28 results on '"Christophe Lincheneau"'
Search Results
2. White-light emission from discrete heterometallic lanthanide-directed self-assembled complexes in solution
- Author
-
Oxana Kotova, Steve Comby, Thorfinnur Gunnlaugsson, and Christophe Lincheneau
- Subjects
Lanthanide ,Chemistry ,Ligand ,Single component ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluorescence ,0104 chemical sciences ,Ion ,Self assembled ,Yield (chemistry) ,White light ,0210 nano-technology - Abstract
White-light-emitting materials have attracted significant interest in recent years due to their potential applications in solid-state lighting and flat-panel displays. Design of such materials is challenging and often relies on the use of multiple fluorophores despite the fact that single component systems yield materials with enhanced stability and reproducibility. Herein, we have developed a white-light-emitting system based on the formation of discrete lanthanide-based self-assembled complexes using a newly-designed ligand. We demonstrate that fine tuning of the lanthanide ions molar ratio in the self-assemblies combined with the intrinsic blue fluorescence of the ligand allows for the successful emission of pure white light with CIE coordinates of (0.33, 0.34).
- Published
- 2017
- Full Text
- View/download PDF
3. Chemistry of InP Nanocrystal Syntheses
- Author
-
Sohee Jeong, Sudarsan Tamang, Yannick Hermans, Peter Reiss, Christophe Lincheneau, Korea Institute of Machinery and Materials (KIMM), Sikkim Manipal University (SMU), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Range (particle radiation) ,Materials science ,Band gap ,General Chemical Engineering ,Exciton ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluorescence ,0104 chemical sciences ,Wavelength ,Nanocrystal ,Materials Chemistry ,[CHIM]Chemical Sciences ,Emission spectrum ,0210 nano-technology ,Bohr radius - Abstract
Chemically synthesized InP nanocrystals (NCs) are drawing a large interest as a potentially less toxic alternative to CdSe-based nanocrystals. With a bulk band gap of 1.35 eV and an exciton Bohr radius of ∼10 nm the emission wavelength of InP NCs can in principle be tuned throughout the whole visible and near-infrared range by changing their size. Furthermore, a few works reported fluorescence quantum yields exceeding 70% after overcoating the core NCs with appropriate shell materials. Therefore, InP NCs are very promising for use in lighting and display applications. On the other hand, a number of challenges remain to be addressed in order to progress from isolated research results to robust and reproducible synthesis methods for high quality InP NCs. First of all, the size distribution of the as-synthesized NCs needs to be reduced, which directly translates into more narrow emission line widths. Next, reliable protocols are required for achieving a given emission wavelength at high reaction yield and fo...
- Published
- 2016
- Full Text
- View/download PDF
4. Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation
- Author
-
Géraldine Sarret, Peter Reiss, K. David Wegner, Olivier Proux, Christophe Lincheneau, Marie Carrière, Adeline Tarantini, Benoit Gallet, Lucia Mattera, David Béal, Delphine Truffier-Boutry, Pierre-Henri Jouneau, Fanny Dussert, Christine Moriscot, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie [2017-2019] (CIBEST [2017-2019]), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Synthèse, Structure et Propriétés de Matériaux Fonctionnels [2017-2019] (STEP [2017-2019]), Institut des Sciences de la Terre [2016-2019] (ISTerre [2016-2019]), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Observatoire des Sciences de l'Univers de Grenoble [2016-2019] (OSUG [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département des Technologies des NanoMatériaux (DTNM), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale [1992-2019] (IBS - UMR 5075 [1992-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire d'Etude des Matériaux par Microscopie Avancée [?-2019] (LEMMA [?-2019]), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), ANR-11-IDEX-0001-02/11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011), ANR: NEUTRINOS,ANR-16-CE09-0015-03, ANR-10-INBS-0005-02,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-10- LABX-49-01,Labex GRAL,Labex GRAL, Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP), Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Unité de Biochimie des Cancers et Biothérapies, CHU Grenoble, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de biologie structurale (IBS - UMR 5075 ), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), ANR-16-CE09-0015,NEUTRINOS,Suivi des interactions biologiques par détection optique ultrasensible à base de nanoparticules(2016), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
PL ,energy dispersive X-ray spectroscopy probe ,ODE ,XAS ,02 engineering and technology ,010501 environmental sciences ,Photochemistry ,01 natural sciences ,EDS ,chemistry.chemical_compound ,QD ,Semiconductor nanocrystal ,Safety, Risk, Reliability and Quality ,Cadmium ,LCF ,mercaptopropionic acid ,Chemistry ,tris(trimethylsilyl)phosphine ,Quantum dot Semiconductor nanocrystal Toxicity Keratinocyte EXAFS Abbreviations: BrdU ,IARC ,TOP ,scanning-transmission electron microscopy ,ROS ,scanning electron microscope ,STEM ,021001 nanoscience & nanotechnology ,Glutathione ,Cadmium telluride photovoltaics ,MMS ,bromodeoxyuridine ,European Synchrotron Radiation Facility ,EXAFS ,linear combination fit ,dihydrorhodamine 123 ,SEM ,Indium phosphide ,photoluminescence ,high angle annular dark field ,0210 nano-technology ,1-octadecene ,Safety Research ,H2-DCF-DA ,Keratinocyte ,HAADF ,LDH ,Materials Science (miscellaneous) ,chemistry.chemical_element ,Zinc ,[SDV.TOX.TCA]Life Sciences [q-bio]/Toxicology/Toxicology and food chain ,(TMS) 3 P ,2′ ,DDT ,DHR123 ,GSH ,1-dodecanethiol ,ESRF ,TCEP ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,International agency for research in cancer ,X-ray absorption spectroscopy ⁎ ,0105 earth and related environmental sciences ,7′-dichlorodihydrofluorescein diacetate ,trioctylphosphine ,Cadmium selenide ,Toxicity ,Public Health, Environmental and Occupational Health ,Quantum dot ,technology, industry, and agriculture ,methane methyl sulfonate ,TMAOH ,lactate dehydrogenase ,equipment and supplies ,MPA ,tetramethylammonium hydroxide ,QY ,tris(2-carboxyethyl) phosphine hydrochloride ,NC ,Reactive oxygen species ,Quantum yield ,Selenium ,Indium - Abstract
International audience; Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy.The fate and toxicity of seven different water-dispersible indium (In)-based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their surface was functionalized using either penicillamine or glutathione.In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In and Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications.
- Published
- 2019
- Full Text
- View/download PDF
5. Reversible Photocapture of a [2]Rotaxane Harnessing a Barbiturate Template
- Author
-
Nathan D. McClenaghan, Peter Thornton, James H. R. Tucker, Jean-Pierre Desvergne, Neil Spencer, Christophe Lincheneau, and Arnaud Tron
- Subjects
Anthracenes ,Magnetic Resonance Spectroscopy ,Rotaxane ,Molecular Structure ,Rotaxanes ,Molecular model ,Organic Chemistry ,Nuclear magnetic resonance spectroscopy ,Photochemical Processes ,Photochemistry ,chemistry.chemical_compound ,Crystallography ,chemistry ,Methylene - Abstract
Photoirradiation of a hydrogen-bonded molecular complex comprising acyclic components, namely, a stoppered thread (1) with a central barbiturate motif and an optimized doubly anthracene-terminated acyclic Hamilton-like receptor (2b), leads to an interlocked architecture, which was isolated and fully characterized. The sole isolated interlocked photoproduct (Φ = 0.06) is a [2]rotaxane, with the dimerized anthracenes assuming a head-to-tail geometry, as evidenced by NMR spectroscopy and consistent with molecular modeling (PM6). A different behavior was observed on irradiating homologous molecular complexes 1⊂2a, 1⊂2b, and 1⊂2c, where the spacers of 2a, 2b, and 2c incorporated 3, 6, and 9 methylene units, respectively. While no evidence of interlocked structure formation was observed following irradiation of 1⊂2a, a kinetically labile rotaxane was obtained on irradiating the complex 1⊂2c, and ring slippage was revealed. A more stable [2]rotaxane was formed on irradiating 1⊂2b, whose capture is found to be fully reversible upon heating, thereby resetting the system, with some fatigue (38%) after four irradiation–thermal reversion cycles.
- Published
- 2014
- Full Text
- View/download PDF
6. Probing the Effects of Ligand Isomerism in Chiral Luminescent Lanthanide Supramolecular Self-Assemblies: A Europium'Trinity Sliotar'Study
- Author
-
Jonathan A. Kitchen, Christophe Lincheneau, Robert D. Peacock, Thorfinnur Gunnlaugsson, and Oxana Kotova
- Subjects
inorganic chemicals ,Lanthanide ,Luminescence ,Pyridines ,Stereochemistry ,Supramolecular chemistry ,chemistry.chemical_element ,Naphthalenes ,Ligands ,Lanthanoid Series Elements ,Catalysis ,Ligand isomerism ,chemistry.chemical_compound ,Europium ,Isomerism ,heterocyclic compounds ,Naphthalene ,Molecular Structure ,Ligand ,Chemistry ,organic chemicals ,Organic Chemistry ,Stereoisomerism ,General Chemistry ,Crystallography ,Chirality (chemistry) - Abstract
"Trinity Sliotar" family: Chiral ligands containing pyridyl and naphthalene moieties were synthesized and characterized. These ligands were successfully used for the synthesis of Eu(III) bundles where chirality of the ligand is successfully transferred onto the lanthanide centre resulting in circularly polarized red luminescence.
- Published
- 2013
- Full Text
- View/download PDF
7. Delayed lanthanide luminescent Tb(III) complexes formed from lower rim amide functionalised calix[4]arenes
- Author
-
Jonathan A. Kitchen, Thomas McCabe, Thorfinnur Gunnlaugsson, Susan E. Matthews, Christophe Lincheneau, and Eoin Quinlan
- Subjects
Lanthanide ,Stereochemistry ,Ligand ,Supramolecular chemistry ,chemistry.chemical_element ,Terbium ,Antenna effect ,General Chemistry ,Crystal structure ,Alkylation ,chemistry.chemical_compound ,chemistry ,Amide ,Polymer chemistry - Abstract
The synthesis and the photophysical studies of a new generation of time resolved luminescent systems based on calix[4]arenes alkylated at the lower rim, capable of hosting lanthanide (III) ions such as terbium and sensitising its emission, are described. Two series of ligands were designed to provide an ideal cavity to host terbium (Tb(III)) and were synthesised in high yields following two novel approaches. The tetra-alkylation, which was achieved in one step using with piperidino- and morpholino-acetamide pendant arms, provides eight donor atoms forming a binding ‘pocket’ at an ideal distance from the metal core to favour the sensitisation via the antenna effect. Of the two ligand series developed, compounds 3 and 4 possess a short spacer between the calix and the amide receptor site. The second series of ligands 6–7, designed with longer pendant amide arms, was synthesised from 2 in two steps through the ester analogue 5. The crystal structure of 3 (and 6 as shown in Supporting Information, available o...
- Published
- 2013
- Full Text
- View/download PDF
8. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials
- Author
-
Peter Reiss, Louis Vaure, Marie Carrière, Christophe Lincheneau, Sudarsan Tamang, Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), Sikkim Manipal University (SMU), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Chemistry ,Metal chalcogenides ,Dispersity ,Earth abundant ,Nucleation ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Nanocrystal ,Metal free ,Quantum dot ,Semiconductor nanocrystals ,[CHIM]Chemical Sciences ,0210 nano-technology - Abstract
International audience; We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III–V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors’ view on the perspectives in this field is given.
- Published
- 2016
- Full Text
- View/download PDF
9. ChemInform Abstract: Chemistry of InP Nanocrystal Syntheses
- Author
-
Sohee Jeong, Yannick Hermans, Christophe Lincheneau, Sudarsan Tamang, and Peter Reiss
- Subjects
Range (particle radiation) ,Wavelength ,Nanocrystal ,business.industry ,Band gap ,Chemistry ,Exciton ,Optoelectronics ,General Medicine ,Emission spectrum ,business ,Fluorescence ,Bohr radius - Abstract
Chemically synthesized InP nanocrystals (NCs) are drawing a large interest as a potentially less toxic alternative to CdSe-based nanocrystals. With a bulk band gap of 1.35 eV and an exciton Bohr radius of ∼10 nm the emission wavelength of InP NCs can in principle be tuned throughout the whole visible and near-infrared range by changing their size. Furthermore, a few works reported fluorescence quantum yields exceeding 70% after overcoating the core NCs with appropriate shell materials. Therefore, InP NCs are very promising for use in lighting and display applications. On the other hand, a number of challenges remain to be addressed in order to progress from isolated research results to robust and reproducible synthesis methods for high quality InP NCs. First of all, the size distribution of the as-synthesized NCs needs to be reduced, which directly translates into more narrow emission line widths. Next, reliable protocols are required for achieving a given emission wavelength at high reaction yield and fo...
- Published
- 2016
- Full Text
- View/download PDF
10. Recent Highlights in the use of Lanthanide-directed Synthesis of Novel Supramolecular (Luminescent) Self-assembly Structures such as Coordination Bundles, Helicates and Sensors
- Author
-
Christophe Lincheneau, Steve Comby, Thorfinnur Gunnlaugsson, and Floriana Stomeo
- Subjects
Lanthanide ,chemistry.chemical_classification ,010405 organic chemistry ,Chemistry ,Supramolecular chemistry ,Nanoparticle ,Nanotechnology ,General Chemistry ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Coordination complex ,Biocatalysis ,Self-assembly ,Luminescence ,Macromolecule - Abstract
In this short review, we focus on the recent developments within the field of coordination chemistry where mono- or multimetallic supramolecular self-assemblies are formed by employing structurally defined organic ligands, taking advantage of the high coordination requirements of the lanthanides. Such synthesis results in the formation of both structurally complex and beautiful self-assemblies. Moreover, as the lanthanide ions possess both unique magnetic (e.g. GdIII and DyIII) and luminescent properties, either in the visible (EuIII, SmIII and TbIII) or near-infrared regions (YbIII, NdIII, ErIII), these physical features are usually transferred to the self-assemblies themselves, allowing the formation of highly functional structures, such as coordination networks, as well as molecular bundles and helicates. Hence, examples of the use of lanthanide-directed synthesis of luminescent sensors, some of which are formed on solid surfaces such as gold (flat surface or nanoparticles), and imaging agents are presented. Moreover, we demonstrate that by using chiral organic ligands, lanthanide-directed synthesis can also give rise to the formation of enantiomerically pure self-assemblies, the structure of which can be probed using circularly polarized luminescence.
- Published
- 2011
- Full Text
- View/download PDF
11. Reversible electronic energy transfer: a means to govern excited-state properties of supramolecular systems
- Author
-
Aurélie Lavie-Cambot, Christophe Lincheneau, Nathan D. McClenaghan, Yoann Leydet, and Martine Cantuel
- Subjects
010405 organic chemistry ,Chemistry ,Supramolecular chemistry ,Nanotechnology ,Electronic energy transfer ,General Chemistry ,Chromophore ,010402 general chemistry ,Kinetic energy ,01 natural sciences ,0104 chemical sciences ,Excited state ,Molecule ,Luminescence - Abstract
A strategy to manage energy, following light absorption, and modulate excited-state properties, including luminescence lifetimes of multicomponent photoactive systems, is presented. The intervening mechanism, which is illustrated through the use of bi-/multi-chromophoric molecules, relies on energy shuttling between different matched chromophores under kinetic and thermodynamic control. This tutorial review is destined to show supramolecular and materials chemists, spectroscopists and nanoscientists how to harness reversible electronic energy transfer in a predictable fashion in designer molecule-based systems.
- Published
- 2010
- Full Text
- View/download PDF
12. Hybrids of semiconductor quantum dot and molecular species for photoinduced functions
- Author
-
Francisco Vera, Tommaso Avellini, Serena Silvi, Christophe Lincheneau, Alberto Credi, Tommaso Avellini, Christophe Lincheneau, Francisco Vera, Serena Silvi, and Alberto Credi
- Subjects
Chemistry ,PHOTOCHEMISTRY ,Nanoparticle ,Nanotechnology ,Electron ,Inorganic Chemistry ,Electron transfer ,Condensed Matter::Materials Science ,Nanocrystal ,Semiconductor quantum dots ,Quantum dot ,Covalent bond ,LUMINESCENCE ,Materials Chemistry ,NANOPARTICLES ,ELECTRON TRANSFER ,Physical and Theoretical Chemistry ,ENERGY TRANSFER ,Luminescence - Abstract
Semiconductor quantum dots are inorganic nanocrystals which, because of their unique size-dependent electronic properties, are of high potential interest for the development of light-responsive nanodevices. Their surface can be chemically modified, by either covalent or non-covalent approaches, in order to interface them with molecular units endowed with specific physico-chemical properties. Photoinduced electron- and energy-transfer processes between quantum dots and attached molecular species offer versatile strategies to implement functionalities such as photosensitized processes, and luminescence sensing and switching. In this review we will discuss the strategies underlying the rational construction of this kind of multicomponent species, and we will illustrate a few examples taken from our own research.
- Published
- 2014
13. Sensitisation of visible and NIR lanthanide emission by InPZnS quantum dots in bi-luminescent hybrids
- Author
-
Maria Moula Karimdjy, Jennifer K. Molloy, Peter Reiss, Fabio Agnese, Daniel Imbert, Christophe Lincheneau, Christelle Gateau, Marinella Mazzanti, Lucia Mattera, AII - Amsterdam institute for Infection and Immunity, APH - Amsterdam Public Health, Global Health, Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE ), Département de Chimie Moléculaire (DCM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université des Antilles (Pôle Guadeloupe), Université des Antilles (UA), Département de Chimie Moléculaire - Chimie Inorganique Redox (DCM - CIRE ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lanthanide ,Materials science ,Luminescence ,Nanoparticle ,Metal Nanoparticles ,02 engineering and technology ,Electron ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,Lanthanoid Series Elements ,Catalysis ,Microscopy, Electron, Transmission ,Quantum Dots ,Materials Chemistry ,[CHIM]Chemical Sciences ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy, Near-Infrared ,Near-infrared spectroscopy ,Metals and Alloys ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Quantum dot ,Ceramics and Composites ,0210 nano-technology ,Excitation - Abstract
International audience; The synthesis of stable hybrid nanoparticles combining InPZnS@ZnSe/ZnS quantum dots (QDs) and grafted lanthanide complexes has been performed using two different approaches in organic and aqueous media. The final bi-luminescent hybrids exhibit Ln(III) (Ln = Eu and Yb) centred luminescence upon QD excitation, suggesting that an energy transfer occurs from the QD to the lanthanide.
- Published
- 2016
- Full Text
- View/download PDF
14. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits
- Author
-
David Djurado, Peter Reiss, K. David Wegner, Niko Hildebrandt, Loïc J. Charbonnière, Christophe Lincheneau, Shashi Bhuckory, Fabio Agnese, Xue Qiu, Lucia Mattera, Tim Senden, Laboratoire d'Electronique Moléculaire Organique et Hybride (LEMOH), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département Sciences Analytiques et Interactions Ioniques et Biomoléculaires (DSA-IPHC), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-12-NANO-0007,NanoFRET,Analyses Fluoro-Immunologiques Multiples par Transfert d'Energie vers des Nanocristaux Semiconducteurs(2012), AII - Amsterdam institute for Infection and Immunity, APH - Amsterdam Public Health, Global Health, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,Serum ,Photoluminescence ,Immunoconjugates ,InP/ZnS Nanocrystals ,Analytical chemistry ,02 engineering and technology ,Semiconductor Nanocrystals ,010402 general chemistry ,01 natural sciences ,Antibodies ,Resonance Energy-Transfer ,chemistry.chemical_compound ,Materials Science(all) ,Limit of Detection ,Quantum Dots ,Lanthanides ,Fluorescence Resonance Energy Transfer ,Humans ,General Materials Science ,Maleimide ,chemistry.chemical_classification ,Immunoassay ,[PHYS]Physics [physics] ,Bioconjugation ,Biomolecule ,Prostate-Specific Antigen ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Förster resonance energy transfer ,chemistry ,Quantum dot ,Surface modification ,0210 nano-technology ,Luminescence ,Time-Resolved Fluoroimmunoassay ,Nuclear chemistry - Abstract
International audience; A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter 26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL(-1) obtained in 50 mu L serum samples are below the clinical cutoff level of PSA (4 ng mL(-1)) and demonstrate their direct applicability in clinical diagnostics.
- Published
- 2016
- Full Text
- View/download PDF
15. InP QDs - a good alternative to CdSe?
- Author
-
Christophe Lincheneau, Lucia Mattera, Claudia Tortiglione, and P. Reiss.
- Subjects
Quantum dots ,nanotoxicology ,model organism - Abstract
Driven by their outstanding optical properties, the use of semiconductor nanocrystals in real-world applications is intensively explored; the most advanced being biological imaging and detection as well as optoelectronics. In the quest for Cd- and Pb-free QDs, indium phosphide is handled as one of the most promising alternatives, as size-tunable emission throughout the visible and NIR range with high photoluminescence quantum yield has been reported. Still a number of challenges have to be met in order to bring their optical properties on the same level as those of CdSe based QDs. First, the emission line width of InP QDs is significantly broader with the best values reported around 40-50 nm at FWHM. Therefore a better control of the size distribution is required, which is difficult due to the specific properties of InP, like stronger size-dependence of emission than CdSe, and the covalent character of binding. The latter factor implies the use of highly reactive precursors and elevated temperatures, which severely limits the possibilities of tuning the reaction kinetics towards a regime of "size focusing". Second, it remains challenging to synthesize strongly luminescing InP based QDs with emission in the 600-750 nm range. After a brief outline of the current state in this field, we will present our current research aiming at resolving the above-mentioned shortcomings. Furthermore, we will present in vivo toxicity studies aimed to compare core/shell InP/ZnS QDs, core shell/shell InPZn/ZnSe/ZnS QDs, and CdSe/ZnS QDs, all presenting a Penicillamine layer. By using as toxicity model the freshwater polyp Hydra vulgaris, we determined several toxicity endopoints in vivo (morphology, reproduction rate, efficiency of regeneration), ex vivo (cell apoptosis rate) and at molecular level (changes in expression levels of two marker genes). Results show protective effect of the shell around the InP core and the higher toxic effect of Cd containing nanoparticles, supporting the choice Indium phosphide as valid alternative for safe and advanced biological applications.
- Published
- 2016
16. Photoluminescence Enhancement of CdSe and CdSe-ZnS Nanocrystals by On-Surface Ligand Modification
- Author
-
Alberto Credi, Matteo Amelia, Marek Oszajca, Konrad Szaciłowski, Christian Schäfer, Christophe Lincheneau, Marek Oszajca, Christophe Lincheneau, Matteo Amelia, Christian Schäfer, Konrad Szaciłowski, and Alberto Credi
- Subjects
chemistry.chemical_classification ,Photoluminescence ,Quenching (fluorescence) ,Chemistry ,Ligand ,TETRACYANOETHYLENE ,quantum dots ,Electron acceptor ,QUANTUM DOTS ,Photochemistry ,Boolean logic ,Inorganic Chemistry ,BOOLEAN FUNCTIONS ,nanocrystals ,Nanocrystal ,Quantum dot ,LUMINESCENCE ,luminescence ,Molecule ,ligand effects ,Luminescence ,SURFACE LIGANDS - Abstract
We have investigated the spectroscopic properties of CdSe and CdSe–ZnS nanocrystal quantum dots (QDs) in the presence of the electron acceptor tetracyanoethene (TCNE) in organic solution. Our results indicate that TCNE reacts with the n-alkylamine capping ligands at the surfaces of nanocrystals to generate (cyanovinyl)amine products that remain bound to the surfaces of the QDs, substantially increasing their emission efficiency. Further addition of an excess of TCNE caused a decrease in the luminescence intensity, most likely because of an electron-transfer quenching process from the photoexcited nanocrystals to the electron-accepting TCNE molecules. TCNE-induced emission enhancement was also observed for the strongly luminescent CdSe–ZnS core–shell QDs. This approach enables a post-synthetic adjustment of the luminescence efficiency of amine-capped QDs. We have also shown that the threshold-dependent response of the QD emission on the TCNE concentration can be used to encode NAND and XOR Boolean logic operations.
- Published
- 2013
17. Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions
- Author
-
Christophe Lincheneau, Thorfinnur Gunnlaugsson, and Bernard Jean-Denis
- Subjects
Lanthanide ,Chemistry ,Catenane ,Metals and Alloys ,Supramolecular chemistry ,General Chemistry ,Combinatorial chemistry ,Catalysis ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ion ,Catenation ,Ring-closing metathesis ,Materials Chemistry ,Ceramics and Composites ,Salt metathesis reaction ,Organic chemistry ,Self-assembly - Abstract
The formation of interlocked lanthanide-based catenanes using Eu(III)-directed synthesis is described (catenation being achieved via a ring-closing metathesis reaction); the self-assembly formation of the supramolecular structures was analysed by HRMS, NMR and luminescent spectroscopies.
- Published
- 2014
18. Supramolecular assemblies of semiconductor quantum dots and a bis(bipyridinium) derivative : luminescence quenching and aggregation phenomena
- Author
-
Alberto Credi, Konrad Szaciłowski, Christophe Lincheneau, Serena Silvi, Matteo Amelia, Marek Oszajca, Massimo Baroncini, Oszajca, Marek, Lincheneau, Christophe, Amelia, Matteo, Baroncini, Massimo, Silvi, Serena, Szaciłowski, Konrad, and Credi, Alberto
- Subjects
Quenching (fluorescence) ,Chemistry ,General Chemical Engineering ,Supramolecular chemistry ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Photoexcitation ,Nanocrystal ,Quantum dot ,Molecule ,0210 nano-technology ,Luminescence ,Nanocrystal, quantum dot, luminescence, supramolecular chemistry, calixarene, bipyridinium ,HOMO/LUMO - Abstract
We have synthesized CdSe and CdSe–ZnS core–shell luminescent nanocrystal quantum dots and studied their interaction with a ditopic bis(bipyridinium) compound in solution. The latter strongly quenches the luminescence of the quantum dots by a static mechanism, indicating that the nanocrystal and molecular components undergo association in the ground state. Photoexcitation of these inorganic–organic hybrids causes an electron-transfer process from the conduction band of the nanocrystal to the LUMO of the molecule. The ability of the bipyridinium-type species to trigger association of the quantum dots is evidenced by spectrofluorimetric titrations and DLS measurements in solution, and confirmed by TEM experiments on surfaces. The quantum dot–molecule complexes can be disassembled in solution by addition of a calixarene host capable of encapsulating the bipyridinium units of the molecular connector. Our results demonstrate that supramolecular chemistry offers convenient ways to control the aggregation of semiconductor nanocrystals, a crucial task for the generation of nanostructured arrays with well defined properties.
- Published
- 2014
19. Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization
- Author
-
Alberto Credi, Antonio Pertegás, Henk J. Bolink, Iain A. Wright, Christophe Lincheneau, Edwin C. Constable, Serena Silvi, Marcello La Rosa, Tommaso Avellini, Avellini, Tommaso, Lincheneau, Christophe, La Rosa, Marcello, Pertegás, Antonio, Bolink, Henk J., Wright, Iain A., Constable, Edwin C., Silvi, Serena, and Credi, Alberto
- Subjects
Materials science ,Inorganic chemistry ,Surfaces, Coatings and Film ,Nanoparticle ,Ceramics and Composite ,Nanocrystal ,Catalysis ,Catalysi ,chemistry.chemical_compound ,Thiols ,Materials Chemistry ,Carboxylate ,Solubility ,Lipoic acid ,Electronic, Optical and Magnetic Material ,Chemistry (all) ,Metals and Alloys ,General Chemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Chemical engineering ,Quantum dot ,Ceramics and Composites ,Surface modification ,Chemical stability ,Luminescence ,Metals and Alloy - Abstract
The solubility of luminescent quantum dots in solvents from hexane to water can be finely tuned by the choice of the countercations associated with carboxylate residues present on the nanocrystal surface. The resulting nanocrystals exhibit long term colloidal and chemical stability and maintain their photophysical properties.
- Published
- 2014
20. Synthesis and properties of ZnTe and ZnTe/ZnS core/shell semiconductor nanocrystals
- Author
-
Serena Silvi, Alberto Credi, Luca Ortolani, Robertino Zanoni, Christophe Lincheneau, Fabio D'Orazi, Alice Boccia, Konrad Szaciłowski, Matteo Amelia, Marek Oszajca, Vittorio Morandi, Raffaello Mazzaro, Mattia Madrigale, Lincheneau, Christophe, Amelia, Matteo, Oszajca, Marek, Boccia, Alice, D'Orazi, Fabio, Madrigale, Mattia, Zanoni, Robertino, Mazzaro, Raffaello, Ortolani, Luca, Morandi, Vittorio, Silvi, Serena, Szaciłowski, Konrad, and Credi, Alberto
- Subjects
Photocurrent ,Luminescence ,Materials science ,Photochemistry ,business.industry ,Chemistry (all) ,Quantum dot ,Nanoparticle ,quantum dots ,General Chemistry ,Photoelectrochemical cell ,semiconductor nanocrystals ,X-ray photoelectron spectroscopy ,Nanocrystal ,Electrode ,Materials Chemistry ,XPS ,Optoelectronics ,business ,Metals and Alloy - Abstract
We report the synthesis of spherical ZnTe nanocrystals and the successive coating with a ZnS shell to afford core/shell quantum dots. These nanocrystals can represent alternatives to cadmium-based quantum dots but their preparation and properties are challenging and relatively unexplored. The effect of various synthetic parameters on the reaction outcome was investigated, and the resulting nanocrystals were characterized by TEM, EDX, XPS, and spectroscopic measurements. The optical data indicate that these core/shell quantum dots belong to type I, i.e., both the electron and the hole are confined within the ZnTe core. Both the ZnTe core and ZnTe/ZnS core/shell quantum dot samples absorb in the visible region and are not luminescent. The ZnS shell preserves the optical properties of the core and improves the chemical and photochemical stability of the nanoparticles in air equilibrated solution, whereas they appear to be quite fragile in the solid state. XPS results have evidenced the distinct nature of core and core/shell QDs, confirming the formation of QDs with shells of different thicknesses and their evolution due to oxidation upon air exposure. Anodic photocurrent generation was observed when an ITO electrode functionalized with ZnTe/ZnS nanocrystals was irradiated in the visible region in a photoelectrochemical cell, indicating that the quantum dots perform spectral sensitization of the electron injection into the ITO electrode. Conversely, cathodic photocurrent generation was not observed; hence, the QD-modified electrode performs electrical rectification under a photon energy input
- Published
- 2014
- Full Text
- View/download PDF
21. ChemInform Abstract: Electrochemical Properties of CdSe and CdTe Quantum Dots
- Author
-
Christophe Lincheneau, Alberto Credi, Matteo Amelia, and Serena Silvi
- Subjects
Chalcogen ,Electron transfer ,Nanocrystal ,Quantum dot ,Chemistry ,Nanotechnology ,General Medicine ,Dispersion (chemistry) ,Electrochemistry ,Science, technology and society ,Cadmium telluride photovoltaics - Abstract
Semiconductor nanocrystal quantum dots (QDs), owing to their unique opto-electronic properties determined by quantum confinement effects, have been the subject of extensive investigations in different areas of science and technology in the past two decades. The electrochemical behaviour of QDs, particularly for CdSe and CdTe nanocrystals, has also been explored, although to a lesser extent compared to the optical properties. Voltammetric measurements can be used to probe the redox levels available for the nanocrystals, which is an invaluable piece of information if these systems are involved in electron transfer processes. Electrochemical data can also foster the interpretation of the spectroscopic properties of QDs, and give insightful information on their chemical composition, dimension, and surface properties. Hence, electrochemical methods constitute in principle an effective tool to probe the quality of QD samples in terms of purity, size dispersion, and surface defects. The scope of this critical review is to discuss the results of electrochemical studies carried out on CdSe and CdTe core and core–shell semiconductor nanocrystals of spherical shape. Examples of emerging or potential applications that exploit electroactive quantum dot-based systems will also be illustrated.
- Published
- 2012
- Full Text
- View/download PDF
22. ChemInform Abstract: Recent Highlights in the Use of Lanthanide-Directed Synthesis of Novel Supramolecular (Luminescent) Self-Assembly Structures such as Coordination Bundles, Helicates and Sensors
- Author
-
Steve Comby, Thorfinnur Gunnlaugsson, Floriana Stomeo, and Christophe Lincheneau
- Subjects
chemistry.chemical_classification ,Lanthanide ,Flat surface ,Chemistry ,Solid surface ,Supramolecular chemistry ,Nanoparticle ,General Medicine ,Self-assembly ,Luminescence ,Combinatorial chemistry ,Coordination complex - Abstract
In this short review, we focus on the recent developments within the field of coordination chemistry where mono- or multimetallic supramolecular self-assemblies are formed by employing structurally defined organic ligands, taking advantage of the high coordination requirements of the lanthanides. Such synthesis results in the formation of both structurally complex and beautiful self-assemblies. Moreover, as the lanthanide ions possess both unique magnetic (e.g. GdIII and DyIII) and luminescent properties, either in the visible (EuIII, SmIII and TbIII) or near-infrared regions (YbIII, NdIII, ErIII), these physical features are usually transferred to the self-assemblies themselves, allowing the formation of highly functional structures, such as coordination networks, as well as molecular bundles and helicates. Hence, examples of the use of lanthanide-directed synthesis of luminescent sensors, some of which are formed on solid surfaces such as gold (flat surface or nanoparticles), and imaging agents are presented. Moreover, we demonstrate that by using chiral organic ligands, lanthanide-directed synthesis can also give rise to the formation of enantiomerically pure self-assemblies, the structure of which can be probed using circularly polarized luminescence.
- Published
- 2012
- Full Text
- View/download PDF
23. Electrochemical properties of CdSe and CdTe quantum dots
- Author
-
Alberto Credi, Serena Silvi, Matteo Amelia, Christophe Lincheneau, M. Amelia, C. Lincheneau, S. Silvi, and A. Credi
- Subjects
Materials science ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Cadmium telluride photovoltaics ,0104 chemical sciences ,Electron transfer ,VOLTAMMETRY ,NANOCRYSTALS ,Nanocrystal ,Quantum dot ,ELECTROCHEMILUMINESCENCE ,Cdte nanocrystals ,NANOPARTICLES ,SPECTROELECTROCHEMISTRY ,0210 nano-technology ,Dispersion (chemistry) ,Science, technology and society - Abstract
Semiconductor nanocrystal quantum dots (QDs), owing to their unique opto-electronic properties determined by quantum confinement effects, have been the subject of extensive investigations in different areas of science and technology in the past two decades. The electrochemical behaviour of QDs, particularly for CdSe and CdTe nanocrystals, has also been explored, although to a lesser extent compared to the optical properties. Voltammetric measurements can be used to probe the redox levels available for the nanocrystals, which is an invaluable piece of information if these systems are involved in electron transfer processes. Electrochemical data can also foster the interpretation of the spectroscopic properties of QDs, and give insightful information on their chemical composition, dimension, and surface properties. Hence, electrochemical methods constitute in principle an effective tool to probe the quality of QD samples in terms of purity, size dispersion, and surface defects. The scope of this critical review is to discuss the results of electrochemical studies carried out on CdSe and CdTe core and core–shell semiconductor nanocrystals of spherical shape. Examples of emerging or potential applications that exploit electroactive quantum dot-based systems will also be illustrated.
- Published
- 2012
24. Lanthanide directed self-assembly synthesis and photophysical evaluation of chiral Eu(III) luminescent 'half-helicates'
- Author
-
Robert D. Peacock, Thorfinnur Gunnlaugsson, Carole Destribats, Dawn E. Barry, Christophe Lincheneau, and Jonathan A. Kitchen
- Subjects
Inorganic Chemistry ,Directed self assembly ,Lanthanide ,Crystallography ,Chemistry ,Ligand ,Excited state ,Photochemistry ,Luminescence ,Stoichiometry - Abstract
The reaction between the asymmetrical pyridyl ligands 3 (R) and 4 (S) and Eu(III) in CH(3)CN give rise to the formation of lanthanide luminescent 'half-helicates' in 1 : 3 (Ln:ligand) stoichiometry; the formation of which was observed by monitoring the changes in the ground and the excited state properties of the ligands, and in the time-resolved Eu-centred and the CPL emission.
- Published
- 2011
25. ChemInform Abstract: Reversible Electronic Energy Transfer: A Means to Govern Excited-State Properties of Supramolecular Systems
- Author
-
Martine Cantuel, Aurélie Lavie-Cambot, Yoann Leydet, Christophe Lincheneau, and Nathan D. McClenaghan
- Subjects
Chemical physics ,Chemistry ,Excited state ,Supramolecular chemistry ,Molecule ,Electronic energy transfer ,General Medicine ,Chromophore ,Kinetic energy ,Luminescence - Abstract
A strategy to manage energy, following light absorption, and modulate excited-state properties, including luminescence lifetimes of multicomponent photoactive systems, is presented. The intervening mechanism, which is illustrated through the use of bi-/multi-chromophoric molecules, relies on energy shuttling between different matched chromophores under kinetic and thermodynamic control. This tutorial review is destined to show supramolecular and materials chemists, spectroscopists and nanoscientists how to harness reversible electronic energy transfer in a predictable fashion in designer molecule-based systems.
- Published
- 2010
- Full Text
- View/download PDF
26. Metal-Directed Synthesis of Enantiomerially Pure Dimetallic Lanthanide Luminescent Triple-Stranded Helicates
- Author
-
Joseph P. Leonard, John E. O'Brien, Colin P. McCoy, Robert D. Peacock, Christophe Lincheneau, Thorfinnur Gunnlaugsson, and Floriana Stomeo
- Subjects
Models, Molecular ,Lanthanide ,Luminescence ,Magnetic Resonance Spectroscopy ,Molecular Conformation ,Naphthalenes ,Ligands ,Photochemistry ,Lanthanoid Series Elements ,Biochemistry ,Catalysis ,Metal ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Europium ,Single species ,Naphthalene ,Ligand ,Chemistry ,Stereoisomerism ,General Chemistry ,visual_art ,visual_art.visual_art_medium ,Gold ,Enantiomer ,Excitation - Abstract
The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu(2):1(3) and Eu(2):2(3) that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu(2):1(3) and Eu(2):2(3).
- Published
- 2009
- Full Text
- View/download PDF
27. Lanthanide directed self-assembly formations of Tb(iii) and Eu(iii) luminescent complexes from tryptophan based pyridyl amide ligands
- Author
-
Joseph P. Leonard, Christophe Lincheneau, Thorfinnur Gunnlaugsson, and Thomas McCabe
- Subjects
Models, Molecular ,Lanthanide ,Molecular Conformation ,chemistry.chemical_element ,Terbium ,Ligands ,Photochemistry ,Catalysis ,chemistry.chemical_compound ,Europium ,Amide ,Polymer chemistry ,Organometallic Compounds ,Materials Chemistry ,Luminescent Agents ,Group 2 organometallic chemistry ,Tryptophan ,Metals and Alloys ,General Chemistry ,Amides ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Ceramics and Composites ,Titration ,Stoichiometry - Abstract
The formation of self-assembly complexes between the ligands 1 (SS) and 2 (RR) and terbium or europium was undertaken and shown (using various spectroscopic titrations) to give rise to the exclusive formation of 2:1 (L:Ln) stoichiometry and not the anticipated 3:1 stoichiometry.
- Published
- 2011
- Full Text
- View/download PDF
28. Enhanced photolabelling of luminescent EuIII centres with a chelating antenna in a micellar nanodomain
- Author
-
Thorfinnur Gunnlaugsson, Gediminas Jonusauskas, Nathan D. McClenaghan, Laura Jonusauskaite, Thierry Buffeteau, Martine Cantuel, Christophe Lincheneau, Institut des Sciences Moléculaires (ISM), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Université Montesquieu - Bordeaux 4-Institut de Chimie du CNRS (INC), Center for Synthesis and Chemical Biology, Trinity College Dublin, Centre de physique moléculaire optique et hertzienne (CPMOH), Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1, European Project, Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Spectrophotometry, Infrared ,Polymers ,Metal Nanoparticles ,Naphthalenes ,Cyclams ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Europium ,Pulmonary surfactant ,Heterocyclic Compounds ,Materials Chemistry ,Organic chemistry ,Chelation ,Micelles ,Chelating Agents ,Naphthalene ,Staining and Labeling ,010405 organic chemistry ,Chemistry ,Metals and Alloys ,General Chemistry ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ceramics and Composites ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Antenna (radio) ,Luminescence - Abstract
International audience; Photoliberation of a caged, chelating naphthalene antenna greatly enhances the luminescence of a EuIII-cyclen complex due to metal-bound water displacement and sensitization by the antenna, giving a lanthanide-labelling strategy in different media, being optimal in the presence of a TMADS surfactant.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.