universiteit Leiden, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and Universität zu Köln = University of Cologne
- Subjects
Electron density ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Shell (structure) ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Photometry (optics) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,Surface brightness ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Wavelength ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Spectral energy distribution ,Order of magnitude ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Within the framework of the Herschel M 33 extended survey HerM33es we study the Spectral Energy Distribution (SED) of a set of HII regions in M 33 as a function of the morphology. We present a catalogue of 119 HII regions morphologically classified: 9 filled, 47 mixed, 36 shell, and 27 clear shell HII regions. For each object we extract the photometry at twelve available wavelength bands (from FUV-1516A to IR-250mi) and obtain the SED. We also obtain emission line profiles across the regions to study the location of the stellar, ionised gas, and dust components. We find trends for the SEDs related to the morphology, showing that the star and gas-dust configuration affects the ratios of the emission in different bands. The mixed and filled regions show higher emission at 24mi than the shells and clear shells, which could be due to the proximity of the dust to the stellar clusters in the case of mixed and filled regions. The FIR peak for shells and clear shells seems to be located towards longer wavelengths, indicating that the dust is colder for this type of objects.The logarithmic 100/70mi ratio for filled and mixed regions remains constant over one order of magnitude in Halpha and FUV surface brightness, while the shells and clear shells exhibit a wider range of values of almost two orders of magnitude. We derive dust masses and temperatures fitting the individual SEDs with dust models proposed in the literature. The derived dust mass range is between 10^2-10^4 Msun and the cold dust temperature spans T(cold)~12-27 K. The spherical geometrical model proposed for the Halpha clear shells is confirmed by the emission profile obtained from the observations and is used to infer the electron density within the envelope: the typical electron density is 0.7+-0.3 cm^-3, while filled regions can reach values two to five times higher., Comment: 21 pages, 19 figures. Accepted to A&A
- Published
- 2013
- Full Text
- View/download PDF
29. Gas and dust cooling along the major axis of M 33 (HerM33es). ISO/LWS [C ii] observations
- Author
-
M. Boquien, Pierre Gratier, P. van der Werf, Christof Buchbender, S. Verley, C. Kramer, J. Abreu-Vicente, M. Roellig, E. M. Xilouris, Susanne Aalto, J. Braine, T. Nikola, Monica Relaño, Santiago García-Burillo, Frank P. Israel, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Dpto. Fisica Teorica y del Cosmos, Universidad de Granada (UGR), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), FORMATION STELLAIRE 2013, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institut de RadioAstronomie Millimétrique (IRAM), KOSMA, I. Physikalisches Institut [Köln], Universität zu Köln-Universität zu Köln, Dept. fısica Teorica y del Cosmos, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Observatorio Astronomico Nacional, Madrid, Universidad de Granada = University of Granada (UGR), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Universität zu Köln = University of Cologne-Universität zu Köln = University of Cologne, and Universiteit Leiden
- Subjects
Physics ,Spiral galaxy ,010308 nuclear & particles physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Metallicity ,Molecular cloud ,Semi-major axis ,Local Group ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radiation ,Photoelectric effect ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,7. Clean energy ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We aim to better understand the heating of the gas by observing the prominent gas cooling line [CII] at 158um in the low-metallicity environment of the Local Group spiral galaxy M33 at scales of 280pc. In particular, we aim at describing the variation of the photoelectric heating efficiency with galactic environment. In this unbiased study, we used ISO/LWS [CII] observations along the major axis of M33, in combination with Herschel PACS and SPIRE continuum maps, IRAM 30m CO 2-1 and VLA HI data to study the variation of velocity integrated intensities. The ratio of [CII] emission over the far-infrared continuum is used as a proxy for the heating efficiency, and models of photon-dominated regions are used to study the local physical densities, FUV radiation fields, and average column densities of the molecular clouds. The heating efficiency stays constant at 0.8% in the inner 4.5kpc radius of the galaxy where it starts to increase to reach values of ~3% in the outskirts at about 6kpc radial distance. The rise of efficiency is explained in the framework of PDR models by lowered volume densities and FUV fields, for optical extinctions of only a few magnitudes at constant metallicity. In view of the significant fraction of HI emission stemming from PDRs, and for typical pressures found in the Galactic cold neutral medium (CNM) traced by HI emission, the CNM contributes ~15% to the observed [CII] emission in the inner 2kpc radius of M33. The CNM contribution remains largely undetermined in the south, while positions between 2 and 7.3kpc radial distance in the north of M33 show a contribution of ~40%+-20%., (16 pages, a version with higher resolution figures may be downloaded from http://www.iram.es/IRAMES/hermesWiki/HermesPublications)
- Published
- 2013
- Full Text
- View/download PDF
30. Dust and gas power-spectrum in M33 (HERM33ES)
- Author
-
S. D. Lord, Fatemeh Tabatabaei, S. Verley, Frank P. Israel, Remo P. J. Tilanus, Baerbel Koribalski, P. van der Werf, C. Kramer, E. M. Xilouris, G. Quintana-Lacaci, J. Braine, M. Boquien, Francoise Combes, Frank Bertoldi, Christof Buchbender, D. Calzetti, M. Roellig, G. Stacey, F. F. S. van der Tak, Monica Relaño, Pierre Gratier, Kapteyn Astronomical Institute, Astronomy, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Department of Astronomy, University of Massachusetts System (UMASS), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), FORMATION STELLAIRE 2012, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Dpto. Fisica Teorica y del Cosmos, Universidad de Granada (UGR), KOSMA, I. Physikalisches Institut [Köln], Universität zu Köln-Universität zu Köln, Dept. fısica Teorica y del Cosmos, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Universiteit Leiden, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Universität zu Köln = University of Cologne-Universität zu Köln = University of Cologne, Laboratoire d'Astrophysique de Grenoble (LAOG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
galaxies: spiral ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,FLOCCULANT SPIRAL STRUCTURE ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,EXTENDED SURVEY HERM33ES ,01 natural sciences ,Spectral line ,STAR-FORMATION ,DIFFUSE IONIZED-GAS ,Bulge ,0103 physical sciences ,DARK-MATTER ,SMALL-MAGELLANIC-CLOUD ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Spectral density ,Astronomy and Astrophysics ,Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,galaxies: general ,Galaxy ,galaxies: individual: M 33 ,NGC 891 ,GALACTIC NEUTRAL HYDROGEN ,Interstellar medium ,Wavelength ,Supernova ,Space and Planetary Science ,Local Group ,MOLECULAR CLOUDS ,galaxies: structure ,galaxies: ISM ,Astrophysics - Cosmology and Nongalactic Astrophysics ,H-I - Abstract
Power spectra of de-projected images of late-type galaxies in gas and/or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power-laws, a shallow one at large scales (larger than 500 pc) and a steeper one at small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The large dynamical range (2-3 dex in scale) of most images allow us to determine clearly the change in slopes from -1.5 to -4, with some variations with wavelength. The break scale is increasing with wavelength, from 100 pc at 24 and 100micron to 350 pc at 500micron, suggesting that the cool dust lies in a thicker disk than the warm dust, may be due to star formation more confined to the plane. The slope at small scale tends to be steeper at longer wavelength, meaning that the warmer dust is more concentrated in clumps. Numerical simulations of an isolated late-type galaxy, rich in gas and with no bulge, like M33, are carried out, in order to better interpret these observed results. Varying the star formation and feedback parameters, it is possible to obtain a range of power-spectra, with two power-law slopes and breaks, which nicely bracket the data. The small-scale power-law is indeed reflecting the 3D behaviour of the gas layer, steepening strongly while the feedback smoothes the structures, by increasing the gas turbulence. M33 appears to correspond to a fiducial model with an SFR of $\sim$ 0.7 Mo/yr, with 10% supernovae energy coupled to the gas kinematics., Comment: 11 pages, 24 figures, accepted in Astronomy & Astrophysics
- Published
- 2012
- Full Text
- View/download PDF
31. Cool and warm dust emission from M33 (HerM33es)
- Author
-
P. van der Werf, Pierre Gratier, S. Anderl, Carsten Henkel, Monica Relaño, C. Kramer, F. F. S. van der Tak, S. D. Lord, G. Quintana-Lacaci, Bhaswati Mookerjea, J. Braine, Frank Bertoldi, M. Boquien, Stavros Akras, Fatemeh Tabatabaei, Frank P. Israel, Gordon J. Stacey, Ron Beck, M. Gonzalez, E. M. Xilouris, Remo P. J. Tilanus, Erik Rosolowsky, Christof Buchbender, Francoise Combes, D. Calzetti, S. Verley, B. S. Koribalski, Astronomy, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Department of Astronomy, University of Massachusetts System (UMASS), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), FORMATION STELLAIRE 2012, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Dept. fısica Teorica y del Cosmos, Universidad de Granada (UGR), Dpto. Fisica Teorica y del Cosmos, Institut für Physik (Institut für Physik), Universität Potsdam, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), KOSMA, I. Physikalisches Institut, Universität zu Köln, University of British Columbia (UBC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Universidad de Granada = University of Granada (UGR), University of Potsdam = Universität Potsdam, Universiteit Leiden, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universität zu Köln = University of Cologne, Laboratoire d'Astrophysique de Grenoble (LAOG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
galaxies: spiral ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Infrared ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,EXTENDED SURVEY HERM33ES ,01 natural sciences ,Luminosity ,STAR-FORMATION ,DISK ,0103 physical sciences ,Emissivity ,SPACE ,PHOTOMETRY ,Astrophysics::Solar and Stellar Astrophysics ,NEARBY GALAXIES ,COLD DUST ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Spiral galaxy ,010308 nuclear & particles physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Galaxy ,Space observatory ,Wavelength ,Space and Planetary Science ,GAS ,Local Group ,Astrophysics::Earth and Planetary Astrophysics ,SPIRAL GALAXY M33 ,SUBMILLIMETER ,galaxies: ISM ,Dust emission ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the far-infrared emission from the nearby spiral galaxy M33 in order to investigate the dust physical properties such as the temperature and the luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350 and 500 micron) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 micron and Spitzer-MIPS 24 and 70 micron data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the 'cool' dust grains are heated at temperatures between 11 and 28 K with the lowest temperatures found in the outskirts of the galaxy and the highest ones in the center and in the bright HII regions. The infrared/submillimeter total luminosity (5 - 1000 micron) is estimated to be 1.9x10^9 Lsun. 59% of the total luminosity of the galaxy is produced by the 'cool' dust grains (~15 K) while the rest 41% is produced by 'warm' dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly enhanced in the center of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms) we find that the fraction of the emission in the disk in the mid-infrared (24 micron) is 21%, while it gradually rises up to 57% in the submillimeter (500 micron). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The 'cool' dust inside the disk is heated at a narrow range of temperatures between 18 and 15 K (going from the center to the outer parts of the galaxy)., Comment: 12 pages, 14 figures, accepted for publication in A&A
- Published
- 2012
- Full Text
- View/download PDF
32. The Herschel M 33 extended survey (HerM33es): PACS spectroscopy of the star forming region BCLMP 302 (Corrigendum)
- Author
-
Susanne Aalto, Gordon J. Stacey, Carsten Henkel, S. D. Lord, Bhaswati Mookerjea, Santiago García-Burillo, Fatemeh Tabatabaei, J. Braine, Frank P. Israel, Francoise Combes, D. Calzetti, Médéric Boquien, G. Quintana-Lacaci, P. van der Werf, Simon Verley, Christof Buchbender, C. Kramer, van der Floris Tak, T. Nikola, Monica Relaño, Pierre Gratier, Markus Röllig, KOSMA, I. Physikalisches Institut, Universität zu Köln, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Department of Astronomy, University of Massachusetts System (UMASS), Dept. fısica Teorica y del Cosmos, Universidad de Granada (UGR), Dpto. Fisica Teorica y del Cosmos, FORMATION STELLAIRE 2012, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Institut für Physik (Institut für Physik), Universität Potsdam, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universität zu Köln = University of Cologne, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Observatorio Astronomico Nacional, Madrid, University of Potsdam = Universität Potsdam, Universiteit Leiden, and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scientific instrument ,Physics ,HII regions ,010308 nuclear & particles physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy ,Local Group ,Astronomy and Astrophysics ,Astrophysics ,Star (graph theory) ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,01 natural sciences ,Space observatory ,local group ,galaxies: individual: M 33 ,Interstellar medium ,Space and Planetary Science ,photon-dominated region (PDR) ,0103 physical sciences ,Far infrared spectroscopy ,Spectroscopy ,010303 astronomy & astrophysics ,addenda ,galaxies: ISM ,errata - Abstract
Accepted for publication in A&A. 12 pages, 12 figures 2011; International audience; Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
- Published
- 2012
- Full Text
- View/download PDF
33. [Ci](1–0) observations in M33 A study of CO dark H2gas in M33
- Author
-
Christof Buchbender, C. Glück, Bhaswati Mookerjea, Markus Röllig, Yoko Okada, and J. Stutzki
- Subjects
Physics ,Hydrogen ,chemistry ,Space and Planetary Science ,Metallicity ,Semi-major axis ,Hydrogen molecule ,General Engineering ,chemistry.chemical_element ,Astronomy and Astrophysics ,Fraction (chemistry) ,Astrophysics ,Galaxy - Abstract
Based on [Ci] (1–0) observations and complementary Hi, 12/13 CO (1–0), 12 CO (2–1) and [Cii] data we estimated the column density and fraction of molecular hydrogen in GMCs along the major axis of the galaxy M33. We found that on average 75%± 14% of the hydrogen is in molecular form. Roughly 40–45% of the H 2 is both traced by [Cii] and CO, while ∼ 15% by the [Ci] lines. The found CO-dark H 2 gas fractions are within the predictions by Wolfire et al. (2010) for a half solar metallicity, Z = 0.5 Z ⊙ , as in M33.
- Published
- 2015
- Full Text
- View/download PDF
34. 100 μm and 160 μm emission as resolved star-formation rate estimators in M 33 (HERM33ES)
- Author
-
E. M. Xilouris, F. F. S. van der Tak, B. S. Koribalski, Fatemeh Tabatabaei, J. Braine, Frank P. Israel, S. Verley, Francoise Combes, Markus Röllig, D. Calzetti, P. van der Werf, M. Boquien, C. Kramer, G. Quintana-Lacaci, Monica Relaño, Remo P. J. Tilanus, S. D. Lord, Gordon J. Stacey, Christof Buchbender, Frank Bertoldi, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy, University of Massachusetts System (UMASS), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Leiden Observatory [Leiden], Universiteit Leiden, Australia Telescope National Facility, Australian National University (ANU), Dpto. Fisica Teorica y del Cosmos, Universidad de Granada = University of Granada (UGR), Dept. fısica Teorica y del Cosmos, Astronomy, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Universiteit Leiden [Leiden], Universidad de Granada (UGR), and École normale supérieure - Paris (ENS Paris)
- Subjects
galaxies: spiral ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Infrared ,ULTRAVIOLET ,FOS: Physical sciences ,Scale (descriptive set theory) ,DUST ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Luminosity ,infrared: galaxies ,0103 physical sciences ,PHOTOMETRY ,Astrophysics::Solar and Stellar Astrophysics ,TOTAL INFRARED LUMINOSITY ,NEARBY GALAXIES ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,CALIBRATION ,FORMING GALAXIES ,010308 nuclear & particles physics ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Estimator ,Sigma ,Astronomy and Astrophysics ,galaxies: individual: M33 ,Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,SPITZER ,EXTINCTION ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: star formation ,Astrophysics::Earth and Planetary Astrophysics ,FORMATION RATE INDICATORS ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Galaxy Astrophysics - Abstract
Over the past few years several studies have provided estimates of the SFR (star-formation rate) or the total infrared luminosity from just one infrared band. However these relations are generally derived for entire galaxies, which are known to contain a large scale diffuse emission that is not necessarily related to the latest star-formation episode. We provide new relations to estimate the SFR from resolved star-forming regions at 100 mum and 160 mum. We select individual star-forming regions in the nearby (840 kpc) galaxy M33. We estimate the SFR combining the emission in Halpha and at 24 mum to calibrate the emission at 100 mum and 160 mum as SFR estimators, as mapped with PACS/Herschel. The data are obtained in the framework of the HERM33ES open time key project. There is less emission in the HII regions at 160 mum than at 100 mum. Over a dynamic range of almost 2 dex in Sigma(SFR) we find that the 100 mum emission is a nearly linear estimator of the SFR, whereas that at 160 mum is slightly superlinear. The behaviour of individual star-forming regions is surprisingly similar to that of entire galaxies. At high Sigma(SFR), star formation drives the dust temperature, whereas uncertainties and variations in radiation-transfer and dust-heated processes dominate at low Sigma(SFR). Detailed modelling of both galaxies and individual star forming regions will be needed to interpret similarities and differences between the two and assess the fraction of diffuse emission in galaxies., 5 pages, 3 figures, accepted for publication in the A&A Herschel special issue
- Published
- 2010
- Full Text
- View/download PDF
35. Star formation in M33 (HerM33es)
- Author
-
Pierre Gratier, C. Kramer, Médéric Boquien, Jonathan Braine, Simon Verley, Monica Relaño, Bhaswati Mookerjea, Christof Buchbender, D. Calzetti, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Department of Astronomy, University of Massachusetts System (UMASS), FORMATION STELLAIRE 2011, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), KOSMA, I. Physikalisches Institut, Universität zu Köln, Dpto. Fisica Teorica y del Cosmos, Universidad de Granada (UGR), Dept. fısica Teorica y del Cosmos, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Universität zu Köln = University of Cologne, and Universidad de Granada = University of Granada (UGR)
- Subjects
Brightness ,Photon ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Infrared ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,General Engineering ,Astronomy and Astrophysics ,Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Galaxy ,Stars ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Within the key project "Herschel M33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6um to 500um, along with HI, Halpha, and GALEX UV data, we have studied the dust at high spatial resolutions of 150pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [CII], [OI], and CO maps obtained in a first spectroscopic study of one 2'x2' subregion of M33, located on the inner, northern spiral arm and encompassing the HII region BCLMP302., Comment: 6 pages, to appear in the proceedings of the 5th Zermatt ISM Symposium "Conditions and impact of star formation: New results with Herschel and beyond"
- Published
- 2010
36. Properties of compact 250 \mu m emission and HII regions in M33 (HERM33ES)
- Author
-
Francoise Combes, D. Calzetti, M. Relano, C. Kramer, Simon Verley, P. van der Werf, Fatemeh Tabatabaei, M. Boquien, Frank P. Israel, S. D. Lord, Jonathan Braine, Christof Buchbender, G. Quintana-Lacaci, Emmanuel M. Xilouris, Gordon J. Stacey, Dept. fısica Teorica y del Cosmos, Universidad de Granada = University of Granada (UGR), Dpto. Fisica Teorica y del Cosmos, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy, University of Massachusetts System (UMASS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Leiden Observatory [Leiden], Universiteit Leiden, Universidad de Granada (UGR), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Universiteit Leiden [Leiden], and École normale supérieure - Paris (ENS Paris)
- Subjects
Infrared ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Resolution (electron density) ,Astronomy ,Local Group ,Astronomy and Astrophysics ,Cosmology and Extragalactic Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Galaxy ,Spire ,Wavelength ,13. Climate action ,Space and Planetary Science ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Within the framework of the HERM33ES Key Project, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250um in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Halpha shells in the northern part of the galaxy. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250um SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24um and Halpha for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Halpha, far-UV from GALEX, and infrared from both Spitzer IRAC 8um and MIPS 24um in order to make comparisons. For the 159 compact sources selected at 250um, we find a very strong Pearson correlation coefficient with the MIPS 24um emission (r24 = 0.94) and a rather strong correlation with the Halpha emission, although with more scatter (rHa = 0.83). The morphological study of the Halpha shells shows a displacement between far-ultraviolet, Halpha, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Halpha shell structures. The very strong link between the 250um compact emission and the 24um and Halpha emissions, by recovering the star formation rate from standard recipes for HII regions, allows us to provide star formation rate calibrations based on the 250um compact emission alone. The different locations of the Halpha and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Halpha shells and the associated cool dust., Comment: 4 pages, 3 figures, Accpeted for publication in the A&A Herschel Special Issue
- Published
- 2010
- Full Text
- View/download PDF
37. Cool gas and dust in M33: Results from the Herschel M33 extended survey (HERM33ES)
- Author
-
K. F. Schuster, Martina C. Wiedner, Bhaswati Mookerjea, G. Quintana-Lacaci, Susanne Aalto, Erik Rosolowsky, J. Braine, Fatemeh Tabatabaei, M. Gonzalez, B. S. Koribalski, P. van der Werf, C. Kramer, S. Verley, Carsten Henkel, F. F. S. van der Tak, Emmanuel M. Xilouris, Pierre Gratier, Frank P. Israel, Médéric Boquien, Monica Relaño, Christof Buchbender, Frank Bertoldi, Santiago García-Burillo, M. Roellig, Francoise Combes, D. Calzetti, Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Institute of Astronomy and Astrophysics, National Observatory of Athens (NOA), University of British Columbia (UBC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy, University of Massachusetts System (UMASS), Institut für Physik (Institut für Physik), University of Potsdam = Universität Potsdam, Dept. fısica Teorica y del Cosmos, Universidad de Granada = University of Granada (UGR), Leiden Observatory [Leiden], Universiteit Leiden, SRON Netherlands Institute for Space Research (SRON), Max-Planck-Institut für Radioastronomie (MPIFR), TKK Helsinki University of Technology (TKK), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional, Madrid, Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS), FUNVISIS, Instituto de Ciencias de la Tierra, Universidad Central de Venezuela (UCV), Australia Telescope National Facility, Australian National University (ANU), KOSMA, I. Physikalisches Institut, Universität zu Köln = University of Cologne, KOSMA, I. Physikalisches Institut [Köln], Universität zu Köln = University of Cologne-Universität zu Köln = University of Cologne, Institut de RadioAstronomie Millimétrique (IRAM), Dpto. Fisica Teorica y del Cosmos, Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Instituto de RadioAstronomía Milimétrica ( IRAM ), Centre National de la Recherche Scientifique ( CNRS ), National Observatory of Athens ( NOA ), University of British Columbia ( UBC ), Astrophysique Interactions Multi-échelles ( AIM - UMR 7158 - UMR E 9005 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ), University of Massachusetts, Institut für Physik ( Institut für Physik ), Universität Potsdam, Universidad de Granada ( UGR ), Universiteit Leiden [Leiden], SRON Netherlands Institute for Space Research ( SRON ), Max-Planck-Institut für Radioastronomie ( MPIFR ), TKK Helsinki University of Technology, Helsinki University of Technology ( TKK ) -TKK, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique ( LERMA ), École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université de Cergy Pontoise ( UCP ), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique ( CNRS ), Observatorio Astron ́omico Nacional (OAN), Observatorio de Madrid, Fundación Venezolana de Investigaciones Sismológicas ( FUNVISIS ), UNIVERSIDAD CENTRAL DE VENEZUELA, Australian National University ( ANU ), Universität zu Köln, Universität zu Köln-Universität zu Köln, Institut de RadioAstronomie Millimétrique ( IRAM ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Universidad de Granada (UGR), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Astronomy, and École normale supérieure - Paris (ENS Paris)
- Subjects
Systematic error ,GRAPHITE ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,ISM: Clouds ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Measure (mathematics) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Galaxies: Local Group ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,[ PHYS.ASTR.SR ] Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Molecular cloud ,Galaxies: evolution ,Astronomy and Astrophysics ,galaxies: individual: M33 ,Mass ratio ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Galaxy ,Spire ,Galaxies: ISM ,13. Climate action ,Space and Planetary Science ,Galaxies: Individual: M 33 ,Content (measure theory) ,Local Group ,Astrophysics::Earth and Planetary Astrophysics ,Stars: Formation ,[ SDU.ASTR.SR ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Dust emission - Abstract
We present an analysis of the first space-based far-IR-submm observations of M 33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H$_2$ content. In this Letter, we measure the dust emission cross-section $\sigma$ using SPIRE and recent CO and \HI\ observations; a variation in $\sigma$ is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the \HI\ column, yields a morphology similar to that observed in CO. The H$_2$/\HI\ mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M 33., Comment: 5 pages, 5 figures Accepted for publication in Astronomy and Astrophysics
- Published
- 2010
- Full Text
- View/download PDF
38. The interplay of dense gas and stars in M33
- Author
-
Pierre Gratier, Jonathan Braine, Carsten Kramer, Erik Rosolowsky, Guillermo Quintana-Lacaci, Christof Buchbender, KOSMA, I. Physikalisches Institut, Universität zu Köln, Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB)
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Semi-major axis ,Continuum (design consultancy) ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,01 natural sciences ,IRAM 30m telescope ,Stars ,Space and Planetary Science ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
We are studying the interplay of star formation and its ’fuel’, the molecular gas (diffuse and dense) at selected positions along the major axis of M33. We have observed the ground-state transitions of HCN, HCO+, and 13CO using the IRAM 30m telescope. These data will complement existing CO, HI, Spitzer, and radio continuum maps. Furthermore, these data will be complemented by far-infrared maps of [CII], H2O, [OI], [NII], and the dust continuum taken with Herschel in the open time key project HERM33ES.
- Published
- 2009
- Full Text
- View/download PDF
39. TheHerschelM 33 extended survey (HerM33es): PACS spectroscopy of the star-forming region BCLMP 302
- Author
-
S. D. Lord, T. Nikola, Monica Relaño, P. van der Werf, Pierre Gratier, C. Kramer, Frank P. Israel, S. Verley, Bhaswati Mookerjea, Susanne Aalto, M. Boquien, J. Braine, F. F. S. van der Tak, M. Roellig, Santiago García-Burillo, Francoise Combes, Gordon J. Stacey, D. Calzetti, Carsten Henkel, Christof Buchbender, G. Quintana-Lacaci, Fatemeh Tabatabaei, KOSMA, I. Physikalisches Institut, Universität zu Köln, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Department of Astronomy, University of Massachusetts System (UMASS), Dept. fısica Teorica y del Cosmos, Universidad de Granada (UGR), Dpto. Fisica Teorica y del Cosmos, Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Institut für Physik (Institut für Physik), Universität Potsdam, Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), KOSMA, I. Physikalisches Institut [Köln], Universität zu Köln-Universität zu Köln, Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astronomy, Universität zu Köln = University of Cologne, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB), Observatorio Astronomico Nacional, Madrid, University of Potsdam = Universität Potsdam, Universiteit Leiden, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and Universität zu Köln = University of Cologne-Universität zu Köln = University of Cologne
- Subjects
HII regions ,Spatial correlation ,Photon ,010504 meteorology & atmospheric sciences ,M33 HERM33ES ,FOS: Physical sciences ,Astrophysics ,PHOTODISSOCIATION REGIONS ,01 natural sciences ,PHOTON-DOMINATED REGIONS ,H-II REGIONS ,photon-dominated region (PDR) ,0103 physical sciences ,M EMISSION ,NEARBY GALAXIES ,PHYSICAL CONDITIONS ,Emission spectrum ,Spectroscopy ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Spiral galaxy ,INTERSTELLAR-MEDIUM ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Molecular cloud ,LONG-WAVELENGTH SPECTROMETER ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,galaxies: individual: M 33 ,Galaxy ,Interstellar medium ,13. Climate action ,Space and Planetary Science ,galaxies: star formation ,Astrophysics of Galaxies (astro-ph.GA) ,Local Group ,FAR-INFRARED SPECTROSCOPY ,galaxies: ISM ,Galaxy Astrophysics - Abstract
Context: The emission line of [CII] at 158 micron is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims: Disentangling the relative contributions of the different ISM phases to [CII] emission, is a major topic of the HerM33es program, a Herschel key project to study the ISM in the nearby spiral galaxy M33. Methods: Using PACS, we have mapped the emission of [CII] 158 micron, [OI] 63 micron, and other FIR lines in a 2'x2' region of the northern spiral arm of M33, centered on the HII region BCLMP302. At the peak of H-alpha emission, we have observed in addition a velocity resolved [CII] spectrum using HIFI. We use scatterplots to compare these data with PACS 160 micron continuum maps, and with maps of CO and HI data, at a common resolution of 12 arcsec or 50 pc. Maps of H-alpha and 24 micron emission observed with Spitzer are used to estimate the SFR. We have created maps of the [CII] and [OI] 63 micron emission and detected [NII] 122 micron and NIII 57 micron at individual positions. Results: The [CII] line observed with HIFI is significantly broader than that of CO, and slightly blue-shifted. In addition, there is little spatial correlation between [CII] observed with PACS and CO over the mapped region. There is even less spatial correlation between [CII] and the atomic gas traced by HI. Detailed comparison of the observed intensities towards the HII region with models of photo ionization and photon dominated regions, confirms that a significant fraction, 20--30%, of the observed [CII] emission stems from the ionized gas and not from the molecular cloud. The gas heating efficiency, using the ratio between [CII] and the TIR as a proxy, varies between 0.07 and 1.5%, with the largest variations found outside the HII region., Comment: Accepted for publication in A&A. 12 pages, 12 figures
- Published
- 2011
- Full Text
- View/download PDF
40. A SOFIA Survey of [C ii] in the Galaxy M51. I. [C ii] as a Tracer of Star Formation.
- Author
-
Jorge L. Pineda, Christian Fischer, Maria Kapala, Jürgen Stutzki, Christof Buchbender, Paul F. Goldsmith, Monika Ziebart, Simon C. O. Glover, Ralf S. Klessen, Jin Koda, Carsten Kramer, Bhaswati Mookerjea, Karin Sandstrom, Nick Scoville, and Rowan Smith
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.